JPS61164642A - Carbon monoxide absorbent - Google Patents

Carbon monoxide absorbent

Info

Publication number
JPS61164642A
JPS61164642A JP60005774A JP577485A JPS61164642A JP S61164642 A JPS61164642 A JP S61164642A JP 60005774 A JP60005774 A JP 60005774A JP 577485 A JP577485 A JP 577485A JP S61164642 A JPS61164642 A JP S61164642A
Authority
JP
Japan
Prior art keywords
absorbent
carbon monoxide
carbon
copper
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60005774A
Other languages
Japanese (ja)
Inventor
Hidefumi Hirai
平井 英史
Masumi Atsukawa
厚川 麻須美
Masahito Shimomura
下村 雅人
Hideto Mitsutake
光武 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60005774A priority Critical patent/JPS61164642A/en
Publication of JPS61164642A publication Critical patent/JPS61164642A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • B01D2253/3425Honeycomb shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide

Abstract

PURPOSE:To eliminate the clogging of an absorbent packed part at the time of the passage of dust-containing gas, by forming a carbon monoxide absorbent by using copper halide and activated carbon as constitutional components and molding both components into a monolithic shape. CONSTITUTION:A monolithic shape molded body containing activated carbon as a constitutional component and having gas flow channels (a) is immersed in a solvent containing copper halide. Next, said solvent is stirred and subsequently removed by vacuum distillation to obtain a carbon monoxide adsorbent. The compounding ratio of activated carbon to copper halide is about 1-30, pref., about 3-5 on a wt. ratio basis. As copper halide, there are copper (I) chloride, copper (I) fluoride, copper (I) bromide, copper (II) chloride, copper (II) fluoride or copper (II) bromide. As the solvent, water, an aqueous hydrochloric acid solution, benzene, toluene, propionitryle or acetonitryle are used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒素、酸素、メタン、二酸化炭素お工び水素
などとともに一酸化炭素を含有する混合ガスか七、−酸
化炭素を分離するために用いる固体吸収剤に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is for separating carbon monoxide from a mixed gas containing nitrogen, oxygen, methane, carbon dioxide, hydrogen, etc. The present invention relates to a solid absorbent used for.

(従来の技術) 一酸化炭素は合成化学の基礎原料であり、コークス、石
炭から発生炉、水性ガス炉、ウィンクラ−炉、ルルギ炉
お↓びコツパース炉などを用いて製造される。また、天
然ガスお工び石油膨化水素から水蒸気改質法おLび部分
酸化法に19製造される。これらの方法では、生成物は
、−酸化R素、水素、二酸化炭素、メタンお工び窒素な
どの混合ガスとして得られる。たとえば、水性カスの場
合、−酸化炭素4〜5チ、メタンα5%LO%、窒素4
〜9%の組成をもち、通常1000〜2000 pp!
11の水會含んでいる。
(Prior Art) Carbon monoxide is a basic raw material in synthetic chemistry, and is produced from coke or coal using a generating furnace, a water gas furnace, a Winkler furnace, a Lurgi furnace, a Kotspers furnace, etc. It is also produced from natural gas, petroleum expanded hydrogen, and steam reforming and partial oxidation methods. In these methods, the product is obtained as a mixed gas of -R oxide, hydrogen, carbon dioxide, methane, nitrogen, etc. For example, in the case of aqueous scum, - 4-5% carbon oxide, 5% LO% methane α, 4% nitrogen
~9% composition, typically 1000-2000 pp!
Contains 11 aquariums.

また、製鉄所や製油所あるいは石油化学工場で副生する
一酸化炭素も、同様に、混合ガスとして得られる。
Carbon monoxide, which is produced as a by-product in steel mills, oil refineries, and petrochemical plants, is also obtained as a mixed gas.

Cれらの一酸化炭素を合成化学原料として用いる友めに
は、混合ガスから一酸化炭素を分離することが必要であ
る。
In order to use carbon monoxide as a raw material for synthetic chemicals, it is necessary to separate the carbon monoxide from the mixed gas.

一方、水素も化学工業における重要な原料であり、前述
の各種混合ガスあるいは、石油化学工場の廃ガス、たと
えば、炭化水素の脱水素工程からの廃ガスから分離され
るが、少量の一酸化炭素を含有することが多い。この−
酸化炭素は、水素を用いる反応の触媒に対して触媒毒と
なるので、分離除去する必要がある。また、これらの廃
ガス中には、少量の水が含まれるのが常である。
On the other hand, hydrogen is also an important raw material in the chemical industry, and is separated from the various gas mixtures mentioned above or from the waste gas of petrochemical plants, such as the waste gas from the hydrocarbon dehydrogenation process, but a small amount of carbon monoxide often contains. This-
Since carbon oxide acts as a catalyst poison for the catalyst for reactions using hydrogen, it is necessary to separate and remove it. Additionally, these waste gases usually contain a small amount of water.

混合カスから一酸化炭素を分離除去するには、通常、液
体吸収剤が用いられる。調液洗浄法は、ギ酸銅(■ンの
アンモニア性水溶液や塩化銅(1)の塩酸懸濁液に、混
合ガスを室温で150〜200atmに加圧し吸収させ
て一酸化炭素を分離除去し、次に、この調液を減圧下で
加熱することに19−酸化炭素を放出させて分離し、調
液を再生させる方法であるが、液体吸収剤取扱い操作の
難しさ、装置の腐蝕、溶液損失、沈殿物生成を防ぐ友め
の運転管理の難しさ、ならびに、高圧の友め建設費が高
いなどの短所を有している。
A liquid absorbent is usually used to separate and remove carbon monoxide from the mixed residue. In the solution cleaning method, a mixed gas is pressurized to 150 to 200 atm at room temperature and absorbed into an ammoniacal aqueous solution of copper formate (1) or a hydrochloric acid suspension of copper chloride (1), and carbon monoxide is separated and removed. Next, 19-carbon oxide is released and separated by heating this prepared liquid under reduced pressure, and the prepared liquid is regenerated. However, it is difficult to handle the liquid absorbent, and it causes corrosion of the equipment and loss of solution. However, it has disadvantages such as difficulty in operation management to prevent precipitation, and high pressure construction costs.

英国特許M1,318,790号によれば、銅アルミニ
ウム四塩化物(0u(AtC4) )のトルエン溶液は
、25℃で一酸化炭素50 molチ會含む混合ガスと
接触させると、−散化炭素會吸収し、これt−80℃に
温めると、95%の一酸化炭素が回収されるという。こ
の吸収液は、混合ガス中に含まれる水素、二酸化炭素、
メタン、窒素および酸素の影響を受けず、吸収圧力が低
いな、どの長所を有するが、水とは不可逆的に反応して
吸収能力の劣化お工び沈澱物の生成をきたし、塩酸を発
生する。工業的に実施する友めには、混合ガス中の水i
;[lppm以下に厳重に抑制しなければならない。従
って、吸収工程の前に、混合ガスの強力な脱水処理工程
が必要となり、厳重な管理が不可欠である。なお、銅ア
ルミニウム四塩化物は、水と強く反応して一階化炭素の
吸収能を不可逆的に失うので、たとえ1 ppmの水を
含有する混合ガスを接触させた場合でも混合ガスの処理
量の増加とともに次第に失活貴を増加して行くばかりで
なく、水との反応で生成する塩酸に工って装置腐蝕が進
行するという短所を有している。また、この吸収液を用
い几場合には、回収し九−酸化炭素中にトルエン蒸気が
混入することが不可避であり、このトルエンを除去する
装置が必要であること、お工び液体吸収剤を用いる友め
にプロセス上の制約を受ケるなどの短所t−有する。
According to British Patent No. M1,318,790, a toluene solution of copper aluminum tetrachloride (0u(AtC4)), when brought into contact with a gas mixture containing 50 mol of carbon monoxide at 25°C, produces -dispersed carbon. It is said that 95% of carbon monoxide can be recovered by absorbing water and heating it to t-80°C. This absorption liquid absorbs the hydrogen and carbon dioxide contained in the mixed gas.
Although it has the advantages of being unaffected by methane, nitrogen and oxygen and having a low absorption pressure, it reacts irreversibly with water, resulting in deterioration of absorption capacity, formation of precipitates, and generation of hydrochloric acid. . For industrial implementation, water in the gas mixture
;[Must be strictly controlled to below lppm. Therefore, a strong dehydration process of the mixed gas is required before the absorption process, and strict control is essential. Note that copper aluminum tetrachloride reacts strongly with water and irreversibly loses its ability to absorb single-layer carbon, so even if it is brought into contact with a mixed gas containing 1 ppm of water, the amount of mixed gas processed will be reduced. Not only does the amount of deactivation gradually increase as the amount of water increases, but it also has the disadvantage that equipment corrosion progresses due to the hydrochloric acid produced by the reaction with water. In addition, when using this absorption liquid, it is unavoidable that toluene vapor will be mixed into the recovered carbon nine oxide, and a device to remove this toluene is required. It has disadvantages such as being subject to process constraints when used.

上記の銅アルミニウム四塩化物(0u(AtC4))の
トルエン溶液に=る一酸化炭素分離法の短所を解決し几
−酸化炭素分離法として、ハロゲン化鋼および活性炭か
ら構成される固体吸収剤を用いる一酸化炭素吸収剤が知
られている(特開昭58−156517)。この方法で
は、該固体吸収剤を室温付近で一散化炭素管含む混合ガ
スと接触させると迅速に一酸化炭素が吸収され、次いで
、吸収剤を一定の温度に昇温するか、あるいは−酸化炭
素分圧管減少させることにエフ容゛易に一酸化炭素を放
出させることができる。
Solving the disadvantages of the above carbon monoxide separation method using a toluene solution of copper aluminum tetrachloride (0u(AtC4)), a solid absorbent composed of halogenated steel and activated carbon was used as a carbon oxide separation method. The carbon monoxide absorbent used is known (Japanese Patent Laid-Open No. 156517/1983). In this method, carbon monoxide is rapidly absorbed when the solid absorbent is brought into contact with a mixed gas containing a dispersion carbon tube at around room temperature, and then the absorbent is heated to a certain temperature or - Carbon monoxide can be easily released by reducing the carbon partial pressure tube.

(発明が解決しょうとする問題点) しかしながら、上記特開昭58〜156517号で提案
されたハロゲン化鋼と活性炭から構成される固体吸収剤
は、圧力損失が大きく、ダストを含有する混合ガスを通
過させると吸収剤装填部の閉塞を起こす欠点がらり几。
(Problems to be Solved by the Invention) However, the solid absorbent composed of halogenated steel and activated carbon proposed in the above-mentioned Japanese Patent Application Laid-open No. 58-156517 has a large pressure loss and cannot handle a mixed gas containing dust. The drawback is that if it is allowed to pass through, the absorbent loading section may become clogged.

そこで本発明は、−酸化炭素分離装置に装填し一酸化炭
素を分離すべき混合ガス金通過させた場合の圧力損失が
小さく、ダストを含有する混合ガスを通過させても吸収
剤装填部の閉塞が起こらず、且つ一酸化炭素分離装置へ
の装填時の取扱いが容易であるという条件全すべて満足
する固体吸収剤全提供しょうとするものである。
Therefore, the present invention has the following advantages: - Pressure loss is small when the mixed gas from which carbon monoxide is to be separated is passed through the carbon oxide separator, and even when the mixed gas containing dust is passed through, the absorbent loading section is blocked. It is an object of the present invention to provide a solid absorbent that satisfies all of the following conditions: no carbon monoxide separation occurs, and it is easy to handle when loaded into a carbon monoxide separator.

(問題点全解決するための手段〉 すなわち本発明は、吸収剤をモノリス形状にしたことt
−特徴とするものであって、ハロゲン化鋼および活性炭
を構成成分とする固体であり、且つモノリス形状を具備
することt′特徴とする一酸化炭素吸収剤を要旨とする
ものでらる。
(Means for solving all the problems) In other words, the present invention is based on the fact that the absorbent is made into a monolith shape.
- A carbon monoxide absorbent is characterized in that it is a solid consisting of halogenated steel and activated carbon and has a monolith shape.

本発明の一酸化炭素吸収剤が具備すべきモノリス形状と
は、単一体の形状であり、たとえば、1個またはそれ以
上の組合せでガス流路を与えることが可能な板、筒お工
びハニカムなどの形状がこれに相当する。
The monolith shape that the carbon monoxide absorbent of the present invention should have is the shape of a single body, for example, a plate, a cylindrical honeycomb, which can provide a gas flow path by one or more combinations. This corresponds to shapes such as

モノリス形状の具体例としては、例えば、第1図、第2
図お1び萬3図に示されるものがある。第1図、第2図
お工び第3図において(a)はガス流路である。なお、
第1図、第2図および#!3図はあくまで本発明の一酸
化炭素吸収剤の形状の例示にすぎず、本発明の一酸化炭
素吸収剤の形状がこれらに限定されるものではない。
Specific examples of monolith shapes include, for example, Figures 1 and 2.
There are those shown in Figures 1 and 3. In Figures 1 and 2 and Figure 3, (a) is the gas flow path. In addition,
Figure 1, Figure 2 and #! FIG. 3 is merely an illustration of the shape of the carbon monoxide absorbent of the present invention, and the shape of the carbon monoxide absorbent of the present invention is not limited to these.

本発明の一酸化炭素吸収剤は、几とえば、活性炭を構成
成分とするモノリス形状成型体をノ・ロゲン化鋼を含む
溶媒中に浸漬し、液をかくはんし次後、溶媒を減圧、留
去などの方法で除くことに19得られる。
The carbon monoxide absorbent of the present invention can be produced by, for example, immersing a monolith-shaped molded body containing activated carbon in a solvent containing norogenated steel, stirring the liquid, and then removing the solvent under reduced pressure and distilling it. 19 is obtained by removing it by a method such as removal.

本発明の一酸化炭素吸収剤に用いられるノーロゲン化鋼
は、たとえば、塩化銅(I)、フッ化銅(1)お工び臭
化銅(1)、6るいは、塩化銅1)、フッ化銅(II)
お工び臭化銅(II)などである。
The norogenated steel used in the carbon monoxide absorbent of the present invention includes, for example, copper chloride (I), copper fluoride (1), copper bromide (1), copper chloride (1), copper fluoride (1), Copper(II)
These include manufactured copper(II) bromide.

本発明の一酸化炭素吸収剤の調製に用いられる溶媒は、
友とえば、水、基数性水溶液、ベンゼン、トルエン、プ
ロピオニトリルお工びアセトニトリルなどである。
The solvent used for preparing the carbon monoxide absorbent of the present invention is
Examples include water, basic aqueous solutions, benzene, toluene, propionitrile, and acetonitrile.

本発明の一酸化炭素吸収剤の組成について述べると、活
性炭のハロゲンイ【に対する重量比は1〜30、好まし
くは3〜5である。
Regarding the composition of the carbon monoxide absorbent of the present invention, the weight ratio of activated carbon to halide is 1 to 30, preferably 3 to 5.

本発明の一酸化炭素吸収剤に、常圧下、0〜40℃−で
−酸化炭素を吸収し、この吸収剤を60℃以上に昇温す
るか、減圧にするか、あるいは、−酸化炭素分圧を下げ
ることに19、吸収された一酸化炭素を放出させること
ができる。
The carbon monoxide absorbent of the present invention absorbs -carbon oxide at 0 to 40°C under normal pressure, and then the absorbent is heated to 60°C or higher, the pressure is reduced, or -carbon oxide is absorbed into the carbon monoxide absorbent of the present invention. By lowering the pressure19, the absorbed carbon monoxide can be released.

一方、本発明の一酸化炭素吸収剤は水會含む混合ガスに
対して安定であり、水を含有する窒素気流に接触させた
後も一酸化炭素吸収能力はほとんど低下しない。
On the other hand, the carbon monoxide absorbent of the present invention is stable against a mixed gas containing water, and its carbon monoxide absorption capacity hardly decreases even after contact with a nitrogen stream containing water.

さらに、本発明の一酸化炭素吸収剤は、第1図、第2図
お工び第5図に例示し几工うなモノリス形状を具備して
いるため、−酸化炭素分離装置に装填し一酸化炭素吸収
剤すべき混合ガスを通過させた場合の圧力損失が小さく
、ダストを含有する混合ガスを通過させても吸収剤装填
部の閉塞が起こらず、且つ一酸化炭素分離装置への装填
時の取扱いが容易であるという特徴含有している。
Furthermore, since the carbon monoxide absorbent of the present invention has a precise monolithic shape as illustrated in FIGS. 1 and 2 and FIG. The pressure loss is small when a mixed gas containing carbon absorbent is passed through, and the absorbent loading section does not get clogged even when a mixed gas containing dust is passed through. It has the characteristic of being easy to handle.

次に、本発明を実施例に工ってさらに説明する。Next, the present invention will be further explained using examples.

実施例1 本発明の一酸化炭素吸収剤七次の工うに調製した。まず
、市販の石炭系粒状活性炭(平均粒径1.01111%
比表面積1150 m”/ f ) f粉砕し、粒径4
0μm以下に分級し皮粉状物751に粒径1μm以下に
pl展し次粘土にュージーランドカオリン)25tお工
び水100d金添加し、ニーダ−を用いて2時間混練し
友。この混合物を押出成型し、60℃で6時間の乾燥を
行つ友後、窒素下で1000℃、2時間の焼成を行い、
第4図の工りなモノリス形状成型体を得た。なお、第4
図中の寸法(1)、 (21,(31お工び(4)ハそ
れぞれ1■、15■、38■お工び60■とした。但し
、第4図中に描かれ九ガス流路、(a)の数は実際の数
と異っている。次に、乾燥窒素下で、内容積500mの
セパラブルフラスコ中に市販試薬一級品の塩化鋼(1)
2.7 t (27,5mmolJ  f入れ、精製水
で5規足に希釈した市販試薬一級品の塩酸500−を加
えて磁気かくはん機を用いてかき混ぜながら、室温で1
時間放置した。このセパラブルフラスコ中に、乾燥窒素
下で、6wx Htの減圧下において180℃で4時間
の乾燥を行った前述のモノリス形状成型体を入れ、室温
で、フラスコ内容液t−1時間かくはんした後、フラス
コ内t″6gHfの減圧にして、100℃に加熱保温す
ることに工9、水および塩化水素を十分に除去し、−酸
化炭素吸収剤を得た。
Example 1 A carbon monoxide absorbent according to the present invention was prepared in the following manner. First, commercially available coal-based granular activated carbon (average particle size 1.01111%
Specific surface area 1150 m”/f)
The powder was classified to 0 μm or less, spread to a grain size of 1 μm or less, and then mixed into clay (25 tons of New Zealand kaolin), added with 100 g of water, and kneaded for 2 hours using a kneader. This mixture was extruded and dried at 60°C for 6 hours, then baked at 1000°C for 2 hours under nitrogen.
An elaborate monolith shaped molded body as shown in Fig. 4 was obtained. In addition, the fourth
Dimensions (1), (21, (31) and (4) in the figure are 1■, 15■, 38■ and 60■, respectively. However, the nine gas flow paths drawn in Figure 4 are , the number in (a) is different from the actual number.Next, under dry nitrogen, in a separable flask with an internal volume of 500 m, commercially available reagent first grade chlorinated steel (1) was added.
Add 2.7 t (27.5 mmol Jf) of hydrochloric acid, a first-grade commercially available reagent diluted to 50% with purified water, and stir at room temperature for 1 hour while stirring using a magnetic stirrer.
I left it for a while. The above-mentioned monolith-shaped molded product, which had been dried at 180°C for 4 hours under dry nitrogen and a reduced pressure of 6wx Ht, was placed in this separable flask, and the flask contents were stirred at room temperature for t−1 hours. Step 9: Water and hydrogen chloride were sufficiently removed by reducing the pressure in the flask to t''6 gHf and heating and keeping it at 100° C. to obtain a -carbon oxide absorbent.

上記の一酸化炭素吸収能力、断面形状が1辺40■の正
方形、長さが100mの筒型容器に、該吸収剤の格子内
のみ金ガスが通過する工うに装填し、この筒型容器t−
1atmの一酸化炭素と窒素の混合ガス(−酸化炭素分
圧α8atm、窒累分圧(L2atm)5jt入れ次容
器と結合し、室温で、エアーポンプを用いて該混合ガス
を循環させながら該吸収剤と接触させて、−酸化炭素を
吸収させた。なお、−酸化炭素吸収量はガスビューレッ
ト法にエタ測足した。
A cylindrical container with the above-mentioned carbon monoxide absorption capacity, a square cross section of 40 cm on a side, and a length of 100 m is loaded in such a way that gold gas passes only through the lattice of the absorbent, and the cylindrical container t −
A mixed gas of 1 atm of carbon monoxide and nitrogen (-carbon oxide partial pressure α8 atm, nitrogen cumulative partial pressure (L2 atm) 5 jt) is combined with the next container and absorbed while circulating the mixed gas using an air pump at room temperature. The sample was brought into contact with the agent to absorb carbon oxide.The amount of carbon oxide absorbed was measured using the gas burette method.

−酸化炭素の吸収は迅速であり、3分後には11、5 
gmolの一酸化炭素が吸収され、60分後の一酸化炭
素吸収剤は21.1 gmolとなり、はぼ平衡吸収量
に達した。
- absorption of carbon oxide is rapid, after 3 minutes 11,5
gmol of carbon monoxide was absorbed, and the carbon monoxide absorbent after 60 minutes was 21.1 gmol, almost reaching the equilibrium absorption amount.

次に、この吸収剤を1 atmで120℃に加熱し、−
酸化炭素の放出量をガスビューレット法により測定した
。−酸化炭素は迅速に放出され、放出量は10分後に2
1.1 mmolに達した。放出ガスをガスクロマトグ
ラフで分析した結果、放出ガスは一酸化炭素のみであり
、他の成分に検出されなかった。
Next, this absorbent was heated to 120°C at 1 atm, and -
The amount of carbon oxide released was measured by the gas burette method. - Carbon oxide is released rapidly, the amount released is 2 after 10 minutes.
It reached 1.1 mmol. Analysis of the released gas using a gas chromatograph revealed that the released gas was only carbon monoxide and no other components were detected.

放冷後の吸収剤を装填した筒型反応器上昇びj atm
の一酸化炭素と窒素の混合ガス(−醸化炭素分圧118
atm、N素分圧IL2atm)5tt入れた容器と結
合し、室温で、エアーポンプを用いて該混合ガスを循環
させながら該吸収剤と接触させて、−酸化炭素を吸収さ
せ友。
Cylinder reactor loaded with absorbent after cooling atm
Mixed gas of carbon monoxide and nitrogen (-carbon partial pressure 118
At room temperature, the mixed gas is circulated using an air pump and brought into contact with the absorbent to absorb carbon oxide.

−酸化炭素の吸収は迅速であり、5分後にに1 t 9
 gmolの一酸化炭素が吸収され、60分後の一酸化
炭素吸収剤h 21.1 mmol トなり、はぼ平衡
吸収量に達した。
- absorption of carbon oxide is rapid, after 5 minutes 1 t 9
gmol of carbon monoxide was absorbed, and after 60 minutes the carbon monoxide absorbent amounted to 21.1 mmol, almost reaching the equilibrium absorption amount.

この吸収剤を1 atmで120℃に加熱すると、−酸
化炭素が迅速に放出され、放出tは10分後に21.1
 mmol  に達した。
When this absorbent is heated to 120 °C at 1 atm, -carbon oxide is rapidly released, with a release t of 21.1 after 10 minutes.
mmol was reached.

以後、上記の操作金繰り返しても、−酸化炭素吸収速度
および吸収量に変死は見られなかつ、た。
Thereafter, even if the above-mentioned operation was repeated, no change in carbon oxide absorption rate or absorption amount was observed.

その後、この−酸化炭素吸収剤の入った筒型容器f 1
60 mW (a 9 m!non )の水を含有する
1atmの窒素ガス(水の濃度11,000 ppm 
)2011入れた容器と結合し、室温で、エアーポンプ
を用いてこの水を含む窒素ガスを循環させて一酸化炭素
吸収剤と10分間接触させた。
After that, the cylindrical container f 1 containing this carbon oxide absorbent
1 atm nitrogen gas containing 60 mW (a 9 m!non) water (water concentration 11,000 ppm
) 2011, and the water-containing nitrogen gas was circulated using an air pump and brought into contact with the carbon monoxide absorbent for 10 minutes at room temperature.

次いで、この筒型容器t1atmの一酸化炭素と窒素の
混合ガス(−酸化炭素分圧α8atm。
Next, a mixed gas of carbon monoxide and nitrogen (-carbon oxide partial pressure α8 atm) in this cylindrical container t1 atm.

窒素分圧α2 atm ) S t f入れ比容器と結
合し、室温で、エアーポンプを用いて該混合ガスを循環
させながら吸収剤と接触させて、−酸化炭素を吸収させ
友。吸収剤は速やかに一酸化炭素を吸収し、60分後の
一酸化炭素吸収量は21.1rnmo1 となり、はは
平衡吸収量に達し皮。すなわち、−酸化炭素の吸収速度
お工び吸収量は、吸収剤f 11,000 ppmの水
を含有するガスと接触させても、はとんど変化しなかつ
次。
The mixed gas is connected to a nitrogen partial pressure α2 atm) S t f ratio container and brought into contact with an absorbent while circulating the mixed gas using an air pump at room temperature to absorb carbon oxide. The absorbent absorbs carbon monoxide quickly, and after 60 minutes, the amount of carbon monoxide absorbed is 21.1 rnmo1, reaching the equilibrium absorption amount and leaving the skin. That is, the absorption rate and absorption amount of carbon oxide hardly change even when the absorbent f is brought into contact with a gas containing 11,000 ppm of water.

その後、この吸収剤t1atmで120℃に加熱すると
、−酸化炭素が迅速に放出され、放出量は10分後に2
1.1 mmolに達した。
Then, when heated to 120°C with this absorbent t1atm, -carbon oxide is rapidly released, and the released amount is 2 after 10 minutes.
It reached 1.1 mmol.

実施例2 実施例1と同様に調製し九−酸化炭素吸収剤を1断面形
状が1辺40mの正方形、長さが100mの筒型容器に
、該吸収剤の格子内のみをガスが通過するように装填し
、この筒型容器を1 atmの一酸化炭素と窒素の混合
ガス(−欧化炭素分圧18atmSiii累分圧12 
atm ) S Lを入れた容器と結合し、室温で、エ
アーポンプ管用いて該混合ガスを循環させながら該吸収
剤と接触させて、−酸化炭素を吸収させた。なお、−酸
化炭素吸収量はガスビューレット法にエリ測定した。
Example 2 A nona-carbon oxide absorbent prepared in the same manner as in Example 1 was placed in a cylindrical container with a square cross section of 40 m on each side and 100 m in length, with gas passing only through the lattice of the absorbent. This cylindrical container was charged with a mixed gas of 1 atm carbon monoxide and nitrogen (-European carbon partial pressure 18 atmSiii cumulative partial pressure 12
Atm) S L was connected to a container, and the mixed gas was brought into contact with the absorbent at room temperature while being circulated using an air pump tube to absorb carbon oxide. The amount of carbon oxide absorbed was measured using the gas burette method.

一酸化炭素の吸収は迅速であり、3分後には11、9 
Wtmolの一酸化炭素が吸収され、60分後の一酸化
炭素吸収量は21.1 gmolとなり、はぼ平衡吸収
量に達し迄。
Carbon monoxide absorption is rapid, with 11,9
Wtmol of carbon monoxide was absorbed, and the amount of carbon monoxide absorbed after 60 minutes was 21.1 gmol, almost reaching the equilibrium absorption amount.

次に、真空ポンプを用いて、この−酸化炭素吸収剤の入
つ友筒型容器内を室温で10分間減圧(6varHf 
)にして、吸収した一酸化炭素を放出させた。
Next, use a vacuum pump to reduce the pressure (6 varHf) inside the cylindrical container containing this carbon oxide absorbent at room temperature for 10 minutes.
) to release the absorbed carbon monoxide.

その後、この筒型容器を1 atmの一酸化炭素と窒素
の混合ガス(−酸化炭素分圧α8atm。
Thereafter, this cylindrical container was heated to 1 atm of a mixed gas of carbon monoxide and nitrogen (-carbon oxide partial pressure α8 atm).

N素分圧llL2atm)Stt入れ比容器と結合し、
室温で、エアーポンプを用いて該混合ガスを循環させな
がら吸収剤と接触させて、−酸化炭素t−吸収させた。
N partial pressure llL2 atm) Stt is combined with a ratio container,
At room temperature, the mixed gas was brought into contact with an absorbent while being circulated using an air pump to absorb -carbon oxide t-.

一酸化炭素の吸収は迅速であり、5分後にはI Z 6
 mmol の−酸化炭素が吸収され、60分後の一酸
化炭素吸収量は21.1 mmolとなり、はぼ平衡吸
収量に達し友。
The absorption of carbon monoxide is rapid, after 5 minutes I Z 6
mmol of carbon oxide was absorbed, and the amount of carbon monoxide absorbed after 60 minutes was 21.1 mmol, almost reaching the equilibrium absorption amount.

以後、上記の操作金繰り返しても、−酸化炭素吸収速度
および吸収量に変化は見られなかった。
Thereafter, even if the above-mentioned operation was repeated, no change was observed in the carbon oxide absorption rate and absorption amount.

その後、この−酸化炭素吸収剤の入った筒型容器を16
0mW (a 9 mmof )の水を含有する1at
m (D 窒素ガス(水の濃度11,000 ppm 
)20t1(入れ比容器と結合し、室温で、エアーポン
プを用いてこの水を含む!il素ガスを循環させて一酸
化炭素吸収剤と10分間接触させた。
After that, the cylindrical container containing this carbon oxide absorbent was
1at containing 0 mW (a 9 mmof ) of water
m (D Nitrogen gas (water concentration 11,000 ppm
) 20t1 (connected to a storage vessel and at room temperature, the water-laden gas was circulated using an air pump and brought into contact with the carbon monoxide absorbent for 10 minutes.

次いで、この筒型容器t−1atmの−酸化炭素と窒素
の混合ガス(−酸化炭素分圧α8atm。
Next, a mixed gas of carbon oxide and nitrogen (-carbon oxide partial pressure α8 atm) in this cylindrical container t-1 atm.

窒素分圧(L 2 atm ) 51 を入れた容器と
結合し、室温で、エアーポンプを用いて該混合ガスを循
環させながら吸収剤と接触させて、−酸化炭素を吸収さ
せた。吸収剤は速やかに一酸化炭素を吸収し、60分後
の一酸化炭素吸収量は21.1mmo1 となり、はぼ
平衡吸収量に達し九〇すなわち、−酸化炭素の吸収速度
お工び吸収量は、吸収剤t−11,000ppmの水を
含有するギスと接触させても、はとんど変化しなかった
It was connected to a container containing nitrogen partial pressure (L 2 atm ) 51 and brought into contact with an absorbent at room temperature while circulating the mixed gas using an air pump to absorb -carbon oxide. The absorbent quickly absorbs carbon monoxide, and the amount of carbon monoxide absorbed after 60 minutes is 21.1 mmo1, reaching the equilibrium absorption amount. , the absorbent t- did not change much when contacted with Gisu containing 11,000 ppm of water.

実施例3 実施例1と同じ活性炭を実施例1に記述した方法で処理
し、実施例1と同様のモノリス形状成戯体管得た。次に
、乾燥窒素下で、内容積50 (ldのセパ2プルフラ
スコ中に市販試薬特級品の塩化鋼(1)二水和物4.6
 f (27,Ommol)を入れ、精製水50Q+d
t−加えて磁気かくはん機を用いてかき混ぜながら、室
温で1時間放置した。このセパラブルフラスコ中に、乾
燥窒素下で、6mHfの減圧下において180℃で4時
間の乾燥を行った前述のモノリス形状成型体を入れ、室
温で、フラスコ内容液を1時間かくはんし友後、フラス
コ内t−6vmHfの減圧にして、100℃に加熱保温
することにエリ、水を十分に留去し、−酸化炭素吸収剤
を得た。
Example 3 The same activated carbon as in Example 1 was treated by the method described in Example 1 to obtain a monolith-shaped body tube similar to that in Example 1. Next, under dry nitrogen, 4.6 ml of commercial reagent special grade steel chloride (1) dihydrate was added to a Sepa 2-pul flask with an internal volume of 50 (ld).
f (27, Ommol) and purified water 50Q+d
The mixture was left at room temperature for 1 hour while stirring using a magnetic stirrer. Into this separable flask, put the above-mentioned monolith-shaped molded product that had been dried at 180°C for 4 hours under dry nitrogen and a reduced pressure of 6 mHf, and stir the contents of the flask at room temperature for 1 hour. The pressure inside the flask was reduced to t-6 vmHf, and the flask was heated and kept at 100° C., and water was sufficiently distilled off to obtain a carbon oxide absorbent.

上記の一酸化炭素吸収剤を、断面形状が1辺40■の正
方形、長さが100−の筒型容器に、該吸収剤の格子内
のみ會ガスが通過する工うに装填し、この筒型容器を1
 atmの一酸化炭素と窒素の混合ガス(−酸化炭素分
圧(L8atm、窒素分圧(L 2 atm ) 5 
L f入れた容器と結合し、室温で、エアーポンプを用
いて該混合ガス全循環させながら該吸収剤と接触させて
、−酸化炭素を吸収させた。なお、−酸化炭素吸収量は
ガスビューレット法に工p測定した。
The above carbon monoxide absorbent was loaded into a cylindrical container with a square cross-section of 40 cm on a side and a length of 100 cm, so that the gas could pass only through the lattice of the absorbent. 1 container
Mixed gas of carbon monoxide and nitrogen atm (-carbon oxide partial pressure (L8 atm), nitrogen partial pressure (L 2 atm) 5
The mixed gas was connected to a container containing L f and brought into contact with the absorbent at room temperature while completely circulating the mixed gas using an air pump to absorb -carbon oxide. The amount of carbon oxide absorbed was measured using the gas burette method.

−酸化炭素の吸収は迅速であり、5分後には6.4?P
1mobの一酸化炭素が吸収され、60分後の一酸化炭
素吸収量Fl 9.6 m molとなり、はぼ平衡吸
収量に達した。
-The absorption of carbon oxide is rapid, after 5 minutes 6.4? P
1 mob of carbon monoxide was absorbed, and the carbon monoxide absorption amount after 60 minutes was 9.6 mmol, almost reaching the equilibrium absorption amount.

次に、この吸収剤t−1atmで120℃に加熱し、−
酸化炭素の放出量全ガスビューレット法により測定し友
。−酸化炭素は迅速に放出され、放出量は10分後に9
.6 mmolに達した。放出ガスをガスクロマトグラ
フで分析した結果、放出ガスは一酸化炭素のみであり、
他の成分は検出されなかった。
Next, this absorbent was heated to 120°C with t-1atm, and -
Measure the amount of carbon oxide released using the total gas burette method. - Carbon oxide is released rapidly, the amount released after 10 minutes is 9
.. It reached 6 mmol. Analysis of the released gas using a gas chromatograph revealed that the released gas was only carbon monoxide.
No other components were detected.

放冷後の吸収剤を装填した筒型反応器を再び1 atm
の一酸化炭素とN素の混合ガス(−酸化炭素分圧18a
tm、9素分圧llL2atm)5tt”入れた容器と
結合し、室温で、エアーポンプを用いて該混合ガスを循
環させながら該吸収剤と接触させて、−酸化炭素を吸収
させた。
After cooling, the cylindrical reactor loaded with the absorbent was heated again to 1 atm.
Mixed gas of carbon monoxide and nitrogen (-carbon oxide partial pressure 18a
tm, 9 elemental partial pressure llL2atm) 5tt'', and brought into contact with the absorbent at room temperature while circulating the mixed gas using an air pump to absorb -carbon oxide.

−酸化炭素の吸収は迅速であり、3分後には6、5 m
molの一酸化炭素が吸収され、60分後の一酸化炭素
吸収量に9.6 mmol となり、はぼ平衡吸収量に
達した。
- absorption of carbon oxide is rapid, after 3 minutes 6.5 m
mol of carbon monoxide was absorbed, and the amount of carbon monoxide absorbed after 60 minutes was 9.6 mmol, almost reaching the equilibrium absorption amount.

この吸収剤を1 atmで120℃に加熱すると、−酸
化炭素が迅速に放出され、放出量は10分後に9.6 
m molに達した。
When this absorbent is heated to 120°C at 1 atm, -carbon oxide is rapidly released, with the amount released being 9.6% after 10 minutes.
m mol was reached.

以後、上記の操作を繰り返しても、−酸化炭素吸収速度
お工び吸収量に変化は見られなかつ几。
Thereafter, even if the above operation was repeated, no change was observed in the absorption rate or amount of carbon oxide absorption.

その後、この−酸化炭素吸収剤の入り皮部型容器′f:
160mf (& 9 mmolンの水を含有する1a
tmO¥i1累ガス(水の濃度11,000ppm)2
ott−入れ比容器と結合し、室温で、エアーポンプを
用いてこの水を含む窒素ガスを循環させて一酸化炭素吸
収剤と10分間接触させ皮。
Thereafter, this skin-type container'f of the carbon oxide absorbent:
1a containing 160 mf (& 9 mmol of water)
tmO¥i1 Cumulative gas (water concentration 11,000ppm)2
At room temperature, the water-containing nitrogen gas is circulated and brought into contact with the carbon monoxide absorbent for 10 minutes at room temperature.

次いで、この筒型容器t 1 atmの一酸化炭素と窒
素の混合ガス(−酸化炭素分圧[L8atm。
Next, a mixed gas of carbon monoxide and nitrogen (-carbon oxide partial pressure [L8 atm.

窒素分圧(L 2 atm ) 5 tt−入れた容器
と結合し、室温で、エアーポンプ金柑いて該混合ガス全
循環させながら吸収剤と接触させて、−酸化炭素を吸収
させた。吸収剤に速やかに一酸化炭素を吸収し、60分
後の一酸化炭素吸収量は9.6mmo1  となり、は
ぼ平衡吸収量に達した。すなわち、−酸化炭素の吸収速
度お工び吸収量は、吸収剤t−11,000ppmの水
を含有するガスと接触させても、はとんど変化しなかっ
た。
The mixture was connected to a container containing nitrogen partial pressure (L 2 atm ) 5 tt, and brought into contact with an absorbent at room temperature while circulating the mixed gas through an air pump to absorb carbon oxide. Carbon monoxide was quickly absorbed by the absorbent, and the amount of carbon monoxide absorbed after 60 minutes was 9.6 mmol, almost reaching the equilibrium absorption amount. That is, the absorption rate and amount of carbon oxide hardly changed even when the absorbent was brought into contact with a gas containing 11,000 ppm of water.

実施例4 実施例5と同様に!!MIMI、た一酸化炭素吸収剤を
、断面形状が1辺4・OwI+の正方形、長さが100
+w+の筒型容器に、該吸収剤の格子内のみをガスが通
過する工うに装填し、この筒型容器t1atmの一酸化
炭素と窒素の混合ガス(−酸化炭素分圧α8atm、窒
素分圧(L 2 atm ) 5 tを入れた容器と結
合し、室温で、エアーポンプを用いて該混合ガスを循環
させながら該吸収剤と接触させて、−酸化炭素を吸収さ
せた。なお、二酸化炭素吸収量はガスビューレット法に
エフ測定した。
Example 4 Same as Example 5! ! MIMI, a carbon monoxide absorbent, has a cross-sectional shape of a square with a side of 4 OwI+ and a length of 100 mm.
A mixed gas of carbon monoxide and nitrogen (- carbon oxide partial pressure α8 atm, nitrogen partial pressure ( L 2 atm ) 5 t was combined with a container containing L 2 atm ) 5 t, and the mixed gas was brought into contact with the absorbent while circulating it using an air pump at room temperature to absorb carbon oxide. The amount was measured using the gas burette method.

m−酸化炭素の吸収は迅速で69.5分後には6、41
mmolの一酸化炭素が吸収され、60分後の一酸化炭
素吸収量は9.6 fi mo:t となり、はぼ平衡
吸収量に達した。
Absorption of m-carbon oxide is rapid and after 69.5 minutes, 6,41
mmol of carbon monoxide was absorbed, and the amount of carbon monoxide absorbed after 60 minutes was 9.6 fi mo:t, almost reaching the equilibrium absorption amount.

次に、真空ポンプを用いて、この−酸化炭素吸収剤の入
った筒型容器内を室温で10分間減圧(6■HP )に
して、吸収した一酸化炭素を放出させ友。
Next, using a vacuum pump, the pressure inside the cylindrical container containing the carbon oxide absorbent was reduced to 6 HP at room temperature for 10 minutes to release the absorbed carbon monoxide.

その後、この筒型容器t−1atmの一酸化炭素と窒素
の混合ガス(−酸化炭素分圧α13atm。
Thereafter, a mixed gas of carbon monoxide and nitrogen (-carbon oxide partial pressure α13 atm) in this cylindrical container t-1 atm.

窒素分圧12 atm ) 5 L f入れた容器と結
合し、室温で、エアーポンプを用いて該混合ガスを循環
させながら吸収剤と接触させて、−酸化炭素を吸収させ
た。
The mixed gas was connected to a container containing a nitrogen partial pressure of 12 atm) 5 Lf, and brought into contact with an absorbent while circulating the mixed gas using an air pump at room temperature to absorb -carbon oxide.

一酸化炭素の吸収は迅速でらり、3分後には&6mmo
lの一酸化炭素が吸収され、60分後の一酸化炭素吸収
量は9.6 yBmolとなり、はぼ平衡吸収量に達し
次。
The absorption of carbon monoxide is rapid, and after 3 minutes, the amount of carbon monoxide is +6 mm
1 of carbon monoxide is absorbed, and the amount of carbon monoxide absorbed after 60 minutes is 9.6 yBmol, which almost reaches the equilibrium absorption amount.

以後、上記の操作を繰り返しても、−酸化炭素吸収速度
お工び吸収量に変化は見られなかつ友。
After that, even if the above operation was repeated, there was no change in the absorption rate or amount of carbon oxide absorption.

その後、この−酸化炭素吸収剤の入った筒型容器t” 
160mf (a ? mmol )  の水を含有す
る1atmO1!素ガス(水の濃度11.ooOppm
)20tf:入れた容器と結合し、室温で、エアーポン
プ愛用いてこの水を含むN素ガスを循環させて一酸化炭
素吸収剤と10分間接触させた。
After that, this cylindrical container containing the carbon oxide absorbent t”
1 atmO1 containing 160 mf (a ? mmol) of water! Elementary gas (concentration of water 11.ooOppm
) 20tf: It was combined with the container containing it, and the water-containing nitrogen gas was circulated using an air pump at room temperature and brought into contact with the carbon monoxide absorbent for 10 minutes.

次いで、この筒型容器tIatmの一酸化炭素とti!
素の混合ガス(−酸化炭素分圧(L8atm。
Next, carbon monoxide in this cylindrical container tIatm and ti!
Mixed gas (-carbon oxide partial pressure (L8atm).

窒素分圧α2 atm ) 5 t f入れた容器と結
合し、室温で、エアーポンプを用いて該混合ガスを循環
させながら吸収剤と接触させて、−酸化炭素を吸収させ
次。吸収剤は速やかに一酸化炭素全吸収し、60分後の
一酸化炭素吸収量はρ6fnmol となり、はぼ平衡
吸収量に達した。すなわち、−酸化炭素の吸収速度およ
び吸収量に、吸収剤?11,000 ppmの水を含有
するガスと接触させても、はとんど変化しなかつ次。
The mixed gas is connected to a container containing nitrogen partial pressure α2 atm) 5 tf, and brought into contact with an absorbent while circulating the mixed gas using an air pump at room temperature to absorb carbon oxide. The absorbent quickly absorbed all of the carbon monoxide, and the amount of carbon monoxide absorbed after 60 minutes was ρ6fnmol, almost reaching the equilibrium absorption amount. That is, - the rate and amount of absorption of carbon oxide depends on the absorbent? Even when brought into contact with a gas containing 11,000 ppm of water, there was no change at all.

実施例5 実施例1と同じ方法で調製した本発明の一酸化炭素吸収
剤15個全1断面形状が1辺4(1m+の正方形、長さ
が1mの筒型容器に、該吸収剤の格子内のみをガスが通
過するように装填し、この筒型容器に窒素を連続的に通
過させて、ガス流速と圧力損失との関係を調べた。一方
、比較の友めに、上記の筒型容器に直径51m1のガラ
スピーズ會充填し、この筒型容器に窒素を連続的に流し
て、ガス流速と圧力損失との関係tl!llべた。
Example 5 A total of 15 carbon monoxide absorbents of the present invention prepared in the same manner as in Example 1 were placed in a cylindrical container with a cross-sectional shape of 4 squares on each side (1 m + square, length 1 m). The cylindrical container was loaded so that gas could only pass through it, and nitrogen was continuously passed through this cylindrical container to examine the relationship between gas flow rate and pressure loss.On the other hand, for comparison, the cylindrical container mentioned above A container was filled with glass beads having a diameter of 51 m1, nitrogen was continuously flowed through the cylindrical container, and the relationship between gas flow rate and pressure loss was determined.

本発明の一酸化炭素吸収剤に室温で窒素を通過させ九場
合のガス流速と吸収剤装填部でのガスの流れ方向1?P
Iあたりの圧力損失との関係を第5図中の(A)に、直
径5■のガラスピーズの充填層に室温で窒素を通過させ
次場合のガス流速と充填層でのガスの流れ方向1miた
すの圧力損失との関係t−ms図中のCB)に示す。同
一ガス流速での圧力損失は本発明の一酸化炭素吸収剤を
装填し次場合の方が小さく、ガス通過時の圧力損失を小
さくする上でモノリス形状が有利であることは明らかで
ある。
When nitrogen is passed through the carbon monoxide absorbent of the present invention at room temperature, what is the gas flow rate and gas flow direction at the absorbent loading section? P
Figure 5 (A) shows the relationship between the pressure drop per I and the gas flow rate and gas flow direction in the packed bed when nitrogen is passed through a packed bed of glass beads with a diameter of 5 cm at room temperature. The relationship between the pressure loss and the pressure loss is shown in CB in the t-ms diagram. The pressure loss at the same gas flow rate is smaller when the carbon monoxide absorbent of the present invention is loaded, and it is clear that the monolith shape is advantageous in reducing the pressure loss during gas passage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、wc2図および第5図はモノリス形状を例示す
る図である。 第4図は、実施例1に記述し友、本発明の一酸化炭素吸
収剤の調製過程で得た押出成型体の形状を具体的に示す
図である。 第5図はガス流速と圧力損失との関係上水す図である。 第1図  第2図   第3図 馬4図
1, WC2, and 5 are diagrams illustrating the monolith shape. FIG. 4 is a diagram specifically showing the shape of an extrusion molded product obtained in the process of preparing the carbon monoxide absorbent of the present invention, as described in Example 1. FIG. 5 is a diagram showing the relationship between gas flow velocity and pressure loss. Figure 1 Figure 2 Figure 3 Horse Figure 4

Claims (1)

【特許請求の範囲】[Claims] ハロゲン化銅および活性炭を構成成分とする固体であり
、且つモノリス形状を具備することを特徴とする一酸化
炭素吸収剤。
A carbon monoxide absorbent characterized by being a solid comprising copper halide and activated carbon as constituent components and having a monolith shape.
JP60005774A 1985-01-18 1985-01-18 Carbon monoxide absorbent Pending JPS61164642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005774A JPS61164642A (en) 1985-01-18 1985-01-18 Carbon monoxide absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005774A JPS61164642A (en) 1985-01-18 1985-01-18 Carbon monoxide absorbent

Publications (1)

Publication Number Publication Date
JPS61164642A true JPS61164642A (en) 1986-07-25

Family

ID=11620462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005774A Pending JPS61164642A (en) 1985-01-18 1985-01-18 Carbon monoxide absorbent

Country Status (1)

Country Link
JP (1) JPS61164642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261539A (en) * 1989-03-31 1990-10-24 Kobe Steel Ltd Adsorbent for recovering organic solvent
JPH1170330A (en) * 1997-08-29 1999-03-16 Sanyo Electric Co Ltd Oxygen absorbent and its regenerating method
US6770390B2 (en) * 2000-11-13 2004-08-03 Air Products And Chemicals, Inc. Carbon monoxide/water removal from fuel cell feed gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245750U (en) * 1975-09-27 1977-03-31
JPS58156517A (en) * 1982-03-13 1983-09-17 Hidefumi Hirai Adsorptive separation method of carbon monoxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245750U (en) * 1975-09-27 1977-03-31
JPS58156517A (en) * 1982-03-13 1983-09-17 Hidefumi Hirai Adsorptive separation method of carbon monoxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261539A (en) * 1989-03-31 1990-10-24 Kobe Steel Ltd Adsorbent for recovering organic solvent
JPH1170330A (en) * 1997-08-29 1999-03-16 Sanyo Electric Co Ltd Oxygen absorbent and its regenerating method
US6770390B2 (en) * 2000-11-13 2004-08-03 Air Products And Chemicals, Inc. Carbon monoxide/water removal from fuel cell feed gas

Similar Documents

Publication Publication Date Title
US6056871A (en) Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent
US3976447A (en) Removal of hydrogen fluoride from gaseous mixture by absorption on alkaline earth metal fluoride
EP0242920B1 (en) A catalyst for the selective oxidation of sulfur containing compounds, in particular hydrogen sulfide, to elemental sulfur; a process for the preparation of the catalyst; and a process for the selective oxidation of sulfur containing compounds in particular hydrogen sulfide, to elemental sulfur
JP3009309B2 (en) Methods for removing hydrogen sulfide from gas streams
US4478800A (en) Process for removal of sulfur compounds from gases
US5439867A (en) Fluidizable sulfur sorbent and fluidized sorption process
EP0159056B1 (en) Process for removing hydrogen sulphide from gases and absorbent for use in such a process
JPH01268790A (en) Production of desulfurized product
US9908084B2 (en) Process for removing heavy metals from process streams
JPS59131569A (en) Manufacture of spinel composition containing alkali earth metal and aluminum
JPH08266851A (en) Method for desulfurization of gas flow and absorbent being suitable for said method
JP5473928B2 (en) Method for producing carbonyl difluoride
US20170174514A1 (en) Method for oxygen removal from hydrogen using adsorbent
JPS5951336B2 (en) Catalyst for treatment of heavy hydrocarbons
JPS61164642A (en) Carbon monoxide absorbent
JPS63175615A (en) Removal of hydrogen sulfide
JPS58156517A (en) Adsorptive separation method of carbon monoxide
US3888970A (en) Double layer catalyst bed for removing so' 2 'from waste gases
US3793230A (en) Catalyst for sulfuric acid contact process
JP2572616B2 (en) How to remove carbon dioxide
JPS58124516A (en) Separation of carbon monooxide from mixed gas
US6652826B1 (en) Process for elimination of low concentrations of hydrogen sulfide in gas mixtures by catalytic oxidation
US3632314A (en) Regeneration of sulfuric acid laden activated carbon
JPS6126417B2 (en)
JPS61164643A (en) Carbon monoxide absorbent