JPS61163983A - Organic semiconductor composition - Google Patents

Organic semiconductor composition

Info

Publication number
JPS61163983A
JPS61163983A JP60004287A JP428785A JPS61163983A JP S61163983 A JPS61163983 A JP S61163983A JP 60004287 A JP60004287 A JP 60004287A JP 428785 A JP428785 A JP 428785A JP S61163983 A JPS61163983 A JP S61163983A
Authority
JP
Japan
Prior art keywords
polyhydric alcohol
organic semiconductor
tcnq
weight
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60004287A
Other languages
Japanese (ja)
Inventor
Shozo Takahashi
高橋 庄三
Susumu Yoshimura
吉村 進
Toshikuni Kojima
小島 利邦
Soji Tsuchiya
土屋 宗次
Yasuo Kudo
康夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60004287A priority Critical patent/JPS61163983A/en
Publication of JPS61163983A publication Critical patent/JPS61163983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain an org. semiconductor compsn. which does not emit hydro gen cyanide by thermal decomposition, by adding a polyhydric alcohol and a paraffinic hydrocarbon to an org. semiconductor composed of 7,7,8,8-tetra- cyanoquinodimethane salt. CONSTITUTION:An org. semiconductor compsn. is obtd. by adding at least 3pts.wt. additive consisting of a polyhydric alcohol and a paraffinic hydrocarbon to 100pts.wt. ion radical salt of 7,7,8,8-tetracyanoquinodimethane (TCNQ). The additive is effective in inhibiting the emission of hydrogen cyanide. It is believed that in the thermal decomposition of TCNQ salt, a certain radical R is released from its molecule, a chain reaction is induced and rapid thermal decomposition takes places. The polyhydric alcohol and the paraffinic hydrocarbon capture the radi cal and serve as terminators in the chain reaction by combustion or oxidation so that TCNQ is prevented from being decomposed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新しい有機半導体組成物に関し、7゜7.8.
8−テトラシアノキノジメタン化合物を主成分とする有
機半導体において、熱分解あるいは燃焼時の有毒ガスの
発生が抑制された有機半導体組成物に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a new organic semiconductor composition.
The present invention relates to an organic semiconductor composition containing an 8-tetracyanoquinodimethane compound as a main component, in which generation of toxic gas during thermal decomposition or combustion is suppressed.

従来の技術 7.7,8.8−テトラシアノキノジメタン(以下τC
NQと略す)は、分子中に4ケのニトリル(−CミN)
基を有する強力な電子親和性分子(アクセプター)であ
るので、多くのイオン化ポテンシャルの低い分子(ドナ
ー〕と分子間化合物あるいは塩を形成し、電気抵抗の低
い有機半導体を与える。また、低抵抗の有機半導体とし
ては比較的熱安定性が高いという利点を有するため、多
くの電子素子への応用が提案されている。たとえば、そ
の抵抗の温度変化を利用した温度センサー、低抵抗性お
よび電気化学的活性を利用した固体電解コンデンサ用固
体電解質、抵抗の電場あるいは光によるスイッチ性を利
用した論理素子、記憶、記録媒体あるいは酸化還元反応
における色の変化を利用した表示素子などがある。
Conventional technology 7.7,8.8-tetracyanoquinodimethane (hereinafter referred to as τC
NQ) has four nitriles (-CmiN) in the molecule.
Since it is a molecule with strong electron affinity (acceptor) having a group, it forms intermolecular compounds or salts with many molecules with low ionization potential (donor), giving an organic semiconductor with low electrical resistance. As organic semiconductors have the advantage of relatively high thermal stability, their applications in many electronic devices have been proposed.For example, temperature sensors that utilize temperature changes in their resistance, low resistance and electrochemical These include solid electrolytes for solid electrolytic capacitors that utilize activity, logic elements that utilize the electric field of resistance or switchability due to light, and display elements that utilize memory, recording media, and color changes in redox reactions.

発明が解決しようとする問題点 しかし、これらの電子素子は通常の使用状態においては
安全上全く問題を生じることはないが、一度火災あるい
は何らかの過電流による発熱が生じた場合、有毒ガスを
発生することが十分考えられる。たとえば、TCNQの
分子(分子量=204)中には4個のON基があり、C
とHの結合は非常に強いので、熱分解が起った場合はシ
アン化水素(HCN、分子量=27)が生ずる可能性が
ある。
Problems to be Solved by the Invention However, although these electronic devices do not pose any safety problems during normal use, they can generate toxic gas in the event of a fire or heat generation due to some kind of overcurrent. It is quite possible. For example, there are four ON groups in the TCNQ molecule (molecular weight = 204), and C
Since the bond between and H is very strong, if thermal decomposition occurs, hydrogen cyanide (HCN, molecular weight = 27) may be produced.

4個のONが全てHCHに変換した場合、TCNQ分子
1g当り629fi、9のHCNが発生することになる
。また、TCNQCN上のものは昇華性を有するため、
加熱時には分解前に空気中に飛散するが、各種ドナーと
反応させて得られる有機半導体は約250’C以上の高
温に放置すると必ず熱分解を起こす。加えて、この熱分
解は発熱反応であるため、分解時に有機半導体の温度上
昇が生じ、分解温度は開始の温度に関係なく、はぼ30
0〜600 ’Cの範囲に入ってしまう。一方、この温
度範囲は、窒素を含む有機化合物の燃焼において最もシ
アン化水素の発生し易い条件であることが知られている
。この様に、TCNQからなる有機半導体を用いる場合
、何らかの原因による加熱が起った時、人体にとって極
めて有毒なシアン化水素ガスが発生することを前提とし
て考える必要かある。事実、低抵抗で知られるキノリニ
ウム(TCNQ)2を300“Cの空気中で熱分解した
ところ、シアン化水素とアセトニトリル(ca3c N
 )が主に発生することがガス質量分析から確認され、
特にシアン化水素はJISKO109に基づく定量分析
(ピリジン−ピラゾロン吸光光度法)により4重量%発
生していることが判明した。この値は理論的な発生量(
63%)よVは遥かに低く、例えば100m&OTON
Q* t 4.(’)’2f’s’l T*f+% L
 fc−”ih * 、 FJ ”ppmの濃度に対応
するので、作業環境等の安全基準からは許容できる値で
ある。しかしながら、場合によっては局所濃度が著しく
高くなることも考えられるので、TCNQ塩の熱分解時
のシアン化水素の発生はできるだけ抑制しておく必要が
あるO 本発明は上記問題を解決するもので、TCNQ塩から成
る有機半導体に多価アルコールとパラフィン炭化水素を
添加して用いる事により熱分解時のシアン化水素の発生
が抑制された有機半導体組成物を提供するものである。
If all four ONs were converted to HCH, 629fi, 9 HCN would be generated per gram of TCNQ molecules. In addition, since those on TCNQCN have sublimation properties,
When heated, it scatters into the air before being decomposed, but organic semiconductors obtained by reacting with various donors always undergo thermal decomposition when left at high temperatures of about 250'C or higher. In addition, since this thermal decomposition is an exothermic reaction, the temperature of the organic semiconductor increases during decomposition, and the decomposition temperature is approximately 30°C, regardless of the starting temperature.
It falls within the range of 0 to 600'C. On the other hand, it is known that this temperature range is the condition in which hydrogen cyanide is most likely to be generated during combustion of organic compounds containing nitrogen. In this way, when using an organic semiconductor made of TCNQ, it is necessary to assume that hydrogen cyanide gas, which is extremely toxic to the human body, will be generated when heating occurs for some reason. In fact, when quinolinium (TCNQ)2, which is known for its low resistance, is thermally decomposed in air at 300"C, hydrogen cyanide and acetonitrile (ca3cN
) was confirmed by gas mass spectrometry to mainly occur.
In particular, hydrogen cyanide was found to be generated in an amount of 4% by weight based on quantitative analysis (pyridine-pyrazolone spectrophotometry) based on JISKO109. This value is the theoretical amount (
63%) YoV is much lower, for example 100m & OTON
Q*t4. (')'2f's'l T*f+% L
This corresponds to the concentration of fc-"ih*, FJ" ppm, which is an acceptable value in terms of safety standards such as the working environment. However, in some cases, the local concentration may become extremely high, so it is necessary to suppress the generation of hydrogen cyanide as much as possible during thermal decomposition of TCNQ salt. The purpose of the present invention is to provide an organic semiconductor composition in which the generation of hydrogen cyanide during thermal decomposition is suppressed by adding a polyhydric alcohol and a paraffin hydrocarbon to an organic semiconductor consisting of the following.

問題点を解決するための手段 本発明による有機半導体組成物の基本構成は、公知の方
法で得られるTCNQ塩を粉砕し、添加剤として多価ア
ルコールとパラフィン炭化水素を均一に混合したもので
ある。あるいは多価アルコールとパラフィン炭化水素を
熱溶融してTO)IQ塩の粉末に含浸することもできる
。本発明が適用される有機半導体は主にTCNQを一方
の成分(アクセプター)とするもので、他の成分として
は金属イオン((例)Ll 、Ha  、K  、Os
  。
Means for Solving the Problems The basic composition of the organic semiconductor composition according to the present invention is that TCNQ salt obtained by a known method is pulverized and polyhydric alcohol and paraffin hydrocarbon are uniformly mixed as additives. . Alternatively, a polyhydric alcohol and a paraffin hydrocarbon can be heated and impregnated into the TO)IQ salt powder. The organic semiconductor to which the present invention is applied mainly has TCNQ as one component (acceptor), and other components include metal ions ((e.g., Ll, Ha, K, Os).
.

Ba’ 、Ca+、Cu+、(iu+など)、アンモニ
ウム。
Ba', Ca+, Cu+, (iu+, etc.), ammonium.

ピリジニウム、キノリニウム、ツェナジニウム。Pyridinium, quinolinium, zenadinium.

アクリジニウム、フェノチアジニウム、テトラチアフル
ベレニウム、テトラセレナフルバレニワムおよびこれら
の置換体であるが、その他のニトリル基を有するアクセ
プターから成る有機半導体、例えばジシアノジクロロバ
ラキノン、テトラシアノエチレン、テトラシアノナフト
キノンなどを用いることも可能である。
Organic semiconductors consisting of acridinium, phenothiazinium, tetrathiafulverenium, tetraselenafulvalenium and substituted products thereof, but with acceptors having other nitrile groups, such as dicyanodichlorovaraquinone, tetracyanoethylene, tetracyano It is also possible to use naphthoquinone and the like.

作用 本発明で開示される有機半導体組成物は上記の有機半導
体と多価アルコール及びパラフィン炭化水素からなる混
合系であるが、この2種類の添加剤が相乗効果を発揮し
て有機半導体の熱分解時のシアン化水素の発生を抑制す
るという効果は多くの熱分解実験および発生ガスの分析
より明らかにされた。っこのように、経験的な手法によ
り材料が選択されたのであるが、これらの添加物のシア
ン化水素発生抑制効果は次のいくつかの理由によるもの
と予想される。
Function The organic semiconductor composition disclosed in the present invention is a mixed system consisting of the above-mentioned organic semiconductor, polyhydric alcohol, and paraffin hydrocarbon, and these two types of additives exhibit a synergistic effect to thermally decompose the organic semiconductor. The effect of suppressing the generation of hydrogen cyanide during heating has been clarified through many thermal decomposition experiments and analyzes of generated gas. As described above, the materials were selected based on an empirical method, and the hydrogen cyanide generation suppressing effect of these additives is expected to be due to the following several reasons.

TCNQ塩が熱分解する際には、分子から何らかのラジ
カルR・が放出されて、それが連鎖反応を誘起し、急激
な発熱分解を起こすものと思われる。
It is thought that when TCNQ salt thermally decomposes, some radical R is released from the molecule, which induces a chain reaction and causes rapid exothermic decomposition.

本発明で開示される多価アルコール、パラフィン炭化水
素はこのようなラジカルを捕捉し、燃焼あるいは酸化に
おける連鎖反応の停止剤として働き、TCNQの分解を
抑制しているものと思われる。また、多価アルコールは
水酸基を遊離し、有機半導体から水素を引き抜き、有機
半導体の炭化を促進するという効果もある様に思われる
。更には、パラフィン炭化水素は有機半導体の分解温度
(280’C付近)よジ十分に低い温度で溶融するため
に、その生成物が有機半導体を覆うことによってガスの
放出を防いでいることも考えられる。このように多価ア
ルコールかパラフィン炭化水素を単独で用いるのに較べ
、両方の添加剤の効果が相乗してHCNガス発生の抑制
に働いて良い結果を与えるものと思われる。
It is believed that the polyhydric alcohol and paraffin hydrocarbon disclosed in the present invention trap such radicals, act as a stopper for chain reactions during combustion or oxidation, and suppress the decomposition of TCNQ. In addition, polyhydric alcohols seem to have the effect of liberating hydroxyl groups, extracting hydrogen from organic semiconductors, and promoting carbonization of the organic semiconductors. Furthermore, since paraffin hydrocarbons melt at a temperature sufficiently lower than the decomposition temperature of organic semiconductors (nearly 280'C), it is also possible that the products cover the organic semiconductors and prevent gas release. It will be done. In this way, compared to using polyhydric alcohol or paraffin hydrocarbon alone, the effects of both additives seem to work synergistically to suppress HCN gas generation, giving better results.

以上のような理由から、多価アルコールには1分子中に
できるだけ多くの水酸基を有するものが望ましい。又、
有機半導体の分解するよりできるだけ早く溶融する方が
効果大であるが、有機半導体を用いる電気素子の熱安定
性のうえでは、できるだけ高い軸点の材料を用いるべき
である。従って、本発明では、多価アルコールとしてペ
ンタエリスリトール(融点260°C)、ソルビトール
(融点100’C)、パラフィン炭化水素として固型パ
ラフィン(融点了0°C)と低分子量ポリエチレン(融
点約120°C)を用いた。添加剤の添加量は、有機半
導体100重量部に対して、多価アルコールとパラフィ
ン炭化水素の両者合わせて3重量部以上であれば効果が
あり、多価アルコールとパラフィン炭化水素の比率では
2つの添加剤が等置部添加したときに最も効果が大きか
った。添加剤の総量は本質的には任意であり、HCNガ
スの発生を抑制するうえでは多いほど望ましいが、TC
NQ塩のもつ半導体としての性質を損なうことが見られ
る120重量部(2添加剤の総量)以内にするこ   
   1とが望ましい。すなわち多価アルコールは3か
ら60部、パラフィン炭化水素は2から60部にするこ
とか望ましい。
For the above reasons, it is desirable that the polyhydric alcohol has as many hydroxyl groups as possible in one molecule. or,
It is more effective to melt the organic semiconductor as quickly as possible than to decompose it, but from the viewpoint of thermal stability of an electric element using an organic semiconductor, a material with as high an axis point as possible should be used. Therefore, in the present invention, polyhydric alcohols include pentaerythritol (melting point: 260°C), sorbitol (melting point: 100°C), paraffin hydrocarbons include solid paraffin (melting point: 0°C), and low molecular weight polyethylene (melting point: approximately 120°C). C) was used. The amount of additives added is effective if the total amount of both polyhydric alcohol and paraffin hydrocarbon is 3 parts by weight or more per 100 parts by weight of the organic semiconductor, and the ratio of polyhydric alcohol and paraffin hydrocarbon is The effect was greatest when the additive was added in equal parts. The total amount of additives is essentially arbitrary, and a larger amount is desirable in order to suppress the generation of HCN gas, but TC
The amount should not exceed 120 parts by weight (total amount of the two additives), which may impair the semiconductor properties of the NQ salt.
1 is desirable. That is, it is desirable that the amount of polyhydric alcohol be 3 to 60 parts and the amount of paraffin hydrocarbon be 2 to 60 parts.

実施例 以下に本発明の実施例について説明する。Example Examples of the present invention will be described below.

有機半導体としてN−n−プチルイソキノリニクム(T
CNQ)2100重量部用い、これに種々の多価アルコ
ール及びパラフィン炭化水素を適当量で添加し、乳鉢で
良く混合混練ののち、ガラス管に空気とともに封入し、
300°Cにて約10分間加熱した。ガラス管の温度が
300″Cに達すると上記有機半導体は溶融し、それか
ら10〜60秒后に分解した。場合によっては分解と同
時にガラス管が破裂したが、分解後、発生ガスを他のガ
ラス容器に導入し、ガスクロマトグラフィ、北側式ガス
検知管およびJISK109法によりHCNの発生量を
測定した。
N-n-butylisoquinolinicum (T
Using 2100 parts by weight of CNQ), various polyhydric alcohols and paraffin hydrocarbons were added in appropriate amounts, and after mixing and kneading well in a mortar, the mixture was sealed in a glass tube with air.
It was heated at 300°C for about 10 minutes. When the temperature of the glass tube reached 300"C, the organic semiconductor melted and then decomposed after 10 to 60 seconds. In some cases, the glass tube burst at the same time as the decomposition, but after decomposition, the generated gas was transferred to other glass. The amount of HCN generated was measured using gas chromatography, a north-side gas detection tube, and JIS K109 method.

下表に種々のパラフィン炭化水素を添加した組成物のH
CN発生量のデータを示す。
The table below shows H of compositions with various paraffin hydrocarbons added.
The data on the amount of CN generation is shown.

(以下余白) このように、多価アルコールとパラフィン炭化水素の両
方を合わせて3重量部以上の添加で、HCNガスの発生
抑制に効果を現わし、添加量の増加につれて効果も著し
いものがある。特に、多価アルコールとパラフィン炭化
水素が同量添加する場合には両者が等量添加したとき、
最も効果の大きい事が分った。
(Left below) As shown above, adding 3 parts by weight or more of both polyhydric alcohol and paraffin hydrocarbon is effective in suppressing HCN gas generation, and the effect becomes more significant as the amount added increases. . In particular, when polyhydric alcohol and paraffin hydrocarbon are added in equal amounts, when both are added in equal amounts,
I found it to be the most effective.

発明の効果 以上のように本発明は、TCNQのイオンラジカル塩1
00重量部に対して、多価アルコールとパラフィン炭化
水素の合計3重量部以上を添加するもので、熱分解時あ
るいは燃焼時の有毒ガス、特にシアン化水素の発生を抑
制することができ、さらに本発明を用いれば、温度セン
サー、電解コンデンサ、導電性皮膜などTCNQ塩を用
いた電子デバイスの安全性が著しく向上する。
Effects of the Invention As described above, the present invention provides the ionic radical salt 1 of TCNQ.
By adding a total of 3 parts by weight or more of polyhydric alcohol and paraffin hydrocarbon to 00 parts by weight, it is possible to suppress the generation of toxic gases, especially hydrogen cyanide, during thermal decomposition or combustion. If used, the safety of electronic devices using TCNQ salt, such as temperature sensors, electrolytic capacitors, and conductive films, will be significantly improved.

Claims (4)

【特許請求の範囲】[Claims] (1)7、7、8、8−テトラシアノキノジメタンのイ
オンラジカル塩に、多価アルコールとパラフィン炭化水
素からなる添加剤を含み、前記イオンラジカル塩100
重量部に対して添加剤が3重量部以上添加されているこ
とを特徴とする有機半導体組成物。
(1) The ionic radical salt of 7,7,8,8-tetracyanoquinodimethane contains an additive consisting of a polyhydric alcohol and a paraffin hydrocarbon, and the ionic radical salt 100
An organic semiconductor composition characterized in that an additive is added in an amount of 3 parts by weight or more based on parts by weight.
(2)イオンラジカル塩100重量部に、多価アルコー
ルを3から60重量部、パラフィン炭化水素を2から6
0重量部含むことを特徴とする特許請求の範囲第1項記
載の有機半導体組成物。
(2) 100 parts by weight of ionic radical salt, 3 to 60 parts by weight of polyhydric alcohol, and 2 to 6 parts by weight of paraffin hydrocarbon.
The organic semiconductor composition according to claim 1, characterized in that it contains 0 parts by weight.
(3)多価アルコールがペンタエリスリトール、エリス
リトール、ソルビトール、マンニトール、グリコースの
いずれかであることを特徴とする特許請求の範囲第1項
記載の有機半導体組成物。
(3) The organic semiconductor composition according to claim 1, wherein the polyhydric alcohol is any one of pentaerythritol, erythritol, sorbitol, mannitol, and glycose.
(4)パラフィン炭化水素が固型パラフィン、低分子量
のポリエチレンであることを特徴とする特許請求の範囲
第1項記載の有機半導体組成物。
(4) The organic semiconductor composition according to claim 1, wherein the paraffin hydrocarbon is solid paraffin or low molecular weight polyethylene.
JP60004287A 1985-01-14 1985-01-14 Organic semiconductor composition Pending JPS61163983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60004287A JPS61163983A (en) 1985-01-14 1985-01-14 Organic semiconductor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60004287A JPS61163983A (en) 1985-01-14 1985-01-14 Organic semiconductor composition

Publications (1)

Publication Number Publication Date
JPS61163983A true JPS61163983A (en) 1986-07-24

Family

ID=11580308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60004287A Pending JPS61163983A (en) 1985-01-14 1985-01-14 Organic semiconductor composition

Country Status (1)

Country Link
JP (1) JPS61163983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692959A (en) * 1986-12-15 1994-04-05 Toshio Mukai Salt of anionic radial of benzoquinone derivative
JP2011504650A (en) * 2007-10-18 2011-02-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Conductive formulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692959A (en) * 1986-12-15 1994-04-05 Toshio Mukai Salt of anionic radial of benzoquinone derivative
JP2011504650A (en) * 2007-10-18 2011-02-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Conductive formulation

Similar Documents

Publication Publication Date Title
Xu et al. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate
Trevor et al. Ionizing laser intensity dependence of the silicon cluster photoionization mass spectrum
US3912650A (en) Hydrated zinc borate, dimethyl silicone resin arc extinguishing material
JPS61163983A (en) Organic semiconductor composition
Miasek et al. Energy transfer in ion-molecule collisions. Collisional deactivation of (C5H9+)
Kubot et al. Lithium Difluorophosphate: A Boon for High Voltage Li Ion Batteries and a Bane for High Thermal Stability/Low Toxicity: Towards Synergistic Dual Additives to Circumvent this Dilemma
Veith Fragment ion formation of quaternary ammonium salts under fast atom bombardment and field desorption collisionally activated dissociation conditions
Creary et al. Reaction of arylbromodiazirines with azide ion. Evidence for N-azidodiazirine intermediates
JPS60212903A (en) Organic semiconductor composition
JPH0347591B2 (en)
JPS60257005A (en) Organic semiconductor composition
Belloni et al. Ionizing radiation-liquid interactions: A comparative study of polar liquids
Balasanmugam et al. Characterization of o-phenanthroline and 2, 2'-bipyridine complexes by laser mass spectrometry
JPS60257006A (en) Organic semiconductor composition
JPS60212901A (en) Organic semiconductor composition
Harker et al. X-ray photoelectron studies of sulphur in carbon
Kato et al. Temperature effect on decay of ions in viscous liquids as studied by pulse radiolysis and. gamma.-radiolysis at 88-230 K. 2-Methyltetrahydrofuran and methylcyclohexane-2-methylbutane
JPS60212902A (en) Organic semiconductor composition
Detter et al. Secondary ion mass spectrometry of nonvolatile isocyanide complexes of silver (I) and copper (I)
Ruban et al. Importance of intumescence in polymers fire retardancy
Gebicki et al. The Transient CCl3+: Its Optical Absorption and Its Ability To Form Ion Pairs in Methylcyclohexane Solution of CCl4
Ramana et al. Unexpected mass spectral skeletal rearrangements in aromatic thioamides
RU2298540C2 (en) Ammonium nitrate phase stabilization method
Athanassopoulos et al. Formation by fast atom bombardment of molecular radical cations by electron donor–acceptor complexes from tosylated amino acid esters
Gustin et al. Improved accuracy of rapid micro carbon and hydrogen method by modified combustion-absorption techniques