JPS6116353B2 - - Google Patents

Info

Publication number
JPS6116353B2
JPS6116353B2 JP57059714A JP5971482A JPS6116353B2 JP S6116353 B2 JPS6116353 B2 JP S6116353B2 JP 57059714 A JP57059714 A JP 57059714A JP 5971482 A JP5971482 A JP 5971482A JP S6116353 B2 JPS6116353 B2 JP S6116353B2
Authority
JP
Japan
Prior art keywords
frame
porous
porous electrode
spacer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57059714A
Other languages
Japanese (ja)
Other versions
JPS58177483A (en
Inventor
Takeshi Nozaki
Takeo Ozawa
Hidetaka Oomichi
Yoshinori Takada
Hidetaka Izawa
Osamu Hamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Mitsui Zosen KK
Original Assignee
Agency of Industrial Science and Technology
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsui Zosen KK filed Critical Agency of Industrial Science and Technology
Priority to JP57059714A priority Critical patent/JPS58177483A/en
Publication of JPS58177483A publication Critical patent/JPS58177483A/en
Publication of JPS6116353B2 publication Critical patent/JPS6116353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 本発明は枠体スペーサーと多孔質電極との組立
体に関し、さらに詳しくは、溶液または懸濁液中
の溶質または分散質を電解する場合に用いられる
液流通型の多孔質電極と枠体スペーサーとの組立
体に関する 溶液中の溶質、懸濁液または乳濁液中の分散質
を被電解物質とする電解においては、溶解度等の
制約によりその濃度を大きくするには限界があ
る。このため、被電解物質を電極に捕捉する特別
の工夫が必要となる。すなわち、水を電解してガ
ス発生を行うような形の電解槽では、被電解物質
である水は電極の表面に常に存在し、電解反応の
過程で被電解物質の拡散過程などをあまり考慮し
なくともよいが、溶解度等の制約により濃度が限
定される被電解物質を電解する場合は、電極が被
電解物質を効率よく捕捉し得る工夫を施した電解
槽を用いなければ充分な電流密度で電解を行うこ
とはできない。電流密度を大きくするとができれ
ば、電極面積を小さくすることができ、電解槽の
製作コストが低減される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an assembly of a frame spacer and a porous electrode, and more particularly to a liquid-flow type porous electrode used when electrolyzing a solute or a dispersoid in a solution or suspension. Regarding the assembly of quality electrode and frame spacer In electrolysis where the electrolyte is a solute in a solution or a dispersoid in a suspension or emulsion, there is a limit to increasing the concentration due to restrictions such as solubility. There is. Therefore, special measures are required to trap the electrolyte in the electrode. In other words, in an electrolytic cell that electrolyzes water to generate gas, water, which is the substance to be electrolyzed, is always present on the surface of the electrode, and the diffusion process of the substance to be electrolyzed is not given much consideration during the electrolytic reaction process. However, when electrolyzing a substance to be electrolyzed whose concentration is limited due to constraints such as solubility, the current density may not be sufficient unless an electrolytic cell is used that is designed so that the electrodes can efficiently capture the substance to be electrolyzed. Electrolysis cannot be performed. If the current density can be increased, the electrode area can be reduced, and the manufacturing cost of the electrolytic cell can be reduced.

被電解物質を大きな捕捉率、すなわち高い電流
密度をもつて電解するために、最近、多孔質の液
流通型電極をもつ電解槽が開発されている(例え
ば特公昭54−19228号、特公昭54−26230号、およ
び特公昭54−26231号)。
In order to electrolyze the substance to be electrolyzed with a large capture rate, that is, with a high current density, electrolytic cells with porous liquid-flowing electrodes have recently been developed (for example, Japanese Patent Publication No. 19228-1989, -26230, and Special Publication No. 54-26231).

このような電解槽の構成は、一般に基板(極板
または複極仕切板)、枠状スペーサー、該枠内に
単に装填される多孔質の液流通型電極および隔膜
の4要素からなつており、従来の水電解用の電解
槽(例えば米国特許第3135673号)よりも多孔質
の液流通型電極を設けた分だけ構成要素が多くな
つている。従つてこのような新しい型の電解槽で
は、構造を簡素化して製作費を下げるなどの新し
い課題が生じるが、これに加えて、多孔質電極と
スペーサー間に液体が偏流して被電解物質の捕捉
率が低下したり、多孔質電極が本来の位置から移
動したり、またはカーボンクロスを多孔質電極と
して用いる場合には炭素繊維がほぐれて逃散する
等の問題を生じることが分つた。これらの課題
は、電解槽と電極反応上逆の立場にある電池にお
いても全く同様に起り得る。
The structure of such an electrolytic cell generally consists of four elements: a substrate (electrode plate or bipolar partition plate), a frame-shaped spacer, a porous liquid-flowing electrode simply loaded into the frame, and a diaphragm. It has more components than conventional electrolyzers for water electrolysis (eg, US Pat. No. 3,135,673) because of the provision of porous liquid-flowing electrodes. These new types of electrolytic cells therefore pose new challenges, such as simplifying the structure and lowering production costs, but in addition to this, liquid flows between the porous electrode and the spacer, causing the electrolyte to become unbalanced. It has been found that problems such as a reduction in the capture rate, the movement of the porous electrode from its original position, or the fact that when carbon cloth is used as the porous electrode, the carbon fibers loosen and escape occur. These problems can occur in exactly the same way in batteries, which are in opposite positions with respect to electrolytic cells and electrode reactions.

従来、前記課題を解決するため、多孔質電極の
一部に樹脂を塗布または含浸させ、この部分をス
ペーサーとした構成の多孔質電極(例えば特開昭
56−162882号)が知られているが、この場合に
は、多孔質電極に高価な材料を使用すると、スペ
ーサー部分は一般に電極として利用されないため
その分だけ製作費がかさむこと、多孔質電極とス
ペーサー間に厚み差を持たせたい場合には製作法
が複雑化し、技術的に困難になること、および前
記塗布または含浸に適する樹脂が制限されること
等に欠点がある。
Conventionally, in order to solve the above problem, a porous electrode was constructed by coating or impregnating a part of the porous electrode with a resin and using this part as a spacer (for example, in
56-162882), but in this case, if an expensive material is used for the porous electrode, the spacer part is generally not used as an electrode, which increases the production cost, and the problem is that the porous electrode When it is desired to provide a difference in thickness between the spacers, there are drawbacks such as the manufacturing method becomes complicated and technically difficult, and the resin suitable for the coating or impregnation is limited.

本発明の目的は、前記従来技術の欠点をなく
し、電解質の捕捉率が高く、製作上も容易でかつ
製作費を低減し得る液流通型の多孔質電極と枠体
スペーサーとの組立体を提供することにある。
An object of the present invention is to provide an assembly of a liquid-flow type porous electrode and a frame spacer that eliminates the drawbacks of the prior art, has a high electrolyte capture rate, is easy to manufacture, and can reduce manufacturing costs. It's about doing.

前記目的を達成するため、本発明は、電解液が
それぞれ流入出する少なくとも2個の液流通孔
と、他の電極室へ電解液を移送する少なくとも2
個の液流通孔を有する電子非伝導性材料からなる
枠状スペーサーと、該枠状スペーサー内に配置さ
れた電子伝導性の多孔質物質からなる多孔質電極
と、該多孔質電極と枠状スペーサーの間の空隙部
に充填された樹脂とを有することを特徴とする。
To achieve the above object, the present invention provides at least two liquid flow holes through which the electrolyte flows in and out, respectively, and at least two through which the electrolyte is transferred to another electrode chamber.
a frame-shaped spacer made of an electronically non-conductive material and having liquid flow holes; a porous electrode made of an electron-conductive porous material disposed within the frame-shaped spacer; and the porous electrode and the frame-shaped spacer. and a resin filled in the void between the two.

本発明における枠状スペーサーとしては、多孔
質電極の装填が可能な限り、この種の分野におい
て公知の材質(電子非伝導性材料、例えば電子非
伝導性のポリ塩化ビニル、ポリプロピレンなどの
合成樹脂)、形状および機能を有するスペーサー
が広く適用可能である。また、上記枠状スペーサ
ーの枠内に装填される液流通型の多孔質電極とし
ては、電子伝導性の多孔質物質や目の細かい網状
物質を重ね合わせたものが好ましく用いられる
が、非電子伝導性物質に電子伝導性物質を被覆し
た多孔質物質なども充分使用することができる。
具体的にはカーボンクロス(炭素布)、カーボン
ペーパー(炭素紙)、その他多孔質状の炭素、金
属網、多孔質状の焼結金属、その他の多孔質状の
金属、または一般の植物性繊維や石綿に金属を非
電解めつきしたものなど、さらに上記列挙したも
のを重ね合せた複合材が好適例としてあげられ
る。上記の他に活性炭などの炭素粒や金属粒の集
合体も好ましい多孔質電極となり得る。一方、枠
状スペーサーと多孔質電極との接触空隙部に充填
する樹脂としては、耐蝕性、耐熱性、機械的強度
および接着性等が優れていれば、天然、合成のい
ずれであつてもよい。具体的な樹脂例としては、
ポリエチレンなどの熱可塑性樹脂、ケイ素樹脂、
エポキシ系樹脂等があげられる。
The frame-shaped spacer in the present invention may be made of materials known in this field (electronically non-conductive materials, such as electronically non-conductive synthetic resins such as polyvinyl chloride and polypropylene), as long as the porous electrode can be loaded. Spacers with shapes and functions are widely applicable. In addition, as the liquid-flowing porous electrode loaded in the frame of the frame-shaped spacer, it is preferable to use a layer of electron-conductive porous material or fine-mesh material, but non-electron-conducting A porous material in which a conductive material is coated with an electronically conductive material can also be used.
Specifically, carbon cloth, carbon paper, other porous carbon, metal mesh, porous sintered metal, other porous metal, or general vegetable fiber. Preferred examples include asbestos and asbestos plated with metal non-electrolytically, and composite materials made by laminating the above-mentioned materials. In addition to the above, an aggregate of carbon particles such as activated carbon or metal particles can also be used as a preferable porous electrode. On the other hand, the resin filling the contact gap between the frame spacer and the porous electrode may be either natural or synthetic as long as it has excellent corrosion resistance, heat resistance, mechanical strength, adhesive properties, etc. . Specific resin examples include:
Thermoplastic resins such as polyethylene, silicone resins,
Examples include epoxy resins.

本発明の多孔質電極によれば、スペーサーと多
孔質電極を一体化したことによる効果とこれらの
材質を独立に選択して好ましい組合せが得られる
という2つの効果が同時に達成される。すなわ
ち、前者については、被電解物質の捕捉率が高
く、従つて液流通時の圧力損失が大きい高密度の
多孔質電極を用いる場合であつても、スペーサー
と多孔質電極間での偏流が防止されるため、セル
内の液等配が促進され、良好な電解が行なわれ
る。また、スペーサーと多孔質電極は一体化され
ているため、電解槽の組立が容易になり、その手
間および製作費を節減することができる。一方、
後者については、スペーサーと多孔質電極につい
て、固さ、厚みおよび耐久性の性質を、目的に応
じてそれぞれ自由に選択できる上、使用樹脂につ
いてもスペーサー部分は安価なものでよく、ま
た、一般に高価な多孔質電極を過度に使用する必
要もないなどの利点がある。
According to the porous electrode of the present invention, two effects can be simultaneously achieved: the effect of integrating the spacer and the porous electrode, and the ability to select a preferable combination of these materials independently. In other words, regarding the former, even when using a high-density porous electrode that has a high capture rate of the electrolyte and therefore a large pressure loss during liquid flow, it is possible to prevent drifting between the spacer and the porous electrode. Therefore, equal distribution of liquid within the cell is promoted and good electrolysis is performed. Further, since the spacer and the porous electrode are integrated, the electrolytic cell can be easily assembled, and the labor and manufacturing costs can be reduced. on the other hand,
Regarding the latter, the hardness, thickness, and durability of the spacer and porous electrode can be freely selected depending on the purpose, and the spacer part can be made of inexpensive resin, and is generally expensive. It has the advantage that there is no need to use excessive porous electrodes.

実施例 1 粉末炭素結着板、幅10mm、長さ100mmのカーボ
ンクロスおよび陽イオン交換膜を用い、第1図に
示すような構成法で電解槽を作成した。すなわ
ち、第1図において、電解槽は、陽イオン交換膜
からなる隔膜5と、この隔膜をはさんで陰極側お
よび陽極側(一方のみ図示)にそれぞれ対象形に
積層された、カーボンクロスからなる液流通型多
孔質電極3を装填した枠状スペーサー1と粉末炭
素結着板からなる複極仕切板7とからなる。多孔
質電極3はスペーサー1の枠内仕切により3分割
された空間にそれぞれ装填されており、かつスペ
ーサー1(またはその仕切)と多孔質電極3はそ
れらの接触空隙部にエポキシ系樹脂4が充填され
ることにより一体化されている。
Example 1 An electrolytic cell was constructed using a powdered carbon binding plate, a carbon cloth with a width of 10 mm and a length of 100 mm, and a cation exchange membrane as shown in FIG. 1. That is, in FIG. 1, the electrolytic cell consists of a diaphragm 5 made of a cation exchange membrane, and carbon cloth laminated symmetrically on the cathode side and the anode side (only one shown) across this diaphragm. It consists of a frame-shaped spacer 1 loaded with a liquid flow type porous electrode 3 and a bipolar partition plate 7 made of a powdered carbon binding plate. The porous electrodes 3 are each loaded into a space divided into three by a partition within the frame of the spacer 1, and the contact gap between the spacer 1 (or its partition) and the porous electrode 3 is filled with an epoxy resin 4. It is integrated by being

陽極液(または陰極液)は、複極仕切板7の電
極液流通路6Aを通り、その上部のスペーサー1
の枠内空間2から電極面上に流れ、他方の枠内空
間の流通孔から外部または次の電解槽に流され
る。一方、陰極液(または陽極液)は、流通孔6
Bから隔膜5をはさんで対称に設置されたスペー
サー(図示せず)の枠内空間から同様に流入さ
れ、排出される。陽極液に0.8mol dm-3塩化第
鉄と0.8mol dm-3塩化第2鉄を溶解する6N塩酸
酸性混合液、陰極液に0.82mol dm-3塩化第二ク
ロムを溶解する6N塩酸酸性水溶液を使用し、両
者とも2.5ml min-1の流量で電解槽に供給して
200mAの定電流電解を行い、電圧の経時変化を
求めた。
The anolyte (or catholyte) passes through the electrode solution flow path 6A of the bipolar partition plate 7, and passes through the spacer 1 above it.
It flows from the frame space 2 onto the electrode surface, and flows from the communication hole in the other frame space to the outside or to the next electrolytic cell. On the other hand, the catholyte (or anolyte) is
Similarly, water flows in from B through the space within the frame of a spacer (not shown) installed symmetrically with the diaphragm 5 in between, and is discharged. A 6N hydrochloric acid acidic mixture that dissolves 0.8mol dm -3 ferric chloride and 0.8mol dm -3 ferric chloride in the anolyte, and a 6N hydrochloric acid acidic aqueous solution that dissolves 0.82mol dm -3 chromic chloride in the catholyte. Both were supplied to the electrolytic cell at a flow rate of 2.5ml min -1.
Constant current electrolysis was performed at 200 mA, and the change in voltage over time was determined.

なお、比較のため、スペーサーと多孔質電極の
接触空隙部に樹脂を充填しない以外は同様にして
実施した場合の電圧変化についても求めた。
For comparison, the voltage change was also determined when the same procedure was performed except that the contact gap between the spacer and the porous electrode was not filled with resin.

結果を第2図に示すが、本発明の場合10に
は、好ましくない電圧上昇もなく第二クロムの還
元が進行し、電流効率(全電流に対する第二クロ
ムの還元に費やされた電流の比)は90%近くに達
することが明らかとなつた。一方、比較例の場合
2には著しい電圧上昇のため多量のガス発生が起
こり、また、電流効率は大幅に低下することが分
つた。
The results are shown in FIG. 2. In the case of the present invention, the reduction of chromium (II) proceeded without an undesirable voltage increase at 10, and the current efficiency (current consumed for reduction of chromium (2) relative to the total current) It was revealed that the ratio) reached nearly 90%. On the other hand, it was found that in Comparative Example 2, a large amount of gas was generated due to a significant voltage increase, and the current efficiency was significantly reduced.

本発明は、実施例に示したような電解反応に適
用されるばかりでなく、逆の反応ではあるが、原
理的に同様な電池反応に対しても適用することが
できる。
The present invention is not only applicable to electrolytic reactions as shown in the examples, but also to battery reactions that are similar in principle, although they are reverse reactions.

以上、本発明によれば、枠状スペーサーと該枠
内に装填する液流通型の多孔質電極との接触空隙
部に樹脂を充填して一体構造とすることにより、
偏流防止にともなう電解性能の向上、スペーサー
および多孔質電極の材質選択上の自由度向上、並
びに電解槽組立の手間および製作費の節減が可能
になる等の種々の効果が達成される。
As described above, according to the present invention, by filling the contact gap between the frame-shaped spacer and the liquid-flowing porous electrode loaded in the frame with resin to form an integral structure,
Various effects are achieved, such as improved electrolytic performance due to prevention of drifting, increased freedom in selecting materials for spacers and porous electrodes, and reduction in labor and manufacturing costs for assembling an electrolytic cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の多孔質電極と枠状スペーサー
との組立体を用いた電解槽の構成例を示す展開
図、第2図は本発明実施例の電解効果を比較例と
ともに示す電圧一時間線図である。 1……枠状スペーサー、2……枠内空間、3…
…液流通型多孔質電極、4……充填樹脂、5……
隔膜、6A,6B……電解液の流通孔、7……複
極仕切板(基板)、10……本発明実施例の場
合、20……比較例の場合。
Fig. 1 is a developed view showing an example of the configuration of an electrolytic cell using the assembly of the porous electrode and frame-shaped spacer of the present invention, and Fig. 2 shows the electrolytic effect of the present invention example together with a comparative example. It is a line diagram. 1... Frame-shaped spacer, 2... Space within the frame, 3...
...Liquid flow type porous electrode, 4...Filled resin, 5...
Diaphragm, 6A, 6B... Electrolyte flow hole, 7... Bipolar partition plate (substrate), 10... In the case of the present invention example, 20... In the case of the comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 電解液がそれぞれ流入出する少なくとも2個
の液流通孔と、他の電極室へ電解液を移送する少
なくとも2個の液流通孔を有する電子非伝導性材
料からなる枠状スペーサーと、該枠状スペーサー
内に配置された電子伝導性の多孔質物質からなる
多孔質電極と、該多孔質電極と枠状スペーサーの
間の空隙部に充填された樹脂とを有することを特
徴とする枠状スペーサーと多孔質電極との組立
体。
1. A frame-shaped spacer made of an electronically non-conductive material having at least two liquid communication holes through which an electrolyte flows in and out, and at least two liquid communication holes through which the electrolyte is transferred to another electrode chamber; A frame-shaped spacer comprising: a porous electrode made of an electronically conductive porous material disposed within the frame-shaped spacer; and a resin filling a gap between the porous electrode and the frame-shaped spacer. and porous electrode assembly.
JP57059714A 1982-04-12 1982-04-12 Porous electrode construction Granted JPS58177483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57059714A JPS58177483A (en) 1982-04-12 1982-04-12 Porous electrode construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57059714A JPS58177483A (en) 1982-04-12 1982-04-12 Porous electrode construction

Publications (2)

Publication Number Publication Date
JPS58177483A JPS58177483A (en) 1983-10-18
JPS6116353B2 true JPS6116353B2 (en) 1986-04-30

Family

ID=13121146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57059714A Granted JPS58177483A (en) 1982-04-12 1982-04-12 Porous electrode construction

Country Status (1)

Country Link
JP (1) JPS58177483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255192A (en) * 1990-03-05 1991-11-14 Norihiro Mitsunaga Fuel consisting mainly of organic sludge and preparation thereof
JPH0456874B2 (en) * 1984-09-05 1992-09-09 Shuzo Nakazono

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200668A (en) * 1986-02-27 1987-09-04 Agency Of Ind Science & Technol Battery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456874B2 (en) * 1984-09-05 1992-09-09 Shuzo Nakazono
JPH03255192A (en) * 1990-03-05 1991-11-14 Norihiro Mitsunaga Fuel consisting mainly of organic sludge and preparation thereof

Also Published As

Publication number Publication date
JPS58177483A (en) 1983-10-18

Similar Documents

Publication Publication Date Title
US4118294A (en) Novel cathode and bipolar electrode incorporating the same
US4927509A (en) Bipolar electrolyzer
US4311568A (en) Anode for reducing oxygen generation in the electrolysis of hydrogen chloride
US4381979A (en) Electrolysis cell and method of generating halogen
US4167607A (en) Halogen electrodes and storage batteries
EP0199493A1 (en) Electrode for electrochemical cell
JP2006219694A (en) Gas diffusion electrode
EP0226911B1 (en) An improved solid polymer electrolyte electrode
GB2071157A (en) Catalytic electrode and combined catalytic electrode and electrolytic structure
JPS629674B2 (en)
JP3344828B2 (en) Saltwater electrolysis method
CA2054252A1 (en) Process for replenishing metals in aqueous electrolyte solutions
EP0050373B1 (en) Electrolysis cell and method of generating halogen
US4969981A (en) Cell and method of operating a liquid-gas electrochemical cell
US5565082A (en) Brine electrolysis and electrolytic cell therefor
NL8003324A (en) PROCESS FOR ELECTROLYZING AN AQUEOUS ALKALINE METAL CHLORIDE SOLUTION.
US4749452A (en) Multi-layer electrode membrane-assembly and electrolysis process using same
FI87937B (en) ELEKTROLYTISK CELL
US4832805A (en) Multi-layer structure for electrode membrane-assembly and electrolysis process using same
JPS6116353B2 (en)
US4824508A (en) Method for making an improved solid polymer electrolyte electrode using a liquid or solvent
JP3645703B2 (en) Gas diffusion electrode structure
EP0360536A2 (en) Cell and method of operating a liquid-gas electrochemical cell
JP2002206186A (en) Electrode structure and electrolysis method using this structure
CA1262534A (en) Narrow gap reticulate electrode electrolysis cell