JPS6116335B2 - - Google Patents
Info
- Publication number
- JPS6116335B2 JPS6116335B2 JP21317581A JP21317581A JPS6116335B2 JP S6116335 B2 JPS6116335 B2 JP S6116335B2 JP 21317581 A JP21317581 A JP 21317581A JP 21317581 A JP21317581 A JP 21317581A JP S6116335 B2 JPS6116335 B2 JP S6116335B2
- Authority
- JP
- Japan
- Prior art keywords
- inner layer
- less
- roller
- outer layer
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011651 chromium Substances 0.000 claims description 40
- 239000002131 composite material Substances 0.000 claims description 23
- 229910052804 chromium Inorganic materials 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 229910001018 Cast iron Inorganic materials 0.000 claims description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 11
- 229910001141 Ductile iron Inorganic materials 0.000 claims description 11
- 239000000463 material Substances 0.000 description 39
- 230000000694 effects Effects 0.000 description 12
- 238000005266 casting Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000009750 centrifugal casting Methods 0.000 description 4
- 238000005087 graphitization Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910014458 Ca-Si Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Crushing And Grinding (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Description
本発明はすぐれた耐摩耗性と耐事故性を兼備す
る中空の複合ローラーに関する。
一般に、耐摩耗用ローラーには次の特性が要求
される。
(1) 耐摩耗性
この種ローラーは通常大量のものを粉砕する
が、その被粉砕物には比較的硬いものから腐食
性の強いものまで種々のものがある。硬いもの
を粉砕する場合では、ローラーは磨耗されて行
き、被粉砕物に混入される。一方腐食性の強い
ものを粉砕する場合では、その強い腐食性の為
に摩耗が進み、被粉砕物に混入される。従つ
て、このような使用状態からローラーは耐食性
に富みかつ耐摩耗性に優れた組織を均一にもつ
ものでなければならない。
(2) 耐事故性
被粉砕物がローラーに流れ込むなどの異常時
には、ローラーに急激な応力が働きローラーの
事故発生に結びつき易い。このためローラーは
耐事故性に劣ると異常摩耗され、ローラー寿命
は著しく減少する。一方ローラー全体として
は、大量の粉砕処理に耐える十分な強靭性が必
要とされる。また、ローラーは通常軸に焼嵌め
て使用されるため、ローラー内面には粉砕荷
重、焼嵌め時の熱応力、ローラー製造に伴なう
残留応力等が引張応力として作用するため、こ
の内面引張応力に耐える必要があり、ローラー
内面は特に強靭性が要求される。
上記のような必要特性から、従来はこの種用途
のローラーにはいわゆる高クロムローラーが使用
されている。すなわち、外層を耐摩耗性、耐食性
に優れた高クロム鋳鉄材で形成し、一方内層は耐
事故性を確保すべくダクタイル鋳鉄等の強靭材で
形成し、両者を溶着一体化せしめて中空の複合ロ
ーラーに構成したものである。そして、この複合
ローラーの製造方法としては、外層厚さの管理容
易性、内層へのCrの拡散防止、経済性等の見地
から遠心力鋳造法が最も好適な手段として確立さ
れている。
しかし乍ら、この種複合ローラーの問題点とし
て、外層が高クロム材からなるため、製造上内層
へのある程度のCrの混入拡散は避けられず、こ
れがため内層を強靭なダクタイル鋳鉄とすること
が難しく、引張強度で30Kg/mm2以下の普通鋳鉄な
みの強度しか得られず、複合ローラーとしての所
期の強靭性、耐事故性を満足できないことが挙げ
られる。
本発明は外層を高クロム鋳鉄材、内層をダクタ
イル鋳鉄材により鋳造複合ローラーを形成する場
合における上記問題点を解消することを目的とし
てなされたものであり、本発明は下記に各々詳述
するような外層及び内層を溶着一体化してなる新
規な二層構造を有する中空の鋳造複合ローラーを
提供するものである。なお明細書中、化学成分の
値は全て重量%を意味する。
以下本発明に係る複合ローラーの各層について
その熱処理条件等を併せて説明する。
〔外 層〕
外層は、C2.0〜3.2、Si0.5〜1.5、Mn0.5〜1.5、
P0.08以下、S0.06以下、Ni1.0〜2.0、Cr10〜30、
Mo0.5〜1.5を含み、残部実質的にFeでかつ硬度
Hs70以上を有する高クロム鋳鉄から形成され
る。なお、外層の硬度をさらに高める目的で、上
記Feの1部に代えてNb1.0以下、V1.0以下の1種
又は2種を含有することもできる。
外層の成分範囲限定理由は次の通りである。
C:2.0〜3.2
Cは(Fe、Cr)7C3型炭化物を安定にする範囲
内として後のCr量とバランスし、目的のカーバ
イド量によつて決定される。しかして、C2.0未
満では炭化物量が少なく耐摩耗性が不足し、一方
3.2を超えると炭化物量が過多となり、機械的強
度、特に靭性の点で劣化が著しい。
Si:0.5〜1.5
Siは溶湯の脱酸のために必要であるが、0.5未
満ではその効果が充分でない。しかし、1.5を超
えて含有されると、機械的性質の劣化をきたし、
同時にAr1変態点を下げ硬度を得難くする。
Mn:0.5〜1.5
MnはSiの脱酸の補助として少なくとも0.5以上
の含有を必要とし、0.5未満では充分な脱酸効果
が得られない。しかし、1.5を超えて含有される
と、機械的性質特に靭性の点で劣化が著しい。
P:0.08以下
Pは特にロール材質においては少ない程望まし
く、材質を脆くするという点からも0.08以下に抑
えられる。
S:0.06以下
SもPと同様の理由で少ない程望ましく、その
含有量は0.06以下とする。
Ni:1.0〜2.0
Niは焼入性を向上させ積極的に硬度調整を計
るために含有させるもので、1.0未満では効果が
不足し、一方2.0を超えて含有されると残留オー
ステナイトが増加して硬度が上り難く、特に硬度
Hs70以上を達成する見地からはその含有量を1.0
〜2.0の範囲とする。
Cr:10〜30
Crは強靭性と耐摩耗性を向上させるために含
有されるが、その含有量が10未満ではM3C型の炭
化物が多く晶出し、強靭性の低下及び炭化物の微
細均一化が得られず、他方30を超えるとM23C6型
の炭化物量が増加する。この炭化物はM7C3型炭
化物に比べて硬度が低く、充分な耐摩耗性が得ら
れない。従つて、Cr含有量は適正なM7C3型炭化
物の得られる範囲として、前記C含有量とバラン
スして、10〜30の範囲に規定される。
Mo:0.5〜1.5
Moは焼入戻し抵抗を高めると同時に炭化物を
形成し、硬度上昇を示すと共に焼戻し軟化抵抗を
促進するのに有効であるが、その含有量が0.5未
満ではこのような効果が少なく、一方1.5を超え
て含有されると基地中に残留オーステナイトが安
定化し、かえつて硬度低下を来たすおそれがあ
る。
外層を形成する高クロム鋳鉄材は以上の成分を
含み、不純物を除き残部Feからなるが、外層材
質には耐摩耗性を更に高める目的で、次のNb、
Vの1種又は2種を必要に応じ含有せしめること
ができる。
Nb:1.0以下
Nbは鋳造組織の微細化に効果があり、Nbが含
有されることにより析出硬化が促進されて耐摩耗
性が向上するが、特に硬度Hs70以上ではNb含有
量が1.0以下で必要十分である。すなわち、Nbが
1.0を超えて含有されても、その改善効果はもは
や飽和しコスト高となるためである。
V:1.0以下
VはNbと同様な目的で含有されるもので、同
様の見地により1.0以下の含有量で必要十分であ
る。すなわち、1.0を超えてもその効果は飽和し
ており、むしろV炭化物が多くなり靭性の点で劣
化するためである。
上記成分範囲からなる外層高クロム材の鋳鉄組
織は硬い(Fe、Cr)7C3型カーバイドと基地は残
留オーステナイト及び一部マルテンサイトより構
成されているが、外層の耐摩耗性及び耐事故性を
向上させる為には、その製造工程で熱処理するの
が通例である。この場合熱処理法には、変態点以
下の温度に加熱し鋳造応力の除去と鋳造状態で生
じた残留オーステナイトを変態させてマルテンサ
イトやパーライト組織にする方法と、変態点より
も高温に加熱してその後の冷却速度を変えること
により鋳造後の冷却速度だけでは得られないよう
な組織を得る方法とがある。
耐摩耗用ローラーの用途では、中空ローラー体
をアーバに焼ばめ組立て使用に供されるが、その
場合ローラーはアーバとの焼ばめ部すなわちスリ
ーブ内面からクラツクで割損する例が多い。中空
ローラー体の内層については次に詳述するが、上
記熱処理によれば残留応力の低減と共に内層材質
の強靭性の向上も寄与し、外層のみならず内層材
質の改善にも効果が大きい。なお、上記熱処理後
においては、スリーブの割損に密接な関係のある
残留応力を低減するために適切な温度で歪取り焼
純を行うことは勿論である。
以上外層の説明においては硬度Hs70以上と関
連して述べているが、これはこの種ローラーでは
耐摩耗性、耐クラツク性等が要求され、一方耐摩
耗性は硬度との相関が強く、硬度Hs70未満では
耐摩耗性が充分に得られないためである。なお外
層の硬度の上限については規定していないが、前
述の外層化学成分、熱処理では、耐事故性も加味
すると、一般にHs90以上の材質を得ることは困
難である。
〔内 層〕
内層は、C2.0〜3.0、Si2.0〜3.0、Mn0.5〜1.5、
P0.06以下、S0.04以下、Ni13〜25、Cr5以下、
Mo1.0以下、Mg0.02〜0.1を含み、残部実質的に
Feの特にNi含有量の高いダクタイル鋳鉄から形
成される。この内層は外層内面の一部が洗われて
溶着するため、この洗われ量を考慮して内層鋳込
成分を決定する必要がある。
内層の成分範囲限定理由は次の通りである。
C:2.0〜3.0
Cは靭性と強度を付与するために含有される
が、2.0未満の含有量では材質のチル化が進行
し、内層材としての靭性の低下が著しくなる。一
方3.0を超えて含有されると、黒鉛化が過剰にな
り内層材としての強度不足を来たす。すなわち、
耐摩耗ローラーの用途では通常使用される中空ロ
ーラーとアーバとの機械的結合(通常焼ばめ方
式)時に強度が不足すると大きな嵌合代が取れ
ず、ローラーの軸方向へのズレ、内部からの欠損
に結びつく。
Si:2.0〜3.0
Siは外層のCrが混入して内層材質が脆弱化す
るのを防止するのに有効であるが、2.0未満では
黒鉛化が悪くセメンタイトを多く晶出して強度が
劣化し、残留応力により鋳造時に割れ易くなる。
また3.0を超えると、黒鉛化が促進され過ぎて強
度の劣化を招き好ましくない。なお内層のCr混
入による材質劣化を防止するためには、内層鋳込
時にCa−SiやFe−Siで接種することも有効な方
法であり、この場合にはその接種量を0.2〜0.5
(si分として)とすると共に、接種後のSi含有量
を上記2.0〜3.0の範囲とすることが必要である。
Mn:0.5〜1.5
MnSとは結合してMnSを形成しSの悪影響を
除去するが、0.5未満ではこの効果が十分でな
く、一方1.5を超えるとSの有害性の除去よりも
むしろ材質の劣化作用が著しくなつて好ましくな
い。
P:0.06以下
Pは溶湯の流動性を高めるが、材質を脆弱にす
るため低い程望ましく、0.06以下とする。
S:0.04以下
SはPと同様に材質を脆弱にするため低い程望
ましく、かつ又内層ダクタイル鋳鉄の場合ではS
がMgと結合しMgSとして黒鉛の球状化を阻害す
るためこの見地からもSは低い含有量であること
が必要であり、0.04以下とする。
Ni:13〜25
Niは内層の強靭性を確保するためCr量とバラ
ンスして含有される。すなわち、NiはCrが外層
から混入して内層が白銑化するのを防止するため
積極的に添加する元素であり、その含有量を増大
することによつて黒鉛化を助長しかつ基地組織を
強靭性のある材質にするのに著効する。しかし
て、内層に混入されるCr量とのバランスから13
未満ではその効果が確実でなく、一方25を超える
とその効果も飽和し不経済となる。なお、内層の
Cr含有量を1.0程度に抑えることができる場合で
は、Ni含有量は15程度でよく、また外層のCr含
有量が高くそれに伴い内層もCrを5近く含有す
る場合では、そのNi含有量を上限25近くまで増
加することが望ましい。しかし、内層のCr含有
量が5を超える場合では、そのチル化効果が大き
く、Ni、Siの増加だけでは材質を調整することが
できず、内層全体の白銑化は避けられない。一般
に、内層のCr含有量3程度に対して、Ni含有量
を20程度とするのが適当である。
Cr:5以下
上記の如く、内層の白銑化、脆弱化を防止する
ためには、Cr含有量を5以下に抑えることが必
要である。なお内層には外層からある程度不可避
にCrが混入されるため、内層鋳込溶湯のCr含有
量は低い程望ましく、1.0未満程度に抑えるのが
好適である。
Mo:1.0以下
Moは1.0を超えて含有されると材質が硬くなり
過ぎるため好ましくない。
Mg:0.02〜0.1
Mgは黒鉛の球状化に必要な元素で、0.02未満
の含有量では球状化不良を起こし、内層を強靭な
ダクタイル鋳鉄とすることができない場合を生ず
る。しかし、0.1を超えて含有されると、Mgのチ
ル化作用及びドロス生成の点で好ましくない。
内層を形成するダクタイル鋳鉄材は以上の成分
を含み、不純物を除き残部Feからなる。
本発明の係る複合ローラーは、以上のような外
層及び内層を冶金学的に溶着一体化せしめてなる
ものであり、好ましくは遠心力鋳造法を利用して
製造される。
このようにして製造される複合ローラーの具体
的な使用構造例を掲げれば図示の通りであつて、
図中1,2は中空ローラーを形成する外層、内層
を示し、3はこの中空ローラーが焼ばめられるア
ーバを示している。
尚、アーバーの材質としてはSCM−4、SF−
60、鋳鋼、ダクタイル鋳鉄等が適宜使用される。
もつとも、粉砕ローラーとしての性能はアーバー
の材質が焼嵌めの程度には左右されず、専らロー
ラーの外層硬度と内層強度によつて決まる。
次に本発明の実施例を参考例、従来例と共に掲
げて説明する。
実施例
製品胴径630φ、胴長840lの中空ローラーを製
造した例。
〔製造工程〕
(1) 外層として肉厚65mm(鋳込重量955Kg)の高
クロム鋳鉄溶湯を遠心力鋳造機上の回転金型に
1400℃で鋳込んだ。
(2) 外層の鋳込開始後9分後に、内層として肉厚
100mm(鋳込重量1T200Kg)のダクタイル鋳鉄
溶湯を回転金型に1400℃で鋳込んだ。
(3) 外層の鋳込開始後40分後に、外層及び内層は
完全に凝固した。
(4) その後型バラシして中空ローラーを取出し、
これを炉内に装入して1000℃まで昇温し、5時
間保持した後炉外に取出し表面が500℃になる
まで一旦強制空冷し、しかる後炉内で500℃に
保持した後炉冷した。
〔試験結果〕
上記の製造工程で得られた複合ローラーを機械
加工した後、表面からの超音波テスト及び破断調
査に供した。この結果、外層厚さは内層によつて
洗われ50mm〓となつていた。一方内層のCr含有
量は2〜3%に上昇していた。また外層と内層と
は完全に結合しており、組織的な連続性を認めら
れた。なお、外層及び内層の化学成分は下記の通
りである。
The present invention relates to a hollow composite roller that has both excellent wear resistance and accident resistance. Generally, wear-resistant rollers are required to have the following characteristics. (1) Abrasion resistance This type of roller usually crushes a large amount of materials, and the materials to be crushed vary from relatively hard materials to highly corrosive materials. When grinding hard materials, the rollers are worn out and mixed into the material to be ground. On the other hand, when pulverizing highly corrosive materials, the highly corrosive nature leads to accelerated wear and contamination of the material to be pulverized. Therefore, due to such usage conditions, the roller must have a uniform structure with high corrosion resistance and excellent wear resistance. (2) Accident resistance In abnormal situations, such as when the material to be crushed flows into the rollers, sudden stress is applied to the rollers, which can easily lead to roller accidents. For this reason, if the roller has poor accident resistance, it will wear abnormally and the life of the roller will be significantly reduced. On the other hand, the roller as a whole needs to have sufficient toughness to withstand a large amount of crushing treatment. In addition, since rollers are usually used by shrink-fitting onto a shaft, crushing loads, thermal stress during shrink-fitting, residual stress associated with roller manufacturing, etc. act as tensile stress on the inner surface of the roller, so this inner surface tensile stress The inner surface of the roller must be especially tough. Due to the above-mentioned required characteristics, so-called high chromium rollers have conventionally been used as rollers for this type of application. In other words, the outer layer is made of a high-chromium cast iron material with excellent wear and corrosion resistance, while the inner layer is made of a strong material such as ductile cast iron to ensure accident resistance, and the two are welded together to form a hollow composite. It is configured as a roller. As a manufacturing method for this composite roller, centrifugal casting has been established as the most suitable method from the viewpoints of ease of controlling the thickness of the outer layer, prevention of Cr diffusion into the inner layer, economical efficiency, etc. However, the problem with this type of composite roller is that since the outer layer is made of a high chromium material, it is unavoidable that a certain amount of Cr will mix and diffuse into the inner layer during manufacturing. It is difficult to obtain a tensile strength of 30 kg/mm 2 or less, which is comparable to ordinary cast iron, and it cannot satisfy the desired toughness and accident resistance for a composite roller. The present invention has been made with the aim of solving the above-mentioned problems when forming a cast composite roller with the outer layer made of high chromium cast iron and the inner layer made of ductile cast iron. The present invention provides a hollow cast composite roller having a novel two-layer structure formed by integrally welding an outer layer and an inner layer. In the specification, all values of chemical components mean % by weight. The heat treatment conditions for each layer of the composite roller according to the present invention will be explained below. [Outer layer] The outer layer is C2.0~3.2, Si0.5~1.5, Mn0.5~1.5,
P0.08 or less, S0.06 or less, Ni1.0~2.0, Cr10~30,
Contains Mo0.5~1.5, the remainder is substantially Fe and hardness
Formed from high chromium cast iron with Hs70 or higher. In addition, for the purpose of further increasing the hardness of the outer layer, one or two types of Nb 1.0 or less and V1.0 or less may be contained in place of a part of the Fe. The reason for limiting the range of components of the outer layer is as follows. C: 2.0 to 3.2 C is within the range that stabilizes the (Fe, Cr) 7 C 3 type carbide and is balanced with the subsequent Cr amount, and is determined by the target carbide amount. However, below C2.0, the amount of carbide is small and wear resistance is insufficient;
If it exceeds 3.2, the amount of carbide becomes excessive, and mechanical strength, especially toughness, deteriorates significantly. Si: 0.5 to 1.5 Si is necessary for deoxidizing the molten metal, but if it is less than 0.5, the effect is not sufficient. However, when the content exceeds 1.5, mechanical properties deteriorate,
At the same time, it lowers the Ar 1 transformation point, making it difficult to obtain hardness. Mn: 0.5 to 1.5 Mn needs to be contained in an amount of at least 0.5 to assist in deoxidizing Si, and if it is less than 0.5, a sufficient deoxidizing effect cannot be obtained. However, if the content exceeds 1.5, the mechanical properties, particularly the toughness, will deteriorate significantly. P: 0.08 or less P is preferably as low as possible especially in roll materials, and from the viewpoint of making the material brittle, it is suppressed to 0.08 or less. S: 0.06 or less For the same reason as P, the smaller the amount of S, the more desirable it is, and its content should be 0.06 or less. Ni: 1.0 to 2.0 Ni is added to improve hardenability and actively adjust hardness. If it is less than 1.0, the effect is insufficient, while if it is contained more than 2.0, retained austenite increases. Hardness is difficult to increase, especially hardness
From the standpoint of achieving Hs70 or higher, the content should be 1.0
~2.0. Cr: 10-30 Cr is contained to improve toughness and wear resistance, but if the content is less than 10, a large amount of M 3 C type carbides will crystallize, resulting in a decrease in toughness and fine uniformity of carbides. On the other hand, if it exceeds 30, the amount of M 23 C 6 type carbide increases. This carbide has lower hardness than the M 7 C 3 type carbide and cannot provide sufficient wear resistance. Therefore, the Cr content is defined to be in the range of 10 to 30, in balance with the C content, as a range in which an appropriate M 7 C 3 type carbide can be obtained. Mo: 0.5 to 1.5 Mo forms carbides at the same time as increasing resistance to tempering and tempering, and is effective in increasing hardness and promoting resistance to softening in tempering. However, if the content is less than 0.5, this effect will not occur. On the other hand, if the content exceeds 1.5, retained austenite will become stabilized in the matrix, which may even lead to a decrease in hardness. The high chromium cast iron material that forms the outer layer contains the above components, with the remainder consisting of Fe after removing impurities, but the outer layer material contains the following Nb,
One or two types of V can be contained as necessary. Nb: 1.0 or less Nb is effective in refining the casting structure, and the inclusion of Nb promotes precipitation hardening and improves wear resistance, but especially when the hardness is Hs70 or higher, the Nb content is required to be 1.0 or less. It is enough. That is, Nb
This is because even if the content exceeds 1.0, the improvement effect will be saturated and the cost will increase. V: 1.0 or less V is contained for the same purpose as Nb, and from the same standpoint, a content of 1.0 or less is necessary and sufficient. That is, even if it exceeds 1.0, the effect is saturated, and rather the V carbide increases and the toughness deteriorates. The cast iron structure of the outer layer high chromium material consisting of the above component range is hard (Fe, Cr). 7 C Type 3 carbide and matrix are composed of retained austenite and some martensite, but the outer layer has excellent wear resistance and accident resistance. In order to improve this, it is customary to heat treat the material during the manufacturing process. In this case, heat treatment methods include heating to a temperature below the transformation point to remove casting stress and transforming retained austenite generated in the casting state into martensite or pearlite structure, and heating to a temperature higher than the transformation point There is a method of obtaining a structure that cannot be obtained only by the cooling rate after casting by changing the subsequent cooling rate. In the application of wear-resistant rollers, a hollow roller body is assembled by shrink-fitting into an arbor, but in this case, the roller often breaks due to cracks from the shrink-fit portion with the arbor, that is, from the inner surface of the sleeve. The inner layer of the hollow roller body will be described in detail below, but the above heat treatment contributes to reducing residual stress and improving the toughness of the inner layer material, and is highly effective in improving not only the outer layer material but also the inner layer material. After the above-mentioned heat treatment, it is of course necessary to perform strain relief annealing at an appropriate temperature in order to reduce residual stress that is closely related to breakage of the sleeve. In the above description of the outer layer, we have mentioned a hardness of Hs70 or higher, but this is because this type of roller requires wear resistance, crack resistance, etc., and wear resistance has a strong correlation with hardness. This is because if it is less than that, sufficient wear resistance cannot be obtained. Although the upper limit of the hardness of the outer layer is not specified, it is generally difficult to obtain a material with Hs90 or higher using the above-mentioned outer layer chemical composition and heat treatment, taking into account accident resistance. [Inner layer] Inner layer is C2.0~3.0, Si2.0~3.0, Mn0.5~1.5,
P0.06 or less, S0.04 or less, Ni13~25, Cr5 or less,
Contains Mo1.0 or less, Mg0.02~0.1, and the remainder is substantially
Formed from ductile cast iron with a particularly high Ni content of Fe. Since this inner layer is welded after a part of the inner surface of the outer layer is washed, it is necessary to determine the inner layer casting components in consideration of the amount of washing. The reason for limiting the range of components of the inner layer is as follows. C: 2.0 to 3.0 C is contained to impart toughness and strength, but if the content is less than 2.0, the material will become chilled and the toughness as an inner layer material will significantly decrease. On the other hand, if the content exceeds 3.0, graphitization will be excessive, resulting in insufficient strength as an inner layer material. That is,
In applications where wear-resistant rollers are used, if the strength is insufficient when mechanically connecting the hollow roller and arbor that are normally used (usually by shrink fit), a large fitting allowance cannot be achieved, resulting in axial displacement of the roller and internal damage. Leads to defects. Si: 2.0 to 3.0 Si is effective in preventing the inner layer material from becoming brittle due to contamination with Cr in the outer layer, but if it is less than 2.0, graphitization is poor and a large amount of cementite crystallizes, resulting in decreased strength and residual Stress makes it more likely to crack during casting.
Moreover, if it exceeds 3.0, graphitization is promoted too much and strength deteriorates, which is not preferable. In order to prevent material deterioration due to Cr contamination in the inner layer, it is an effective method to inoculate with Ca-Si or Fe-Si when casting the inner layer, and in this case, the amount of inoculation should be 0.2 to 0.5.
(in terms of si content), and it is necessary to set the Si content after inoculation to the above range of 2.0 to 3.0. Mn: 0.5-1.5 Combines with MnS to form MnS and removes the harmful effects of S, but if it is less than 0.5, this effect is not sufficient, while if it exceeds 1.5, the material deteriorates rather than removing the harmful effects of S. This is not preferable because the effect becomes significant. P: 0.06 or less P increases the fluidity of the molten metal, but since it makes the material brittle, it is preferably as low as possible, and should be 0.06 or less. S: 0.04 or less Similar to P, S makes the material brittle, so the lower it is, the better, and in the case of inner layer ductile cast iron, S
Since S combines with Mg and inhibits the spheroidization of graphite as MgS, from this point of view as well, the content of S needs to be low, and is set at 0.04 or less. Ni: 13-25 Ni is contained in balance with the amount of Cr to ensure the toughness of the inner layer. In other words, Ni is an element that is actively added to prevent Cr from mixing in from the outer layer and turning the inner layer into white metal, and by increasing its content, it promotes graphitization and strengthens the matrix structure. It is effective in making the material tough. However, from the balance with the amount of Cr mixed in the inner layer, 13
If it is less than 25, the effect is not certain, while if it exceeds 25, the effect becomes saturated and becomes uneconomical. In addition, the inner layer
In cases where the Cr content can be suppressed to around 1.0, the Ni content may be around 15, and in cases where the outer layer has a high Cr content and the inner layer also contains close to 5 Cr, the Ni content should be set at the upper limit. It is desirable to increase it to near 25. However, when the Cr content of the inner layer exceeds 5, the chilling effect is large, and the material quality cannot be adjusted only by increasing Ni and Si, and the entire inner layer becomes white. Generally, it is appropriate that the inner layer has a Cr content of about 3 and a Ni content of about 20. Cr: 5 or less As mentioned above, in order to prevent whitening and brittleness of the inner layer, it is necessary to suppress the Cr content to 5 or less. Note that since a certain amount of Cr is unavoidably mixed into the inner layer from the outer layer, it is desirable that the Cr content of the molten metal cast in the inner layer is as low as possible, and it is preferably suppressed to about less than 1.0. Mo: 1.0 or less Mo content exceeding 1.0 is not preferable because the material becomes too hard. Mg: 0.02 to 0.1 Mg is an element necessary for spheroidizing graphite, and if the content is less than 0.02, spheroidization will occur and the inner layer may not be made of strong ductile cast iron. However, if the content exceeds 0.1, it is unfavorable in terms of the chilling effect of Mg and the formation of dross. The ductile cast iron material forming the inner layer contains the above components, with the remainder consisting of Fe after removing impurities. The composite roller according to the present invention is formed by metallurgically welding and integrating the above-mentioned outer layer and inner layer, and is preferably manufactured using a centrifugal casting method. A concrete usage structure example of the composite roller manufactured in this way is as shown in the figure.
In the figure, 1 and 2 indicate an outer layer and an inner layer forming a hollow roller, and 3 indicates an arbor into which this hollow roller is shrink-fitted. In addition, the material of the arbor is SCM-4, SF-
60, cast steel, ductile cast iron, etc. are used as appropriate.
However, the performance of the grinding roller does not depend on the degree of shrink-fitting of the material of the arbor, but is solely determined by the hardness of the outer layer and the strength of the inner layer of the roller. Next, embodiments of the present invention will be described together with reference examples and conventional examples. Example An example of manufacturing a hollow roller with a product body diameter of 630φ and a body length of 840L. [Manufacturing process] (1) As the outer layer, high chromium cast iron molten metal with a wall thickness of 65 mm (casting weight 955 kg) is placed in a rotating mold on a centrifugal casting machine.
It was cast at 1400℃. (2) Nine minutes after the start of casting of the outer layer, the thickness of the inner layer is increased.
Molten ductile cast iron of 100mm (casting weight 1 T 200Kg) was cast into a rotating mold at 1400℃. (3) Forty minutes after the start of casting of the outer layer, the outer layer and the inner layer were completely solidified. (4) After that, disassemble the mold and take out the hollow roller.
This was charged into the furnace and heated to 1000℃, held for 5 hours, then taken out of the furnace and forced air cooled until the surface reached 500℃, then kept at 500℃ in the furnace, and then cooled in the furnace. did. [Test Results] After the composite roller obtained in the above manufacturing process was machined, it was subjected to an ultrasonic test from the surface and a fracture investigation. As a result, the thickness of the outer layer was 50 mm because it was washed away by the inner layer. On the other hand, the Cr content in the inner layer had increased to 2 to 3%. In addition, the outer layer and inner layer were completely connected, and structural continuity was observed. The chemical components of the outer layer and inner layer are as follows.
【表】【table】
【表】
上記複合ローラーの内層の機械的性質を調べた
ところ、下記の通りであつた。
引張強度:48.5Kg/mm2
伸 び:14%
次にこの複合ローラーの外内面を加工し、内径
を370φに形成した後、これを6/10000の焼ばめ代
でアーバに組立てた。その胴部の硬度を測定した
結果、硬度Hs73が得られた(但し550℃×10Hrの
熱処理を2回行つた)。
アーバーに組立てられた前記複合ローラーを石
炭粉砕に使用した結果、外層には凹み、異常摩
耗、腐食割れは生じなかつた。また、アーバーの
駆動によるアーバーとローラーのずれ及びローラ
ー内面の割損は皆無であつた。
参考例
下記の外層及び内層を用いて実施例1と同様に
複合ローラーを製造した。[Table] The mechanical properties of the inner layer of the above composite roller were investigated and found to be as follows. Tensile strength: 48.5Kg/mm 2 Elongation: 14% Next, the outer and inner surfaces of this composite roller were processed to form an inner diameter of 370φ, and then assembled into an arbor with a shrinkage fit of 6/10000. As a result of measuring the hardness of the body, a hardness of Hs73 was obtained (however, heat treatment at 550°C x 10 hours was performed twice). As a result of using the composite roller assembled in the arbor for coal pulverization, no dents, abnormal wear, or corrosion cracks occurred in the outer layer. Further, there was no misalignment between the arbor and roller due to the driving of the arbor, and no breakage of the inner surface of the roller. Reference Example A composite roller was manufactured in the same manner as in Example 1 using the following outer layer and inner layer.
【表】【table】
【表】
上記複合ローラーの内層の機械的性質を調べた
ところ、下記の通りであつた。
引張強度:50Kg/mm2
伸 び:14.8%
この複合ローラーの外内面を加工し、内径を
370φに形成した後、これを6/10000の焼ばめ代で
アーバに組立てた。その胴部の硬度を測定した結
果、硬度Hs76が得られた(但し、熱処理として
1000゜×5Hr保持後噴霧水冷し、その後550℃×
10Hrの歪取りを行つた)。
従来例
実施例と同様に、下記成分(単位重量%、残部
実質的にFe)の溶湯により複合ローラーを遠心
力鋳造した。
●外層溶湯化学成分(高クロム鋳鉄)
C:2.79%、Si:0.69%、Mn:0.84%
P:0.032%、S:0.25%、Ni:1.76%
Cr:18.00%、Mo:1.14%
●内層溶湯化学成分(低Niダクタイル鋳鉄)
C:3.53%、Si:2.56%、Mn:0.43%
P:0.070%、S:0.010%、Ni:0.71%
Cr:0.17%、Mo:0.09%、Mg:0.050%
得られた複合ローラーの内層化学成分(単位重
量%、残部Fe)は下記の通りであつた。
C:3.52%、Si:2.43%、Mn:0.50%
P:0.071%、S:0.012%、Ni:0.70%
Cr:3.35%、Mo:0.29%、Mg:0.049%
また、前記内層の強度は下記の通りであり、
FC鋳鉄の強度レベルであつた。
引張強度:26.8Kg/mm2
伸 び:0.16%
更に、外層と内層との境界は黒鉛形状が悪く、
溶着不良が生じた。
本発明の製造法として、遠心鋳造を述べてきた
が、この外に薄い仕切板を用いた置き注ぎ法等が
ある。
以上に説明した本発明の複合ローラーでは、外
層を高クロム鋳鉄材で形成する一方、内層を特に
Ni含有量の高いダクタイル鋳鉄材で形成したも
のであるから、耐摩耗用ローラー等の用途に適合
する耐摩耗性と強靭性、耐事故性とを兼備したも
のが得られる。すなわち、従来の単体高クロムロ
ーラーの場合では、靭性の点で劣る致命的欠点が
あり、焼ばめ等の機械的組立には適合できず、ま
た普通鋳鉄材等を内層材として用いる従来の複合
ローラーの場合であつても、その内層のCrの混
入による劣化は避けられない問題点であつたが、
本発明に係るものでは内層材質を改良したことに
よつてCrの混入によつても内層の脆弱化は確実
に防止できるものである。従つて、本発明に係る
中空複合ローラーをアーバに焼嵌め組立て使用す
れば、内層の強靭性が大である故その焼嵌め代を
大きくすることも容易となり、組立ローラーとし
ての使用寿命、安全性を倍増することができる。
なお、本発明は叙述の如き耐摩耗用ローラー等
の用途に最適のものであるが、例えば線材仕上用
ロールやホツトストリツプミル粗圧延ロール等の
ロール用途にも利用可能性がある。[Table] The mechanical properties of the inner layer of the above composite roller were investigated and found to be as follows. Tensile strength: 50Kg/ mm2 Elongation: 14.8% The outer and inner surfaces of this composite roller are processed, and the inner diameter
After forming it to 370φ, it was assembled into an arbor with a shrinkage fit of 6/10000. As a result of measuring the hardness of the body, a hardness of Hs76 was obtained (However, as a result of heat treatment,
After holding at 1000° for 5 hours, spray with water and then cool at 550°C.
(10 hours of distortion removal was performed). Conventional Example Similar to the example, a composite roller was centrifugally cast using a molten metal containing the following components (unit weight %, the remainder being essentially Fe). ●Chemical composition of outer layer molten metal (high chromium cast iron) C: 2.79%, Si: 0.69%, Mn: 0.84% P: 0.032%, S: 0.25%, Ni: 1.76% Cr: 18.00%, Mo: 1.14% ●Inner layer molten metal Chemical composition (low Ni ductile cast iron) C: 3.53%, Si: 2.56%, Mn: 0.43% P: 0.070%, S: 0.010%, Ni: 0.71% Cr: 0.17%, Mo: 0.09%, Mg: 0.050% The inner layer chemical components (unit weight %, remainder Fe) of the obtained composite roller were as follows. C: 3.52%, Si: 2.43%, Mn: 0.50% P: 0.071%, S: 0.012%, Ni: 0.70% Cr: 3.35%, Mo: 0.29%, Mg: 0.049% The strength of the inner layer is as follows It is as follows,
It had the strength level of FC cast iron. Tensile strength: 26.8Kg/ mm2 Elongation: 0.16% Furthermore, the graphite shape at the boundary between the outer layer and the inner layer is poor;
Poor welding occurred. Although centrifugal casting has been described as the manufacturing method of the present invention, there are other methods such as a pouring method using a thin partition plate. In the composite roller of the present invention described above, the outer layer is formed of high chromium cast iron material, while the inner layer is particularly
Since it is made of a ductile cast iron material with a high Ni content, it has abrasion resistance, toughness, and accident resistance suitable for applications such as wear-resistant rollers. In other words, conventional single-piece high chromium rollers have a fatal drawback of inferior toughness, and are not suitable for mechanical assembly such as shrink fitting. Even in the case of rollers, deterioration due to the inclusion of Cr in the inner layer was an unavoidable problem, but
In the case of the present invention, by improving the material of the inner layer, it is possible to reliably prevent the inner layer from becoming brittle even when Cr is mixed therein. Therefore, if the hollow composite roller according to the present invention is assembled and used in an arbor by shrink-fitting, since the inner layer has high toughness, it is easy to increase the shrink-fitting amount, which improves the service life and safety of the assembled roller. can be doubled. Although the present invention is most suitable for use as a wear-resistant roller as described above, it can also be used for rolls such as wire finishing rolls and hot strip mill rough rolling rolls.
第1図は本発明に係る複合ローラーの使用構造
一例を現わす縦断面図、第2図はその横断面図で
ある。
1……外層、2……内層、3……アーバ。
FIG. 1 is a longitudinal cross-sectional view showing an example of a structure in which a composite roller according to the present invention is used, and FIG. 2 is a cross-sectional view thereof. 1...outer layer, 2...inner layer, 3...arbor.
Claims (1)
以下、S0.06以下、Ni1.0〜2.0、Cr10〜30、Mo0.5
〜1.5を各重量%含み、残部実質的にFeでかつ硬
度Hs70以上を有する高クロム鋳鉄からなる外層
と; C2.0〜3.0、Si2.0〜3.0、Mn0.5〜1.5、P0.06以
下、S0.04以下、Ni13〜25、Cr5以下、Mo1.0以
下、Mg0.02〜0.1を各重量%含み、残部実質的に
Feのダクタイル鋳鉄からなる内層とが溶着一体
化していることを特徴とする中空複合ローラー。[Claims] 1 C2.0~3.2, Si0.5~1.5, Mn0.5~1.5, P0.08
Below, S0.06 or below, Ni1.0~2.0, Cr10~30, Mo0.5
An outer layer made of high chromium cast iron containing ~1.5% by weight, the remainder being substantially Fe, and having a hardness of Hs70 or more; C2.0~3.0, Si2.0~3.0, Mn0.5~1.5, P0.06 or less , S0.04 or less, Ni13~25, Cr5 or less, Mo1.0 or less, Mg0.02~0.1 in each weight%, the balance being substantially
A hollow composite roller characterized by a welded and integrated inner layer made of Fe ductile cast iron.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21317581A JPS58116912A (en) | 1981-12-28 | 1981-12-28 | Composite roller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21317581A JPS58116912A (en) | 1981-12-28 | 1981-12-28 | Composite roller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58116912A JPS58116912A (en) | 1983-07-12 |
JPS6116335B2 true JPS6116335B2 (en) | 1986-04-30 |
Family
ID=16634782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21317581A Granted JPS58116912A (en) | 1981-12-28 | 1981-12-28 | Composite roller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58116912A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08275983A (en) * | 1995-04-06 | 1996-10-22 | Yano Yasuchika | Air massager device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1077087T3 (en) * | 1999-08-14 | 2003-08-04 | Kloeckner Humboldt Wedag | Grinding roll and method for its preparation |
CN103386476B (en) * | 2013-06-04 | 2017-06-30 | 德州宏森机械有限公司 | A kind of bimetal composite vertical grinder roll and manufacture craft |
CN104087810A (en) * | 2014-06-27 | 2014-10-08 | 宁国市正兴耐磨材料有限公司 | Low-chromium cast iron/gray iron-base WC particle-reinforced surface composite material |
CN106282747A (en) * | 2016-08-30 | 2017-01-04 | 江苏共昌轧辊股份有限公司 | A kind of omnipotent horizontal rich chromium cast iron collars of cast-in-block and preparation method |
-
1981
- 1981-12-28 JP JP21317581A patent/JPS58116912A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08275983A (en) * | 1995-04-06 | 1996-10-22 | Yano Yasuchika | Air massager device |
Also Published As
Publication number | Publication date |
---|---|
JPS58116912A (en) | 1983-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5136138B2 (en) | Centrifugal cast composite roll for hot rolling | |
JP2000160277A (en) | Composite roll | |
JP5434276B2 (en) | Centrifugal cast composite roll for hot rolling | |
JPS6116335B2 (en) | ||
CN109641250B (en) | Outer layer material for hot rolling roll and composite roll for hot rolling | |
JP5434249B2 (en) | Centrifugal cast composite roll for hot rolling | |
JP2000178675A (en) | Composite roll | |
JPH05311335A (en) | Sleeve roll | |
JP6669109B2 (en) | Roll outer layer material for hot rolling and composite roll for hot rolling | |
JP2011063822A (en) | Centrifugally cast composite roll for hot rolling | |
JPS6115938B2 (en) | ||
JPS6116333B2 (en) | ||
JPH0340102B2 (en) | ||
JPH0514023B2 (en) | ||
JP5327342B2 (en) | Centrifugal cast roll outer layer material for hot rolling with excellent fatigue resistance and composite roll made of centrifugal cast for hot rolling | |
JPH0775808A (en) | Wear resistant composite roll for rolling shape steel | |
JPH05295479A (en) | Composite roll made by centrifugal casting | |
JP3047584B2 (en) | Work roll for cold rolling | |
JPS6157083B2 (en) | ||
JPH09170041A (en) | Roll made by centrifugal casting and its production | |
JPS62144806A (en) | Composite sleeve for rolling wide flange beam and its production | |
JPS6123510A (en) | Tough sleeve roll for h-beam steel rolling | |
KR20210082226A (en) | Outer layer material for hot rolling and composite roll for hot rolling | |
JP2594865B2 (en) | Centrifugal casting roll and manufacturing method thereof | |
JPH0567697B2 (en) |