JPS61163219A - Method and device for heat treatment of metallic strip in direct fire type continuous heat treatment furnace - Google Patents

Method and device for heat treatment of metallic strip in direct fire type continuous heat treatment furnace

Info

Publication number
JPS61163219A
JPS61163219A JP249185A JP249185A JPS61163219A JP S61163219 A JPS61163219 A JP S61163219A JP 249185 A JP249185 A JP 249185A JP 249185 A JP249185 A JP 249185A JP S61163219 A JPS61163219 A JP S61163219A
Authority
JP
Japan
Prior art keywords
furnace
heat treatment
strip
gas
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP249185A
Other languages
Japanese (ja)
Other versions
JPH0576527B2 (en
Inventor
Kuniaki Sato
邦昭 佐藤
Yasuhisa Nakajima
康久 中島
Fujio Yamaguchi
山口 冨士夫
Naohiko Soeda
副田 直彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP249185A priority Critical patent/JPS61163219A/en
Publication of JPS61163219A publication Critical patent/JPS61163219A/en
Publication of JPH0576527B2 publication Critical patent/JPH0576527B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To prevent the flawing on the surface of a metallic strip by providing floating devices in a heat treatment furnace, ejecting the high-temp. gas generated out of the furnace from the bottom surface side of the strip and heat-treating the catenary-supported strip. CONSTITUTION:The floating devices 4a, 4b, 4c are provided in the direct fire type continuous heat treatment furnace 1 and a floating device 5 is provided to the outside of the furnace. The metallic strip 3 is heat-treated by side firing burners 6 while said strip is catenary-supported in the furnace 1 between an out-of-furnace roll 2 on the inlet side and the floating device 5 on the outlet side. The high temp. gas is ejected from the devices 4a, 4b, 4c to the bottom surface side of the strip 3. The high-temp. gas is the out-of-furnace gas different of the in-furnace gas obtd. by introducing air and gaseous fuel through conduits 10a, 13a into a heater 11a to burn the air and fuel and supplying the resultant gas through a conduit 12a to the device 4a (the same holds true of the other devices 4b, 4c). The use of rolls is thus abolished and the flawing on the surface of the strip 3 in the furnace is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) ステンレス鋼帯、自動車用鋼板その他アルミニウム、銅
などの帯材のように表面品質に対する要求が厳しい金属
ストリップの熱処理に関しこの明細書では金属ス) I
Jツブの熱処理炉中通板に伴う接触きずの有効な回避を
図ることについての開発研究の成果を以下に述べる。
[Detailed Description of the Invention] (Industrial Application Field) This specification refers to the heat treatment of metal strips that have strict requirements for surface quality, such as stainless steel strips, automotive steel plates, and other strip materials such as aluminum and copper. I
The following describes the results of research and development aimed at effectively avoiding contact scratches caused by passing J-tube through a heat treatment furnace.

表面の美麗さが厳しく要求される金属ストリップとして
ステンレス鋼帯、自動車用鋼板などがあり、これらの金
属ストリップを連続熱処理するに際しては表面にきすが
付かないように細心の注意が必要で、この点アルミニウ
ム、銅などの帯材についても同様である。
Stainless steel strips, steel plates for automobiles, etc. are metal strips that require strict surface beauty, and when these metal strips are subjected to continuous heat treatment, extreme care must be taken to prevent scratches from forming on the surface. The same applies to strip materials such as aluminum and copper.

(従来の技術) ステンレス銅帯用の連続焼鈍炉としては、特公昭52−
26723号公報に記載のものが代表的であり、ステン
レス鋼帯に表面きずが入るのを防止するためとくにアス
ベスト製の炉内ロールを用い、ロール本数も極力少なく
していわゆるカテナリー支持を行い、ステンレス鋼帯に
付与する張力を小さくできる。
(Prior art) As a continuous annealing furnace for stainless steel copper strips, the
The one described in Publication No. 26723 is typical, and in order to prevent surface scratches from forming on the stainless steel strip, asbestos furnace rolls are used, and the number of rolls is minimized to provide so-called catenary support. The tension applied to the steel strip can be reduced.

しかしこのカテナリー型連続焼鈍炉においては炉内ロー
ルを用いる以上ピックアップによるきず(金属ス) I
Jツブの酸化スケールがロールに付着・成長して金属ス
) IJツブ表面にきすを付ける)を皆無にすることが
できないので、炉内ロールの頻繁な交換が余儀なくされ
、炉の稼動率を害する要因の1つとなっている。
However, since this catenary-type continuous annealing furnace uses rolls in the furnace, it is difficult to pick up scratches (metallic scratches).
Since it is impossible to completely eliminate the oxidized scale of the J-tube that adheres to and grows on the rolls, causing scratches on the surface of the IJ-tube, frequent replacement of the rolls in the furnace is necessary, which impairs the operating rate of the furnace. This is one of the factors.

また鋼種にもよるが、最高炉温は通常1100℃〜11
50℃前後であり、一方アスベストロールの耐熱温度は
600〜700℃程度であるから、ロール内水冷を必要
とし、従って熱損失が多く省エネの面でも好ましくない
上に、ステンレス鋼帯に温度むらを与える不利もある。
Although it depends on the steel type, the maximum furnace temperature is usually 1100℃~11
On the other hand, asbestos rolls have a heat resistance temperature of about 600 to 700 degrees Celsius, which requires water cooling inside the rolls, which results in high heat loss, which is not desirable from an energy-saving perspective, and also causes temperature unevenness in stainless steel strips. There are also disadvantages.

一方アルミニウム、銅などの帯材を連続熱処理するもの
としてファンにより炉内ガス循環させ、帯材の上下面に
向かって対設した流体圧パッドから、帯材に対し循環炉
内ガスを噴出させて帯材の浮上支持を加熱にあわせ司る
タイプの熱処理炉が提案され、この炉は冷延鋼板のコー
ティングラインにおける乾燥焼付炉などにも使用される
ようになってきている。
On the other hand, in order to continuously heat-treat strip materials such as aluminum and copper, the gas in the furnace is circulated by a fan, and the circulating furnace gas is jetted against the strip material from fluid pressure pads placed opposite to each other toward the top and bottom surfaces of the strip material. A type of heat treatment furnace has been proposed in which floating support of the strip material is combined with heating, and this furnace has come to be used in drying and baking furnaces in coating lines for cold-rolled steel sheets.

この場合、帯材にピックアップなどの表面きずを発生さ
せることはないにしても浮上刃が十分にとれないので板
厚の薄いもの或いは比重の小さいものしか適用できない
。それというのは帯材の上下面における均等加熱のため
に上・下に対をなす流体圧パッド使用した場合、帯材の
よ・下側面にて各々静圧Pu、 Pdが生じてこれらの
差へP= Pd −P uにより金属ストリップを浮上
させることになるが、静圧は流体の流速に依存するので
、高温の炉内ガスを高圧下に循環させる必要があって、
加圧用のファンの耐熱性、寿命、価格などの問題が伴わ
れ、浮上刃は限定されざるを得す、このため、流体圧パ
ッド対の狭い設置間隔の下に多数の流体圧パッドを必要
とする不利がある。
In this case, although surface flaws such as pick-up do not occur on the strip material, sufficient floating edges cannot be removed, so only thin strips or strips with low specific gravity can be used. This is because when a pair of upper and lower fluid pressure pads is used to uniformly heat the upper and lower surfaces of the strip, static pressures Pu and Pd are generated on the upper and lower surfaces of the strip, respectively, and the difference between these The metal strip will be levitated by P = Pd - P u, but since the static pressure depends on the flow rate of the fluid, it is necessary to circulate the high-temperature furnace gas under high pressure.
Due to problems such as heat resistance, lifespan, and cost of the pressurizing fan, the number of floating blades must be limited. Therefore, a large number of fluid pressure pads are required with a narrow installation interval between the fluid pressure pad pairs. There are disadvantages to doing so.

(発明が解決しようとする問題点) 炉内ロールによる金属ス) IJツブのカテナリー支持
では不可避なピックアップによる表面きず発生の問題を
、炉内ガスとは異なる高温ガスの噴出力を有効に利用す
ることによってとくに有利な回避を可能ならしめること
がこの発明の目的である。
(Problems to be Solved by the Invention) To solve the problem of surface scratches caused by pick-up, which is inevitable in catenary support of IJ tubes, the jetting force of high-temperature gas different from that of the furnace gas can be effectively utilized. It is an object of the invention to make possible a particularly advantageous avoidance.

(問題点を解決するための手段) 上記の目的は以下の手順により、適切に成就される。(Means for solving problems) The above objectives are suitably achieved by the following steps.

金属ストリップの直火型連続熱処理炉において、該熱処
理炉の内部に配置した少なくとも一つ以上の浮上装置か
ら、炉内ガスとは別途に発生させた高温ガスを金属スト
リップの下面側に向けて噴出させ、該熱処理炉の内部に
て該ストリップをカテナリー支持しつつ所定の熱処理を
行う、直火型連続熱処理炉における金属ストリップの熱
処理方法(第1発明)。
In a direct-fired continuous heat treatment furnace for metal strip, high-temperature gas generated separately from the furnace gas is ejected toward the lower surface of the metal strip from at least one flotation device placed inside the heat treatment furnace. A method for heat treating a metal strip in a direct-fired continuous heat treatment furnace (first invention), in which a predetermined heat treatment is performed while the strip is catenary-supported inside the heat treatment furnace.

この方法の実施には、次の仕組みが適合する。The following mechanisms are suitable for implementing this method:

炉内に少なくとも1つ以上の浮上装置をそなえ、炉外に
配置した高温ガス発生装置による高温ガスを浮上装置よ
り噴出するようにした直火型連続熱処理炉における金属
ストリップの熱処理装置(第2発明)。
Metal strip heat treatment apparatus in a direct-fired continuous heat treatment furnace, which is equipped with at least one flotation device in the furnace, and blows out high-temperature gas from the flotation device by a high-temperature gas generator disposed outside the furnace (second invention) ).

第1図にはこの発明に従う直火型連続熱処理炉を示し、
図中1は炉体、2は炉外ローノペ 3は金属ストリップ
、4.5はその支持用の浮上装置そして、6はサイド焚
の直火バーナでまた7は炉体1の入側における予熱帯、
8は煙道である。浮上装置4は、添字a、b、’cにて
区別した複数配置の場合を図解したが炉体1の内部で少
なくとも1つ以上を設置してそれらの相互間にわたり、
また入側の炉外ロール2との間および出側の浮上装置5
との間にわたって金属ストリップ3をカテナリー支持し
乍らサイド焚バーナ6により所定の熱処理を行う。
FIG. 1 shows a direct-fired continuous heat treatment furnace according to the present invention,
In the figure, 1 is the furnace body, 2 is the outside roof, 3 is the metal strip, 4.5 is the flotation device for supporting it, 6 is the side-fired direct fire burner, and 7 is the preheating zone on the entrance side of the furnace body 1. ,
8 is a flue. Although the illustration shows a case where a plurality of flotation devices 4 are arranged, distinguished by subscripts a, b, and 'c, at least one or more flotation devices are installed inside the furnace body 1 and spread between them,
Also, between the inlet side outer furnace roll 2 and the outlet side flotation device 5
A predetermined heat treatment is performed using a side firing burner 6 while supporting the metal strip 3 catenarily between the metal strips 3 and 3.

浮上装置4から噴出するガスとしてこの発明ではとくに
、炉内ガスを使用せずして別途、炉外に高温ガス発生装
置を設け、これより発生する高温ガスを浮上装置から金
属ス) IJツブ下面に噴出させることによって、充分
な流量を確保でき、従って板厚の大きい金属ストリップ
でも非接触下に支持し得るのはもとよりその支持力を充
分に大きくなし得るので、浮上装置4の設置数も少なく
て足りるわけである。
In this invention, the gas ejected from the flotation device 4 does not use the in-furnace gas, but instead provides a separate high-temperature gas generator outside the furnace, and the high-temperature gas generated from this is sent from the flotation device to the lower surface of the IJ tube. By ejecting the metal strip, a sufficient flow rate can be secured, and even a metal strip with a large thickness can be supported without contact, and the supporting force can be made sufficiently large, so the number of flotation devices 4 installed can be reduced. That's enough.

(作 用) この発明に従い浮上装置4によって金属ス) IJツブ
3に対し発生ずる静圧Pc (kg/ cm2)は第2
図に示すところにおいて、次式で表される。
(Function) According to the present invention, the static pressure Pc (kg/cm2) generated on the IJ tube 3 by the flotation device 4 is
In the area shown in the figure, it is expressed by the following formula.

pc=ρv2βh  (1+(1+cos θ)−) 
 (1,)ここで ρ:原流体密度(kgf 5ec2
/m’)V:噴流曲率部の流速(m/5ec) θ;噴出口の傾斜角 t;スリット幅(m) h:浮上量(m) また、ストリップ3の受ける力F(kgf)は次式で表
される。
pc=ρv2βh (1+(1+cos θ)−)
(1,) where ρ: Original fluid density (kgf 5ec2
/m') V: Flow velocity at the jet curvature (m/5ec) θ: Inclination angle of the jet nozzle t: Slit width (m) h: Flying height (m) Also, the force F (kgf) received by the strip 3 is as follows: Expressed by the formula.

F = A −P C(2) Δニス) IJツブの静圧を受ける面積(m2)従って
金属ストリップ3はその自重と(2)式で算出される力
とが一致する浮上量りの下に浮揚支持されることになる
。ずあわちこの浮上刃Fは流速の二乗に比例する。とこ
ろが従来の技術についてさきに触れたような炉内ガスを
循環させる方法では設備費、耐熱性などの面でファンの
能力に限界があるため、流速を大きくできないのに反し
てこの発明では高温ガス発生装置9を別途炉外に設け、
これより浮上装置4に高温ガスを供給するので、ガス温
度に由来した制約ないし拘束を無くずことができる。
F = A - P C (2) Δvarnish) Area (m2) of the IJ knob that receives static pressure. Therefore, the metal strip 3 levitates under the floating height where its own weight and the force calculated by equation (2) match. It will be supported. This floating blade F is proportional to the square of the flow velocity. However, with the conventional method of circulating the gas in the furnace as mentioned earlier, the flow rate cannot be increased due to limitations in the fan capacity due to equipment costs, heat resistance, etc., whereas this invention A generator 9 is separately provided outside the furnace,
Since high-temperature gas is supplied to the flotation device 4 from this, restrictions or restraints originating from the gas temperature can be eliminated.

すなわち低温ガスをその昇圧ファンと浮上装置4との間
で例えば加熱装置11により所望温度に昇温させて浮上
装置4に供給するとすればこの時流速には次の関係があ
る。
That is, if low-temperature gas is heated to a desired temperature by the heating device 11 between the booster fan and the flotation device 4 and then supplied to the flotation device 4, the flow velocity at this time has the following relationship.

ここで、vl:加熱装置の入側流速 vo:加熱装置の出側流速 TI;加熱装置の入側温度 To:加熱装置の出側温度 いまかりに入側温度30℃、出側温度は850℃とする
と、流速はほぼ1.93倍となり、従って浮上刃は約3
.7倍になる。
Here, vl: Inlet flow rate of the heating device vo: Outlet flow rate TI of the heating device; Inlet temperature of the heating device To: Outlet temperature of the heating device The inlet temperature is 30°C and the outlet temperature is 850°C. Then, the flow velocity becomes approximately 1.93 times, and therefore the floating blade becomes approximately 3
.. It becomes seven times.

また、従来の技術に従う流体圧パッド対と比較して上部
流体圧パッドによる押下げ力が働かない分だけ浮上刃が
さらに大きくなる。
Furthermore, compared to a pair of hydraulic pressure pads according to the prior art, the floating blade becomes larger due to the fact that the downward force exerted by the upper hydraulic pressure pad does not work.

以上のことから、この発明によって厚物の金属ストリッ
プも連続熱処理を可能にする。
From the above, the present invention allows continuous heat treatment of thick metal strips as well.

ちなみにカテナリー型熱処理炉の従来例を第3図に示し
4a/ 、 4b/ 、 4c/は炉内ロールであるが
これと同程度の配列ピッチでこの発明による浮上装置4
を設置するだけで厚物の金属ス) IJツブを支持させ
ることが十分に可能であって、第4図に示した流体圧パ
ッド対14による炉体1′と比較しでも、浮上装置4の
ス) IJツブ熱処理に対する寄与率を著しく小さくす
ることになり、しかも金属ストリップ3における温度む
らを発生させるようなこともない。なお第4図で15は
加熱用ガスノズノペ16は炉内ガスの加圧用ファン、1
7は再熱器である。つまりこの発明で浮上装置4につい
ては、浮上刃のみを考慮すればよいので、熱処理におけ
る各種制御が非常に簡単である。
Incidentally, a conventional example of a catenary-type heat treatment furnace is shown in FIG. 3, and 4a/, 4b/, and 4c/ are furnace rolls, and the flotation device 4 according to the present invention has the same arrangement pitch as this.
It is sufficiently possible to support a thick metal IJ tube by simply installing a (b) The contribution rate to the IJ tube heat treatment is significantly reduced, and temperature unevenness in the metal strip 3 does not occur. In Fig. 4, 15 is a heating gas nozzle 16 is a fan for pressurizing the gas in the furnace;
7 is a reheater. In other words, in the present invention, with respect to the flotation device 4, only the flotation blade needs to be considered, so various controls in heat treatment are very simple.

(実施例) ステンレス鋼帯用の直火型連続熱処理炉におけるこの発
明の適用例について、第1図により述べる。
(Example) An example of application of the present invention to a direct-fired continuous heat treatment furnace for stainless steel strips will be described with reference to FIG.

浮」−装置4には、この例で導管10により導いた空気
を加熱装置11としての燃焼室におけるバーナ火焔(図
示せず)の形成に寄与せることにより発生した燃焼ガス
としての高温ガスをガス導管12によって供給し、金属
ストリップ3に向けて噴出させ、そのカテナリー支持に
供しつつ、サイド焚直火バーナ6により、所定の熱処理
を施すことができる。図中13は燃料ガスの導管である
Floating device 4 is provided with hot gases as combustion gases generated by the air guided in this example by conduit 10 contributing to the formation of a burner flame (not shown) in a combustion chamber as heating device 11. It can be supplied through a conduit 12 and ejected toward the metal strip 3 for catenary support, while being subjected to a predetermined heat treatment by a side-fired direct-fired burner 6. In the figure, 13 is a fuel gas conduit.

なお浮上装置5は炉体1の出側でたとえば空気噴射によ
る金属ストリップ3の浮揚支持を司るが、きすの発生の
おそれがなければ、従来同様ロールにしてもよい。
The flotation device 5 is in charge of flotation and support of the metal strip 3 by air injection, for example, on the outlet side of the furnace body 1, but it may be a roll as in the conventional case as long as there is no risk of scratching.

第1図に従い浮上装置4を10m間隔にて設置した。According to FIG. 1, flotation devices 4 were installed at intervals of 10 m.

このとき炉温は最大1100〜1150℃であるため、
浮上装置4は耐熱鋼(5ONi〜3QCr鋼)の外側に
耐10    ゛ 火レンガ被覆を有する耐熱構造にした。
At this time, the maximum furnace temperature is 1100 to 1150°C, so
The flotation device 4 had a heat-resistant structure made of heat-resistant steel (5ONi to 3QCr steel) with a 10° firebrick coating on the outside.

なお浮上装置4からの高温ガス噴射のために燃料として
コークス炉ガス(発熱量4300 kc al /N 
m3)を用い、圧力2300mm If20で導管13
からバーナに供給するとともに燃焼用空気は、煙道8途
中のレキュペレークー(図示せず)により熱交換させ4
00℃に予熱した圧力2500mm H2Oの空気を導
管10から供給した。この高温ガス発生装置9で得られ
る高温ガスを浮上装置4に供給しつつ厚み3〜10 m
m 。
In addition, coke oven gas (calorific value 4300 kcal/N
m3) at a pressure of 2300 mm If20.
At the same time, the combustion air is supplied to the burner from
Air at a pressure of 2500 mm H 2 O, preheated to 00° C., was supplied through conduit 10 . The high temperature gas obtained by this high temperature gas generator 9 is supplied to the flotation device 4, and the thickness is 3 to 10 m.
m.

幅1000〜1500 mmのステンレス鋼帯を速度3
0m/minにて通板し焼鈍を行ったところ、ステンレ
ス鋼帯は浮上装置4の直上で浮上量20〜30 mm程
度のリフトの下に安定して浮上し、炉内における表面き
ずの発生を皆無にすることができた。
Stainless steel strip with a width of 1000 to 1500 mm at speed 3
When the stainless steel strip was passed through and annealed at 0 m/min, it floated stably under a lift with a floating height of about 20 to 30 mm directly above the flotation device 4, which prevented the occurrence of surface flaws in the furnace. I was able to eliminate all of them.

このとき燃焼ガスの温度は、800〜1100℃の範囲
内に制御し、浮上装置4内の圧力は1000〜2000
mmf120であった。
At this time, the temperature of the combustion gas is controlled within the range of 800-1100°C, and the pressure inside the flotation device 4 is controlled within the range of 1000-2000°C.
It was mmf120.

なお、この実施例で浮上装置4から噴出させる高温ガス
は、すでに触れたように低温ガスを予め加圧し熱交換な
どによって高温ガスに昇温する方法ではなく直接、燃焼
後の燃焼ガスを用いるようにしたので、ファンの使用は
不必要であった。
In this embodiment, the high-temperature gas ejected from the flotation device 4 is not the method of pressurizing low-temperature gas in advance and raising its temperature to high-temperature gas through heat exchange, as mentioned above, but directly uses combustion gas after combustion. , so the use of a fan was unnecessary.

また、この実施例においては、1つの燃焼ガス発生装置
9から1つの浮上装置4に燃焼ガスを個別供給するよう
にしたが、1つのガス発生装置9に集約してそれから、
複数の浮上装置4に高温ガスを分散供給するようにして
もよい。
In addition, in this embodiment, combustion gas was individually supplied from one combustion gas generator 9 to one flotation device 4, but after concentrating it in one gas generator 9,
The high temperature gas may be distributed and supplied to a plurality of floating devices 4.

さらにこの実施例では、金属ス) IJツブ3のカテナ
リー支持をすべて浮上装置4による場合を示したが、き
すの人いり易い部分、例えば高温部のみに浮上装置4を
採用し、残りは従来通りロールによるようにしてもよい
Furthermore, in this embodiment, the catenary support of the metal IJ tube 3 is entirely carried out by the flotation device 4, but the flotation device 4 is used only in the areas where people can easily access the area, for example, the high temperature part, and the rest remains as before. It may also depend on the roll.

もぢろんこの発駄は、ステンレス鋼帯用の連続焼鈍にだ
け限られるものではなく、連続溶融亜鉛メツキラインの
無酸化炉や、カラーコーティングラインの乾燥焼付炉な
ど各種の水平型熱処理炉に適用することが可能である。
Morinko Hatada is applicable not only to continuous annealing of stainless steel strips, but also to various horizontal heat treatment furnaces such as non-oxidizing furnaces for continuous hot-dip galvanizing lines and drying and baking furnaces for color coating lines. It is possible to do so.

(発明の効果) この発明によれば、以下のような数々の効果を得ること
ができる。
(Effects of the Invention) According to the present invention, the following numerous effects can be obtained.

(1)浮上刃を飛躍的に大きくすることができるので、
厚物の金属ストリップをも浮揚支持させることができ、
従って、ロール使用の廃止によって炉内における表面き
ず発生を皆無にすることができる。
(1) The floating blade can be dramatically enlarged, so
Thick metal strips can also be supported floatingly.
Therefore, by abolishing the use of rolls, it is possible to completely eliminate surface flaws in the furnace.

(2)上記と同じ理由により、ロールにかかるメンテナ
ンスを解消することができるとともに、ロール交換時に
おける炉の停止が無くなりよって生産能率向上、エネル
ギー原単位の向上、作業者の負荷軽減などの効果が著し
い。
(2) For the same reason as above, it is possible to eliminate the maintenance required for rolls, and there is no need to stop the furnace when replacing rolls, which has the effect of improving production efficiency, improving energy consumption, and reducing the burden on workers. Significant.

(3)  ロールの不要により炉長の短縮が可能となる
(3) Furnace length can be shortened by eliminating the need for rolls.

例えば第3図に示した場合との比較で約5〜6mの短縮
が可能となる。
For example, compared to the case shown in FIG. 3, it is possible to shorten the length by about 5 to 6 m.

(4)金属ストリップをカテナリー状に支持するため浮
上装置を少なくできるので、炉内制御が簡単になる。つ
まり、浮上装置は金属ストリップの支持と加熱の両機能
を有するが、浮上刃を大きくできるので、第4図に示す
ような狭い間隔で設ける必要はなく、浮上装置の金属ス
トリップ加熱に対する寄与率を小さくできる。従って熱
処理条件を変更するなどの場合においては、浮上装置を
殆ど考慮せずに変更が可能となる。
(4) Since the metal strip is supported in a catenary-like manner, the number of flotation devices can be reduced, which simplifies the control inside the furnace. In other words, the flotation device has the functions of supporting and heating the metal strip, but since the flotation blades can be made large, there is no need to provide them at narrow intervals as shown in Figure 4, and the contribution rate of the flotation device to the heating of the metal strip can be reduced. Can be made smaller. Therefore, when changing the heat treatment conditions, the change can be made without much consideration of the flotation device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のステンレス銅帯用連続焼鈍炉におけ
る適用例を示す断面図、 第2図は浮上装置の原理説明図、 第3図は従来のステンレス銅帯用連続焼鈍炉の断面図、 第4図は従来の流体圧パッドを用いる熱処理炉の断面図
とA−A断面図である。 1・・・炉体       2・・・炉外ロール3・・
・金属ストリップ  4・・・浮上装置6・・・サイド
焚直火バーナ
Fig. 1 is a sectional view showing an example of application of the present invention to a continuous annealing furnace for stainless steel copper strips, Fig. 2 is a diagram explaining the principle of a flotation device, and Fig. 3 is a sectional view of a conventional continuous annealing furnace for stainless steel copper strips. FIG. 4 is a sectional view and an AA sectional view of a heat treatment furnace using a conventional fluid pressure pad. 1...Furnace body 2...Furnace outer roll 3...
・Metal strip 4...Flotation device 6...Side-fired open fire burner

Claims (1)

【特許請求の範囲】 1、金属ストリップの直火型連続熱処理炉において、該
熱処理炉の内部に配置した少なくとも一つ以上の浮上装
置から、炉内ガスとは別途に発生させた高温ガスを、金
属ストリップの下面側に向けて噴出させ、該熱処理炉の
内部にて該ストリップをカテナリー支持しつつ所定の熱
処理を行うことを特徴とする直火型連続熱処理炉におけ
る金属ストリップの熱処理方法。 2、炉内に少なくとも一つの以上の浮上装置をそなえ、
炉外に配置した高温ガス発生装置による高温ガスを浮上
装置より噴出するようにしたことを特徴とする直火型連
続熱処理炉における金属ストリップの連続熱処理装置。
[Claims] 1. In a direct-fired continuous heat treatment furnace for metal strips, high-temperature gas generated separately from the furnace gas from at least one flotation device disposed inside the heat treatment furnace, 1. A method of heat treating a metal strip in a direct-fired continuous heat treatment furnace, characterized in that the metal strip is ejected toward the lower surface thereof, and a predetermined heat treatment is performed while the strip is catenary-supported inside the heat treatment furnace. 2. Equipped with at least one or more flotation devices in the furnace,
1. A continuous heat treatment apparatus for metal strip in a direct-fired continuous heat treatment furnace, characterized in that high-temperature gas produced by a high-temperature gas generator disposed outside the furnace is ejected from a flotation device.
JP249185A 1985-01-10 1985-01-10 Method and device for heat treatment of metallic strip in direct fire type continuous heat treatment furnace Granted JPS61163219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP249185A JPS61163219A (en) 1985-01-10 1985-01-10 Method and device for heat treatment of metallic strip in direct fire type continuous heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP249185A JPS61163219A (en) 1985-01-10 1985-01-10 Method and device for heat treatment of metallic strip in direct fire type continuous heat treatment furnace

Publications (2)

Publication Number Publication Date
JPS61163219A true JPS61163219A (en) 1986-07-23
JPH0576527B2 JPH0576527B2 (en) 1993-10-22

Family

ID=11530830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP249185A Granted JPS61163219A (en) 1985-01-10 1985-01-10 Method and device for heat treatment of metallic strip in direct fire type continuous heat treatment furnace

Country Status (1)

Country Link
JP (1) JPS61163219A (en)

Also Published As

Publication number Publication date
JPH0576527B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
US3332761A (en) Method of annealing sheets of glass on a decreasing temperature gas support
CA1088747A (en) Preheating furnace
US4790749A (en) Kiln for firing ceramic materials such as tiles and the like
US3223498A (en) Heat treatment of conveyed glass and apparatus therefor
US6129258A (en) Muffle convection brazing and annealing system and method
US4738705A (en) Gas burner forced convection heating of glass sheets
US3300290A (en) Method and apparatus for conveying and heating glass on a fluid support bed
US4069008A (en) Method and apparatus for heating a workpiece
GB1402545A (en) Thermally conditioning hot materials in sheet-like form
JPS61163219A (en) Method and device for heat treatment of metallic strip in direct fire type continuous heat treatment furnace
JPS6321730B2 (en)
US4904533A (en) Glass sheet heat treated by opposed burners
US2262609A (en) Furnace for coating baths
EP0249361A2 (en) Gas burner forced convection heating of glass sheets
JPH0390521A (en) Method for float-supporting metal strip
JPH0987750A (en) Method and device for heating strip
JP2733885B2 (en) Continuous heat treatment of steel strip
CA1072823A (en) Jet impingement radiation furnace, method and apparatus
JP4146939B2 (en) Stainless steel strip continuous annealing furnace
JP3814007B2 (en) Continuous heating method and apparatus
JP5141950B2 (en) Fluidized bed heat treatment furnace and control method thereof
JPS6233006Y2 (en)
JPS6013036Y2 (en) heat treatment furnace
JPS6013035Y2 (en) heat treatment furnace
US4832597A (en) Gas burner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees