JPS61162763A - Susceptibility measuring apparatus - Google Patents

Susceptibility measuring apparatus

Info

Publication number
JPS61162763A
JPS61162763A JP311885A JP311885A JPS61162763A JP S61162763 A JPS61162763 A JP S61162763A JP 311885 A JP311885 A JP 311885A JP 311885 A JP311885 A JP 311885A JP S61162763 A JPS61162763 A JP S61162763A
Authority
JP
Japan
Prior art keywords
sample
magnetic field
susceptibility
gradient magnetic
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP311885A
Other languages
Japanese (ja)
Inventor
Etsuo Ban
伴 悦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP311885A priority Critical patent/JPS61162763A/en
Publication of JPS61162763A publication Critical patent/JPS61162763A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/16Measuring susceptibility

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable measurement of susceptibility of a sample simply and accurately, by applying a secondary grade magnetic field to a sample to be measured arranged in a magnetostatic field to detect the cycle of vibration of the sample in the magnetic field. CONSTITUTION:Current is fed to coils 3 and 4 from a secondary grade magnetic field control means 10 to generate a secondary grade magnetic field with a parabolic intensity distribution overlapping an electrostatic field generated with electromagnetic generation coils 1 and 2. When an external force is applied to a sample 5 hung at the central part of the secondary grade magnetic field with a slender string, the sample 5 vibrates. Under such a condition, the sample 5 is irradiated with light from a light emitter 6 and the light partly intercepted by the sample 5 is detected with a photodetector 7. The output of the photodetector 7 is fed to a cycle measuring device 8 to measure the cycle thereof and the results of the measurement are fed to a computer 9 to compute and display the susceptibility.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、精度良く簡単に試料の磁化率を測定すること
ができる磁化率測定装置に関する−[従来の技v#1″ 試料を静磁場中に配置し、更に、該試料に1次勾配磁場
を印加すると、試料に静的な力が加わる。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a magnetic susceptibility measuring device that can easily measure the magnetic susceptibility of a sample with high precision. When a first-order gradient magnetic field is applied to the sample, a static force is applied to the sample.

この静的な力は該試料の磁化率に対応していることから
、この力を天秤によって測定し、試料の磁化率を求めて
いる。すなわち、試料の磁化率をχ。
Since this static force corresponds to the magnetic susceptibility of the sample, this force is measured with a balance to determine the magnetic susceptibility of the sample. That is, the magnetic susceptibility of the sample is χ.

媒質の磁化率をχ′、静磁場の強さをHoe試料容積を
Vとすれば、試料に加わる力FZは、      ゛)
H Fz −V (χ−χ′)H訂 ・・・・・・■となる
。ここで、 H−H@+a、z % 、a。
If the magnetic susceptibility of the medium is χ', the strength of the static magnetic field is Hoe, and the sample volume is V, then the force FZ applied to the sample is:
H Fz −V (χ−χ′)H revision ・・・・・・■. Here, H−H@+a, z %, a.

であり、■式は次の通りとなる。, and the formula is as follows.

1”z −v (z  z# ) Ho at ・・・
・=■従って、tJFzが測定されれば、この0式に基
づいて、試料の磁化率χが求められる。
1”z −v (z z#) Ho at...
.=■ Therefore, if tJFz is measured, the magnetic susceptibility χ of the sample can be found based on this equation 0.

[発明が解決しようとする問題点] しかしながら、上述した力F、Zは、静的な力であるの
で、検出信号が直流となり、ドリフト等に基因したノイ
ズ信号が重畳されることから、精度良く磁化率を測定す
ることができない。
[Problems to be solved by the invention] However, since the above-mentioned forces F and Z are static forces, the detection signal becomes a direct current, and noise signals caused by drift etc. are superimposed, so they cannot be accurately detected. Unable to measure magnetic susceptibility.

本発明は、上述した点に鑑みてなされたもので、精度良
く簡単に試料の磁化率を測定することができる磁化率測
定装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a magnetic susceptibility measuring device that can easily measure the magnetic susceptibility of a sample with high accuracy.

[同照点を解決するための手段] 本発明に基づく第1の磁化率測定装置は、静磁場発生手
段と、該静磁場中に配置された被測定試料に2次勾配磁
場を加えるための2次勾配磁場発生手段と、該試料の該
磁場中の振動の周期を検出する手段と、該試料の振動周
期から試料の磁化率を演算する手段とを備えたことを特
徴としている。
[Means for solving the same illumination point] The first magnetic susceptibility measuring device based on the present invention includes a static magnetic field generating means and a means for applying a secondary gradient magnetic field to a sample to be measured placed in the static magnetic field. It is characterized by comprising a secondary gradient magnetic field generating means, a means for detecting the period of vibration of the sample in the magnetic field, and a means for calculating the magnetic susceptibility of the sample from the vibration period of the sample.

又、本発明に基づく第2の磁化率測定装置は、上記第1
の磁化率測定装置に、該試料に1次勾配磁場を加えるた
めの1次勾配磁場発生手段と、該1次勾配磁場の強度を
周期的に変化させる手段とを備えることを特徴としてい
る。
Further, a second magnetic susceptibility measuring device based on the present invention is a second magnetic susceptibility measuring device based on the first
The magnetic susceptibility measuring device is characterized by comprising a primary gradient magnetic field generating means for applying a primary gradient magnetic field to the sample, and a means for periodically changing the intensity of the primary gradient magnetic field.

[作用] 本発明に基づく第1の装置において、被測定試料は、静
磁場に2次勾配磁場が重畳された磁場中に配置される。
[Operation] In the first apparatus based on the present invention, the sample to be measured is placed in a magnetic field in which a secondary gradient magnetic field is superimposed on a static magnetic field.

ここで、atを2次勾配磁場の傾きとすると、試料が配
置される磁場Hは、次のように表−される。
Here, if at is the gradient of the secondary gradient magnetic field, the magnetic field H in which the sample is placed is expressed as follows.

H=Ho +az Z2 従って、試料に加えられる力Fzは、 −uli  虐2a2z z から、 1”z −2v (Z−Z’  )Ho a2Z・・・
・・・■ となる。ここで、試料の質量を−mとすると、運動方程
式 %式% が導かれる。ただし、 ω2−2az Ho V (Z’ −Z)/m・・・・
・・■ である。この第0式は、角周波数ωの単振動を表現する
ものであるから、試料の振動の周波数(周期)を測定す
ることにより、第0式から該試料の磁化率χを求めるこ
とができる。
H=Ho +az Z2 Therefore, the force Fz applied to the sample is 1"z -2v (Z-Z')Ho a2Z...
...■ becomes. Here, if the mass of the sample is -m, then the equation of motion is derived. However, ω2-2az Ho V (Z' -Z)/m...
...■. Since this 0th equation expresses a simple harmonic motion of the angular frequency ω, the magnetic susceptibility χ of the sample can be determined from the 0th equation by measuring the frequency (period) of the vibration of the sample.

本発明に基づく第2の装置において、被測定試料は、静
磁場に2次勾配磁場と1次勾配磁場とが重畳された磁場
中に配置される。ここで、alを1次勾配磁場の傾き、
atを2次勾配磁場の傾きとすると、試料が配置される
磁場Hは、次のように表される。
In the second apparatus based on the present invention, the sample to be measured is placed in a magnetic field in which a secondary gradient magnetic field and a primary gradient magnetic field are superimposed on a static magnetic field. Here, al is the gradient of the primary gradient magnetic field,
When at is the gradient of the secondary gradient magnetic field, the magnetic field H in which the sample is placed is expressed as follows.

H=Hol−at Z+az Z2 従って、試料に加えられる力FZは、 かう、 Fz −V (χ−χ′ ) X (Ha +as Z+az Z2)x (at +
2az z)  ・・・・・・■となる。ここで、試料
の質量をmとすると、運動方程式 %式%) が導かれる。上式は、2次以上の項が無視できる範囲で
次のように表される。
H=Hol-at Z+az Z2 Therefore, the force FZ applied to the sample is: Fz -V (χ-χ')
2az z) ・・・・・・■. Here, if the mass of the sample is m, then the equation of motion is derived. The above equation can be expressed as follows within the range where terms of second order or higher order can be ignored.

+  (as  ”  +2’az  Ho  )  
Z  ]となる。ここで、 ωo 2−2az Ho V (Z’ −z)/m・・
・・・・■ f−V (χ−χ’、) as Ha である。ただし、 2 a2Ho、> at 2 である。なお、上記第0式は、外力fが加わっていると
きの単振子の運動を表すものである。
+ (as ” +2'az Ho)
Z ]. Here, ωo 2-2az Ho V (Z' -z)/m...
...■ f-V (χ-χ',) as Ha. However, 2 a2Ho, > at 2 . Note that the above equation 0 represents the motion of the simple pendulum when external force f is applied.

ここで、1次勾配磁場の強さは、この1次勾配磁場によ
って試料に加わる力と重力とが平衡するように制御され
る。更に、この1次勾配磁場″の強さは、上記第0式の
ω0に近い角周波数で正弦波的に変化させられる。この
結果、試料は共鳴状態となり、本発明に基づく第1の装
置に比べ、試料は比較的大きく持続的に振動することか
ら、周波数(周期)の測定が容易となる。
Here, the strength of the primary gradient magnetic field is controlled so that the force applied to the sample by the primary gradient magnetic field and gravity are balanced. Furthermore, the strength of this primary gradient magnetic field is varied sinusoidally at an angular frequency close to ω0 in the above equation 0. As a result, the sample is in a resonant state and the first device according to the invention In comparison, the sample vibrates relatively large and continuously, making it easy to measure the frequency (period).

[実施例1 以下本発明の一実施例を添附図面に基づいて詳述する。[Example 1 An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、1.2は静磁場発生用コイル、3.4
は2次勾配磁場発生用コイルである。該コイル1.2.
3.4に適宜な電流を流すことによって、静磁場と2次
勾配磁場が発生し、この両磁場が重畳された空間に、被
測定試料5が配置される。6は該試料へ光を照射するた
めの発光器であり、該発光器6からの光は、受光器7に
よって受光される。該受光器7によって検出された信号
は、周期測定器8に供給されて信号の周期が求められ、
該周期に対応した信号はコンピュータ9に供給される。
In Figure 1, 1.2 is a static magnetic field generating coil, 3.4
is a coil for generating a secondary gradient magnetic field. The coil 1.2.
By passing an appropriate current through 3.4, a static magnetic field and a secondary gradient magnetic field are generated, and the sample to be measured 5 is placed in a space where these two magnetic fields are superimposed. Reference numeral 6 denotes a light emitter for irradiating light onto the sample, and the light from the light emitter 6 is received by a light receiver 7. The signal detected by the light receiver 7 is supplied to a period measuring device 8 to determine the period of the signal,
A signal corresponding to the period is supplied to the computer 9.

該コンピュータ9は該2次勾配磁場発生用コイル3.4
に供給する電流を制御する2次勾配磁場制御手段を制御
している。
The computer 9 includes the secondary gradient magnetic field generation coil 3.4.
The secondary gradient magnetic field control means controls the current supplied to the magnetic field.

上述した如き構成において、静磁場発生用コイル1.2
に適宜な電流を供給することにより、所望の静磁場が発
生させられる。更に、2次勾配磁場制御手段10からコ
イル3.4に電流が供給され、該静磁場に重畳して、例
えば、放物線状の強度分布の2次勾配磁場が発生される
。試料5は、この2次勾配磁場の中心部分に細い糸で吊
す等して配置されているが、この状態で試料5に外力を
加える、例えば、試料を所望の力で押す等をすれば、該
試料5は振動する。該試料5には、重畳磁場により、前
記第0式に示した力1”zが加わっているために、試料
は第0式に示した角周波数ωで振動することになる。該
試料5には、発光器6から光が照射されており、該試料
によって一部遮られた光は、受光器7によって検出され
る。該受光器7に入射する光の量は、該試料5の振動に
応じて変化することから、該受光器7の出力信号は、周
期ωで正弦波的に変化する信号となる。該正弦波信号は
周期測定器8に供給されてその周期が測定され、その測
定結果はコンピュータ9に供給される。該コンピュータ
9は供給された周期信号から、前記第0式に基づいて試
料5の磁化率χを演算し、その値を記録計(図示せず)
によって表示する。
In the configuration as described above, the static magnetic field generating coil 1.2
A desired static magnetic field is generated by supplying an appropriate current to the magnet. Furthermore, a current is supplied from the secondary gradient magnetic field control means 10 to the coil 3.4, and a secondary gradient magnetic field having, for example, a parabolic intensity distribution is generated, superimposed on the static magnetic field. The sample 5 is placed in the center of this secondary gradient magnetic field, suspended by a thin thread, but if an external force is applied to the sample 5 in this state, for example, by pushing the sample with a desired force, The sample 5 vibrates. Since the sample 5 is subjected to the force 1''z shown in the 0th equation due to the superimposed magnetic field, the sample vibrates at the angular frequency ω shown in the 0th equation. , light is emitted from a light emitter 6, and the light partially blocked by the sample is detected by a light receiver 7.The amount of light incident on the light receiver 7 depends on the vibration of the sample 5. Therefore, the output signal of the light receiver 7 becomes a signal that changes in a sinusoidal manner with a period ω.The sine wave signal is supplied to a period measuring device 8 and its period is measured. The result is supplied to the computer 9. The computer 9 calculates the magnetic susceptibility χ of the sample 5 based on the 0th equation from the supplied periodic signal, and records the value with a recorder (not shown).
Display by.

上述した第1図の装置では、試料に外力を加えることに
よって該試料は振動を開始するものの、この振動は、減
衰振動であり、徐々に振動は弱まってしまう。この点を
改良し、試料の振動を大きく連続的に行わせるようにし
たのが、第2図に示す実施例である。
In the apparatus shown in FIG. 1 described above, when an external force is applied to the sample, the sample starts to vibrate, but this vibration is a damped vibration and gradually weakens. The embodiment shown in FIG. 2 improves this point and makes the sample vibrate continuously and greatly.

第2図において、第1図と同一構成要素は、同一番号を
付してその詳細な説明は省略する。この実施例では、静
磁場発生用コイル1.2と2次勾配磁場発生用コイル3
.4に追加して、1次勾配磁場制御手段10によって制
御される1次勾配磁場発生用コイル11.12が配置さ
れている。この実施例で、試料5は静磁場に1次勾配磁
場と2次勾配磁場が重畳された空間に配置されるが、1
次勾配磁場によって試料5に加わる力を該試料が受ける
重力に等しくすると、試料を糸等で吊すこ受ける重力に
等しくすると、試料を糸等で吊すことなく、重畳磁場の
中心部分に配置することができる。この状態で、コンピ
ュータ9からの指令で1次勾配磁場制御手段11を制御
し、1次勾配磁場発生用コイル12.13に供給する電
流を正弦波的に変動させると、この磁場強度の変動の角
周波数が、前記第0式に示したω0に等しいと試料は共
鳴状態となり、大きく振動することになる。
In FIG. 2, the same components as those in FIG. 1 are given the same numbers, and detailed explanation thereof will be omitted. In this embodiment, a static magnetic field generating coil 1.2 and a secondary gradient magnetic field generating coil 3 are used.
.. 4, primary gradient magnetic field generating coils 11 and 12 controlled by the primary gradient magnetic field control means 10 are arranged. In this example, the sample 5 is placed in a space where a primary gradient magnetic field and a secondary gradient magnetic field are superimposed on a static magnetic field.
Next, if the force applied to the sample 5 by the gradient magnetic field is equal to the gravity that the sample receives, then if it is equal to the gravity that would be received by suspending the sample with a string, etc., then the sample can be placed in the center of the superimposed magnetic field without being suspended with a string, etc. I can do it. In this state, if the primary gradient magnetic field control means 11 is controlled by a command from the computer 9 and the current supplied to the primary gradient magnetic field generating coils 12 and 13 is varied in a sinusoidal manner, this variation in magnetic field strength is When the angular frequency is equal to ω0 shown in the zeroth equation, the sample enters a resonant state and vibrates greatly.

一方、磁場強度の変動がω0と相異すると、試料の変動
は僅かとなる。ここで、1次勾配磁場の変動の周期を連
続的に掃引し、その間の試料5の変動の様子を受光器7
に入射する光の量によって監視すれば、該試料の振動が
共鳴状態となった時、受光器7に入射する光の量は極端
に大きく変動することが分る。コンピュータ9は、この
試料が大きく変動した時の周期をII識し、1次勾配磁
場発生手段11からコイル12.13に供給される励磁
電流の周期をこの明らかとなった周期に固定する。この
結果、試料5は常に共鳴状態となり、連続して大きく変
動することになることから、周期ることができる。
On the other hand, if the variation in magnetic field strength is different from ω0, the variation in the sample will be slight. Here, the period of fluctuation of the primary gradient magnetic field is continuously swept, and the state of fluctuation of the sample 5 during that period is monitored by the optical receiver 7.
If the amount of light incident on the photoreceptor 7 is monitored, it can be seen that when the vibration of the sample reaches a resonance state, the amount of light incident on the photodetector 7 fluctuates extremely. The computer 9 recognizes the cycle when this sample fluctuates greatly, and fixes the cycle of the excitation current supplied from the primary gradient magnetic field generating means 11 to the coils 12, 13 to this revealed cycle. As a result, the sample 5 is always in a resonant state and continuously fluctuates greatly, so that it can be cycled.

なお、本発明は上述した実施例に限定されず、幾多の変
型が可能である。例えば、試料の振動の周期を測定する
ために光を利用したが、機械的に振動を測定する器具を
用いても良い。又、磁場の発生手段は、空芯のコイルの
みならず、他の磁石装置を用いることは可能である。
Note that the present invention is not limited to the embodiments described above, and many modifications are possible. For example, although light was used to measure the period of vibration of the sample, a device that mechanically measures vibrations may also be used. Further, as the magnetic field generating means, it is possible to use not only an air-core coil but also other magnet devices.

[効果] 以上詳述した如く、本発明においては、試料を静磁場と
2次勾配磁場とが重畳された磁場中に配置するようにし
たので、試料に磁化率に応じた振動を与えることができ
、この振動の周期を測定することによって磁化率を求め
ることができる。そして、この振動は交流信号として検
出されるため、試料のドリフト等の直流ノイズ成分の影
響なしに磁化率に対応した振動の周期を正確に測定する
ことができる。又、本発明に基づく第2の磁化率測定装
置では、試料を静磁場と2次勾配磁場と1次勾配磁場と
が重畳された磁場中に配装置するようにしたので、試料
を大きく連続して振動させることができ、測定をより正
確に行うことができる。
[Effect] As detailed above, in the present invention, since the sample is placed in a magnetic field in which a static magnetic field and a secondary gradient magnetic field are superimposed, it is possible to apply vibrations to the sample according to the magnetic susceptibility. By measuring the period of this vibration, the magnetic susceptibility can be determined. Since this vibration is detected as an AC signal, it is possible to accurately measure the period of vibration corresponding to the magnetic susceptibility without being affected by DC noise components such as sample drift. In addition, in the second magnetic susceptibility measuring device based on the present invention, the sample is placed in a magnetic field in which a static magnetic field, a secondary gradient magnetic field, and a primary gradient magnetic field are superimposed, so that the sample is placed in a large continuous field. This allows for more accurate measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、夫々本発明の一実施例を示す図
である。 1.2・・・静磁場発生用コイル 3.4・・・2次勾配発生用コイル 5・・・被測定試料    6・・・発生光器7・・・
受光機      8・・・周期測定器9・・・コンピ
ュータ
FIG. 1 and FIG. 2 are diagrams each showing an embodiment of the present invention. 1.2... Coil for static magnetic field generation 3.4... Coil for secondary gradient generation 5... Sample to be measured 6... Light generator 7...
Receiver 8...Period measuring device 9...Computer

Claims (2)

【特許請求の範囲】[Claims] (1)静磁場発生手段と、該静磁場中に配置された被測
定試料に2次勾配磁場を加えるための2次勾配磁場発生
手段と、該試料の該磁場中の振動の周期を検出する手段
と、該試料の振動周期から試料の磁化率を演算する手段
とを備えた磁化率測定装置。
(1) A static magnetic field generating means, a secondary gradient magnetic field generating means for applying a secondary gradient magnetic field to a sample to be measured placed in the static magnetic field, and detecting the period of vibration of the sample in the magnetic field. A magnetic susceptibility measuring device comprising means for calculating the magnetic susceptibility of a sample from a vibration period of the sample.
(2)静磁場発生手段と、該静磁場中に配置された被測
定試料に2次勾配磁場を加えるための2次勾配磁場発生
手段と、該試料に1次勾配磁場を加えるための1次勾配
磁場発生手段と、該1次勾配磁場の強度を周期的に変化
させる手段と、該試料の該磁場中の振動の周期を検出す
る手段と、該試料の振動周期から試料の磁化率を演算す
る手段とを備えた磁化率測定装置。
(2) A static magnetic field generating means, a secondary gradient magnetic field generating means for applying a secondary gradient magnetic field to a sample to be measured placed in the static magnetic field, and a primary gradient magnetic field generating means for applying a primary gradient magnetic field to the sample. a gradient magnetic field generating means, a means for periodically changing the intensity of the primary gradient magnetic field, a means for detecting the period of vibration of the sample in the magnetic field, and calculating the magnetic susceptibility of the sample from the vibration period of the sample. A magnetic susceptibility measuring device comprising means for measuring magnetic susceptibility.
JP311885A 1985-01-11 1985-01-11 Susceptibility measuring apparatus Pending JPS61162763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP311885A JPS61162763A (en) 1985-01-11 1985-01-11 Susceptibility measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP311885A JPS61162763A (en) 1985-01-11 1985-01-11 Susceptibility measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61162763A true JPS61162763A (en) 1986-07-23

Family

ID=11548436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP311885A Pending JPS61162763A (en) 1985-01-11 1985-01-11 Susceptibility measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61162763A (en)

Similar Documents

Publication Publication Date Title
Gundlach et al. Laboratory test of Newton’s second law for small accelerations
Tariq et al. The linear variable differential transformer (LVDT) position sensor for gravitational wave interferometer low-frequency controls
JP2008185429A (en) Electric potential measuring apparatus and image forming apparatus
US4005358A (en) Magnetometer with out-of-phase correction
US3675471A (en) Method of measuring vibration characteristics of structures
JP3314187B2 (en) Force compensator for inertial mass measurement
Sittel et al. Method for Determining the Viscoelastic Properties of Dilute Polymer Solutions at Audio‐Frequencies
Reeves An alternating force magnetometer
JPS61162763A (en) Susceptibility measuring apparatus
Herranz et al. Vibration measurements of a wire scanner–experimental setup and models
Iafolla et al. One axis gravity gradiometer for the measurement of Newton's gravitational constant G
Sun et al. Investigation of cylindrical resonators’ damping asymmetry via analyzing q factor circumferential distribution
CN104457791A (en) Method for measuring fiber-optic gyroscope bandwidth under static condition
Basarab et al. Application of a magnetic sensor for determining the mass imbalance of the Coriolis vibratory gyroscope with cylindrical metallic resonator
WO2023220919A1 (en) Calibration method, system and apparatus for low-frequency performance test of all-fiber detector
Arpaia et al. Advances in stretched and oscillating-wire methods for magnetic measurement
RU2057307C1 (en) Method of determination of moment of inertia of articles
SU881628A1 (en) Electrostatic field pickup
CN105547629A (en) Mach-Zehnder fiber optic interferometer vibration influence testing system
Marioli et al. A system for the generation of static and very low-frequency reference accelerations
Carlsmith et al. Drift tube wire tension monitoring
SU947627A1 (en) Vibro-contact measuring device
SU693192A1 (en) Method of determining thermal coefficient of linear expansion of solid bodies
RU2178548C1 (en) Micro-mechanical vibratory gyro
SU1732178A1 (en) Device for measuring of mechanical oscillation parameters