JPS61162281A - Electric resistance welding method making combination use of energy beam - Google Patents

Electric resistance welding method making combination use of energy beam

Info

Publication number
JPS61162281A
JPS61162281A JP60002446A JP244685A JPS61162281A JP S61162281 A JPS61162281 A JP S61162281A JP 60002446 A JP60002446 A JP 60002446A JP 244685 A JP244685 A JP 244685A JP S61162281 A JPS61162281 A JP S61162281A
Authority
JP
Japan
Prior art keywords
welding
energy beam
projected
thickness
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60002446A
Other languages
Japanese (ja)
Inventor
Katsuhiro Minamida
勝宏 南田
Hideo Takato
高藤 英生
Nobuo Mizuhashi
伸雄 水橋
Hirotsugu Haga
芳賀 博世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60002446A priority Critical patent/JPS61162281A/en
Publication of JPS61162281A publication Critical patent/JPS61162281A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To heat relatively thick sheets as well at a prescribed temp. distribution and to make possible a high welding speed by projecting the respective radiation energy beams of at least two energy beam generator to the welding point. CONSTITUTION:Laser beams LB1, LB2 oscillated by laser oscillators LG1, LG2 are irradiated to mirrors MB1, MB2. The laser beams are projected by the mirrors MB1, MB2 and are further reflected by a synthesizing mirror Mx1 by which the laser beams LB1, LB2 are synthesized. The synthesized beam LBx is projected through a beam guide 29 to a wedge-shaped groove. The relatively thick-walled pipes are thus satisfactorily welded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気抵抗溶接法と、例えばレーザービームの
ようなエネルギービームの投射を併用する複合溶接法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a combined welding process that uses both electric resistance welding and the projection of an energy beam, such as a laser beam.

〔従来の技術〕[Conventional technology]

物体を溶接することは広範囲な分野で必要とされ、各種
の方法が用いられているが、その中で電気抵抗溶接法は
最もよく使われている技術の1つである。
Welding objects is required in a wide range of fields, and various methods are used, among which electric resistance welding is one of the most commonly used techniques.

例えば溶接管の製造分野においては、一般に電縫管と呼
はれる管の、溶接速度の速い、即ち生産性の高い溶接法
として用いられている。
For example, in the field of manufacturing welded pipes, it is generally used as a welding method for pipes called electric resistance welded pipes, which has a high welding speed, that is, has high productivity.

電縫管の製造方法、例えば従来の高周波接触溶接法によ
る溶接造管工程では、まず成形ロール群によって鋼IF
を管状に成形し、それらのエツジ部をスクイズロールに
よって突合わせる。これによりエッチ部が、衝合部を頂
点とするクサビ形状を呈する。
In the manufacturing method of ERW pipes, for example, in the welding pipe manufacturing process using the conventional high frequency contact welding method, first the steel IF is formed by a group of forming rolls.
are formed into a tubular shape, and their edges are butted together using a squeeze roll. As a result, the etched portion takes on a wedge shape with the abutting portion as the apex.

スクイズロールの上流に配設された接触子に、高周波電
圧を印加し、1つの接触子4から他の接触子へ高周波電
流を流してクサビ形状をなすエツジ部に冶−)で++>
i周波電流を流す。この高周波電流によってエツジ部が
加熱されクサビ形状の頂点すなわち溶接点か溶接温度に
達しスクイズロールにより加圧溶接される。
A high-frequency voltage is applied to the contacts placed upstream of the squeeze roll, and a high-frequency current is passed from one contact 4 to the other to form a wedge-shaped edge.
Flow i-frequency current. The edges are heated by this high frequency current, and the apex of the wedge shape, that is, the welding point, reaches the welding temperature and is welded under pressure by the squeeze roll.

電縫管の溶接品質には溶接電流の大小が大きく影響を及
ぼし、溶接電力が過小のときにはエツジ部は低入熱状態
となり冷接と呼ばれる溶接欠陥が発生する。溶接電力が
過大になりエツジ部が高入熱状態となるとペネ1−レー
タと呼はれる溶接欠陥が発生する場合がある。低入熱造
管で発生する冷接はエツジ部の加熱不足が主原因であり
、高入熱造管で発生するバネ1〜レータはエツジ部が溶
融し溶融金属が電磁力によって溶接面から排出されるた
めに溶接点が管軸方向に周期的位置変動を繰り返すこと
が主原因である。
The welding quality of ERW pipes is greatly influenced by the magnitude of the welding current, and when the welding power is too low, the edge part will be in a low heat input state and a welding defect called cold welding will occur. If the welding power becomes excessive and the edge portion is in a high heat input state, a welding defect called a penetrator may occur. The main cause of cold welding that occurs during low-heat-input pipe manufacturing is insufficient heating of the edge.In the case of springs 1 to 2, which occur during high-heat-input pipe manufacturing, the edge melts and the molten metal is ejected from the welding surface by electromagnetic force. The main cause is that the welding point repeats periodic positional fluctuations in the tube axis direction.

このような従来の問題点を更に詳しく説明する。These conventional problems will be explained in more detail.

一般に電縫溶接造管に用いる高周波電力どしては、10
〜500KHzの周波数帯が用いられ、高周波特有の「
表皮効果」と「近接効果」の2つの現象の相乗効果によ
り周波数が高くなるほど電気的溶接効果は大きくなる。
Generally, the high frequency power used for ERW welding pipe production is 10
The frequency band of ~500KHz is used, and the
Due to the synergistic effect of two phenomena, the "skin effect" and the "proximity effect," the higher the frequency, the greater the electrical welding effect.

これが電縫溶接造管に広く高周波電力が用い1られる理
由である。
This is the reason why high frequency power is widely used in ERW welding pipe manufacturing.

ところで、高周波加熱によりエッチ端面を溶融せしめる
と同時に、スクイズロールで接合部に強いアブセン1−
力を加えて大部分の溶融金属を加熱中に生じた酸化物と
共に溶接部外に排出するという機構で溶接が行なオ〕れ
ると考えられていた。アブセン1へによって溶接部は変
形し、第8a図に示すように、熱影響部のメタルフロー
が立上る。
By the way, at the same time as melting the etched end face by high frequency heating, we used a squeeze roll to make Absen 1-1, which is strong at the joint.
It was thought that welding would be performed by applying force to expel most of the molten metal from the weld together with the oxides generated during heating. The welded portion is deformed by the absorption 1, and metal flow in the heat-affected zone rises as shown in FIG. 8a.

メタルフローが立上ると帯板に含まれる介在物も同時に
立」ニリ、また表面に比べて機械的、化学的性質の劣る
内質部が表面に請出するという欠点が生ずる。他方、ア
ブセン1〜を加えないと溶接欠陥が多発する。メタルフ
ロー立」ニリ角θと溶接部の靭性は第8b図に示す関係
となり、立」ニリ角Oが大きくなるほど靭性が低下する
。なお、第8b図の斜線領域が靭性の範囲を示す。靭性
は斜線範囲内でばらつく。
When the metal flow rises, the inclusions contained in the strip also stand up, causing the disadvantage that the inner part, which has inferior mechanical and chemical properties compared to the surface, oozes out to the surface. On the other hand, if Absen 1~ is not added, welding defects will occur frequently. The relationship between the metal flow angle θ and the toughness of the weld is shown in FIG. 8b, and the larger the vertical angle 0, the lower the toughness. Note that the shaded area in FIG. 8b indicates the range of toughness. Toughness varies within the shaded range.

高周波電流は、突合せ端面の表面、特にコーナ部に集中
する。このため、突合せ端面中心部と比較してコーナ部
の溶融量が多くなる。端面に生じた溶融金属は、相対す
る突合せ面を流れる互いに逆向きの電流によって誘起さ
れる電磁圧力の作用で端面から帯板外部に排出される。
The high-frequency current concentrates on the surfaces of the butt end faces, especially at the corners. Therefore, the amount of melting at the corner portions is greater than at the center portion of the butt end faces. The molten metal generated at the end faces is discharged from the end faces to the outside of the strip plate by the action of electromagnetic pressure induced by currents flowing in opposite directions flowing through the opposing abutting faces.

この電磁圧力の方向を第9a図に示す。従って、溶接面
Muの端面の突合せ形状は、第9 b図に示ずように、
中心部の膨らんだ凸形となっている。溶接直後の端面の
間の部分は溶鋼で埋められる。このままの状態又は溶接
部にほとんどアブセン1へを加えない状態で溶鋼が凝固
すると、コーナ部近傍に凝固収縮孔が発生し、この部分
が溶接欠陥になる。この状態を第9c図の上欄に示す。
The direction of this electromagnetic pressure is shown in Figure 9a. Therefore, the butt shape of the end face of the welding surface Mu is as shown in Fig. 9b.
It has a convex shape with a bulging center. The area between the end faces immediately after welding is filled with molten steel. If the molten steel solidifies in this state or with little addition to the absen 1 in the welded part, solidification shrinkage holes will occur near the corners, and this part will become a welding defect. This state is shown in the upper column of FIG. 9c.

もし溶接部に強いアブセン1−が加えられると溶接部が
変形して凸面形か平面形となり凝固層は薄いフィルム状
となって板厚面内には収縮孔が発生しない。この状態を
第9C図の下欄に示す。
If a strong Absen 1- is applied to the welded part, the welded part deforms into a convex or planar shape, and the solidified layer becomes a thin film, so that no shrinkage pores are generated in the plate thickness plane. This state is shown in the lower column of FIG. 9C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の高周波電気抵抗溶接では、上述のように、板厚面
内に収縮孔を生しないようにするためにはアブセンi−
を強くしなければならず、アブセン1−を強くすると、
メタルフロー立上り角θが大きくなって溶接部の靭性が
低下するという相反する問題があった。
In conventional high frequency electric resistance welding, as mentioned above, Absen I-
You have to make it stronger, and if you make Absen 1- stronger,
There was a contradictory problem in that the metal flow rise angle θ increased and the toughness of the welded part decreased.

これらの現象は、ス1−レートシームの電縫管に限らず
スパイラル管や■ビートなど形鋼の電気抵抗溶接におい
ても見られる。
These phenomena are observed not only in electric resistance welding of slate seam electric resistance welded pipes, but also in electric resistance welding of spiral pipes and section steel such as beats.

−・方、溶接時の熱影響が少なく優れた溶接品質が得ら
れる溶接法としてレーザ、電子ビームなどのエネルギー
ビームを用いる溶接法があり、特開昭56−11459
0に才jいて、こ才しらのエネルギービーl、を、溶接
されるべきクサビ形状の頂点すなわち溶接点に段剥する
溶接法が提案され、更に特願昭58−1 (1712[
’1号で改良が提案されている。
- On the other hand, there is a welding method that uses energy beams such as lasers and electron beams as a welding method that has less thermal influence during welding and provides excellent welding quality.
0, a welding method was proposed in which the energy beam of this genius was stripped in steps at the apex of the wedge shape to be welded, that is, at the welding point.
Improvements are proposed in issue 1.

たとえは特願昭58−1071.20号の方法の概要を
第1図を参照して説明すると、管状体1のエッチ部2 
(クサビ形状をなす溶接対向面)は接触子7から供給さ
れる高周波電力によ−〕C発生ずるジュール熱、および
、レーザ照射装置4から、ビームガイF 29螢通して
照射されるレーザ−ビーム■−4Bによって全肉範囲に
亘−〕で溶接温度に均一 に加熱される。
For example, to explain the outline of the method disclosed in Japanese Patent Application No. 58-1071.20 with reference to FIG.
(the wedge-shaped welding facing surface) is heated by the high frequency power supplied from the contactor 7 and the Joule heat generated by C, and the laser beam irradiated from the laser irradiation device 4 through the beam guy F 29. -4B uniformly heats the entire thickness to the welding temperature.

レーザービーム[、Bは所定角度をなすクーリ′ビ形状
の頂点、すなわち溶接点、を中心に所定角度の範囲で、
管状体1の溶接剤対向面2に向4Jて往復走査される。
The laser beam [, B is a predetermined angular range centered around the apex of the Couli'by shape that forms a predetermined angle, that is, the welding point,
The welding agent facing surface 2 of the tubular body 1 is scanned back and forth in the direction 4J.

レーザビーム■、F3は苅面面の一方に当ってそこで反
射されて他方に向い他方で反射されてまた該−・方に当
るというJt合に反射を繰り返して最後に溶接点に至る
。すなわち、レーザービーム1.13が直接に溶接点に
照射されなくても反射収束により溶接点に自動的に収束
する。
The laser beams (1) and (F3) hit one side of the armature surface, are reflected there, are directed to the other side, are reflected at the other side, and hit that side again, repeating the reflection and finally reach the welding point. That is, even if the laser beam 1.13 is not directly irradiated onto the welding point, it is automatically focused on the welding point by reflection and convergence.

このような複合溶接においても、厚み中央のエネルギー
ビー11のパワー不足や点状パワー分布により、溶接速
度を速くできないという問題があったり、厚み全体にわ
たっての均一な加熱がもたらされない場合があり、特に
厚みが大きくなる程そ]しが顕著になるという問題など
があることが分かった。
Even in such composite welding, there are cases where the welding speed cannot be increased due to insufficient power of the energy beam 11 at the center of the thickness or point-like power distribution, and uniform heating throughout the thickness may not be achieved. In particular, it has been found that there is a problem in that the larger the thickness, the more pronounced the cracking becomes.

本発明はこの種の、高周波電気抵抗溶接とエネルギービ
ームを併用する複合溶接法の改良に関し、厚み全体にわ
たって所定の温度分布で加熱を行なうためのエネルギー
ビームの増大をはかるもので、比較的に大きい板厚でも
厚み全体な所定の温度分布で加熱に行なうことができ、
さらに高い溶接速度を可能とすること、すなわち高い生
産性を得ることを目的とするものである。
The present invention relates to an improvement of this type of composite welding method that uses high-frequency electric resistance welding and an energy beam, and aims to increase the energy beam in order to heat with a predetermined temperature distribution over the entire thickness. Even if the plate is thick, it can be heated with a specified temperature distribution throughout the thickness.
The purpose is to enable even higher welding speeds, that is, to obtain higher productivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記1」的を達成するために本発明においては、相向い
合う溶接面が漸近し溶接点を頂点とするりサビ形状をな
す被溶接物へ電気エネルギーを供給ししかも該クサビ形
状の開放側から溶接点へエネルギービー11を投)1し
て、発生するジュール熱と投射エネルギービームでクサ
ビ形状の頂点を溶接温度まで加熱するエネルギービーム
缶用電気溶接法において:少なくとも2個のエネルギー
ビーム発生器の各放射エネルギービームを前記溶接点へ
投射する。
In order to achieve the above-mentioned objective 1, in the present invention, electrical energy is supplied to the welded workpiece in which the opposing welding surfaces asymptotically approach and the welding point becomes the apex, forming a rust shape, and from the open side of the wedge shape. In the electric welding method for energy beam cans, in which the apex of the wedge shape is heated to the welding temperature by the Joule heat generated and the projected energy beam by throwing the energy beam 11 at the welding point: at least two energy beam generators Each beam of radiant energy is projected onto the welding point.

〔作用〕 これによれば、全体として所要のパワーとなるエネルギ
ービームを任意に得ることができ、したがって、高周波
抵抗溶接のパワーを必要最小限として被溶接物の厚み全
体を均一な温度で、比較的に浅い深さに加熱し得る。ま
た溶接速度を速くし得る。特に、厚み中央を中心にして
所要のパターンでエネルギービームを投射し得るので、
湿度分布を容易に均一化し得るし、厚みが大きい場合で
も厚み全体を均一に過不足なく加熱し得る。 本発明の
好ましい実施例では、被溶接物の厚みに応じてエネルギ
ービームそれぞれの投射位置およびパワーを制御し、厚
み中央で大きなエネルギーパワーを要するので、被溶接
物の厚みの端部を外して厚み中央で一部重複させて各エ
ネルギービームを投射するか、もしくは、被溶接物の厚
み中央に1つのエネルギービームを投射し、リング状も
しくは楕円状のエネルギー分布を有する他のエネルギー
ビームをその中心を厚み中央に合せて投射する。
[Operation] According to this, it is possible to arbitrarily obtain an energy beam that has the required power as a whole, and therefore, the power of high-frequency resistance welding can be set to the minimum necessary, and the entire thickness of the workpiece can be welded at a uniform temperature. can be heated to shallow depths. Also, the welding speed can be increased. In particular, since the energy beam can be projected in a desired pattern around the center of the thickness,
The humidity distribution can be easily made uniform, and even when the thickness is large, the entire thickness can be heated uniformly and without excess or deficiency. In a preferred embodiment of the present invention, the projection position and power of each energy beam are controlled according to the thickness of the workpiece, and since a large energy power is required at the center of the thickness, the ends of the thickness of the workpiece are removed and the Either the energy beams are projected with some overlap in the center, or one energy beam is projected at the center of the thickness of the workpiece, and another energy beam with a ring-shaped or elliptical energy distribution is projected at the center. Project according to the center of the thickness.

これによれば、高周波抵抗溶接によるエッヂコーナ部の
高加熱とコーナ部の内側の低加熱という不均一温度分布
を合理的に補って、厚み中央から端部に向けて、中央程
エネルギービームパワーが高く、コーナ部で低いパター
ンでビームが分布し、大きい板厚でも広範囲にビームに
よる加熱を実施し得る。その結果1、エネルギービーム
では熱影響部が小さいことと相伴って、またエネルギー
ビームによる加熱の寄与分が可及的に大きくなることと
相伴って、高周波抵抗溶接のパワーを可及的に低減[7
た、熱影響部が少ない溶接が実現する。
According to this, the uneven temperature distribution of high heating at the edge corner and low heating inside the corner due to high frequency resistance welding can be rationally compensated for, and the energy beam power is higher at the center from the center of the thickness to the edge. , the beam is distributed in a low pattern at the corners, making it possible to perform beam heating over a wide range even with a large plate thickness. As a result, the power of high-frequency resistance welding is reduced as much as possible because the energy beam has a small heat-affected zone and the contribution of heating by the energy beam is as large as possible. [7
In addition, welding with fewer heat-affected zones can be achieved.

次に、図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図に本発明を一態様で実施する溶接装置の構成概要
を示す。管状体1のエッヂ部2け接触子7から供給され
る高周波電力によって発生するジュール熱および1ノー
ザ照IJ装置4からビームカイト29を通して照射され
るL/−ザービームr−Bによって全肉範囲に耳って溶
接温度に均一に加熱される。これは先の特願昭58−1
07120号の溶接と同様である。
FIG. 1 shows an outline of the configuration of a welding device that implements one embodiment of the present invention. Joule heat generated by the high-frequency power supplied from the two contacts 7 at the edge of the tubular body 1 and the L/- laser beam r-B irradiated from the laser IJ device 4 through the beam kite 29 to the entire flesh area. The material is heated uniformly to the welding temperature. This is the previous patent application 1986-1
This is similar to the welding in No. 07120.

管状体1に関する溶接条件およびプロセス関連データは
溶接データ処理器13に与えられる。lぞ1接データ処
理器13は、溶融深さ、熱影響部幅。
Welding conditions and process-related data regarding the tubular body 1 are provided to a welding data processor 13 . The data processor 13 is connected to the melting depth and the heat-affected zone width.

立」ニリ角θ等の溶接データをパワーデータ処理器15
にU、える。
Power data processor 15 converts welding data such as vertical angle θ
niU, get it.

パワーデータ処理器15は、管状体データ処理器12よ
りの入熱速度(溶接パワー)データおよび溶接データ処
理器13よりの溶接データを実績データ(実験」二得ら
れたデータおよび操業結果より得られたデータ)と対比
して、高周波電力による加熱パターン(板厚方向の加熱
温度分布)とレーザビームによる加熱パターン(板厚方
向の加熱温度分布)を演算して高周波加熱パターンデー
タを高周波電力演算器16に与える。またパワーデータ
処理器15は、レーザビーム加熱パターンより、後述す
るビームプロフィルと、後述する複合ビームの各ビーム
パワーを演算し、プロフィルデータを光学系制御器17
に、また各ビームパワーデータをレーザ制御器18に与
える。
The power data processor 15 converts the heat input rate (welding power) data from the tubular body data processor 12 and the welding data from the welding data processor 13 into actual data (experiments) obtained from the obtained data and operational results. The heating pattern by high-frequency power (heating temperature distribution in the plate thickness direction) and the heating pattern by laser beam (heating temperature distribution in the plate thickness direction) are calculated, and the high-frequency heating pattern data is converted into a high-frequency power calculator. Give to 16. Further, the power data processor 15 calculates each beam power of a beam profile described later and a composite beam described later from the laser beam heating pattern, and transmits the profile data to the optical system controller 17.
In addition, each beam power data is given to the laser controller 18.

高周波電力演算器16は、高周波加熱パターンデータよ
り、高周波周波数および印加電圧を演算してこれらを指
示するデータを高周波電力制御器19に与える。高周波
電力制御19は、高周波電源の発振周波数と出力電圧を
指示されたものに設定する。
The high-frequency power calculator 16 calculates the high-frequency frequency and applied voltage from the high-frequency heating pattern data, and provides data instructing these to the high-frequency power controller 19. The high frequency power control 19 sets the oscillation frequency and output voltage of the high frequency power source to the specified values.

1、/−ザ照射装置4は第2図に示す構成となっている
。第2図において、T−G 1+ LG 2はレーザ発
振器であり、それぞれレーザビームLBI。
1./-The irradiation device 4 has the configuration shown in FIG. In FIG. 2, T-G 1 + LG 2 are laser oscillators, each with a laser beam LBI.

1、 I−32をミラーMBIIMT32に照射する。1. Irradiate the mirror MBIIMT32 with I-32.

ミラー M +3 + + M B 2で反射されて、
更に合成ミラーMxで反射されてレーザビーム1.B、
、LB2が合成され、合成ビームLBxがビームガイ1
〜29を通してクサビ形開先に投射される。なお、更に
ビームパワーを大きく必要とする場合、あるいはレーザ
ビームの広がりを大きく必要とする場合には、第3図に
示すように、4個(3個でも可)のレーザ発振器■、G
 1−LG4 、 ミ”7  MB 1−MB4+合成
ミラーMx1 、 MX2 、ミラーMB5゜MB61
合成ミラーMx3 を用いて4ビームの合成ビームT、
 B X3を得るようにしてもよい。同様に8個、16
個等多くのレーザ発振器のビームを合成するようにして
もよい。第3図に示す態様での合成ビーム1. Bx 
(L B + + I、B2 +LB3+r−B4)は
、ビーム形状制御部29内のミラーまたはレンズ系によ
って合成ビーム束として継状制御され第4図に示すよう
に溶接点に投射される。
It is reflected by mirror M +3 + + M B 2,
The laser beam 1. is further reflected by the combining mirror Mx. B,
, LB2 are combined, and the combined beam LBx is beam guy 1.
~29 into the wedge-shaped bevel. In addition, if a larger beam power is required, or if a larger spread of the laser beam is required, four (or three) laser oscillators ■, G, as shown in Figure 3.
1-LG4, Mi"7 MB 1-MB4 + composite mirror Mx1, MX2, mirror MB5゜MB61
Four combined beams T using a combining mirror Mx3,
B X3 may be obtained. Similarly 8 pieces, 16 pieces
Beams from a large number of laser oscillators may be combined. Combined beam 1 in the manner shown in FIG. Bx
(L B + + I, B2 +LB3+r-B4) is jointly controlled as a composite beam bundle by a mirror or lens system in the beam shape control unit 29 and projected onto the welding point as shown in FIG.

図においてhpは電気抵抗溶接(高周波溶接)による加
熱温度分布を示し、hl、h4がh2.h3よりも高い
。この態様では、T−B 1rLB4よりもI’、、 
+32 + I−B aのパワーを大きくして点線で示
すように加熱温度分布を均一にする。
In the figure, hp indicates the heating temperature distribution due to electric resistance welding (high frequency welding), and hl and h4 are h2. Higher than h3. In this embodiment, I', than T-B 1rLB4,
+32 + I-B Increase the power of a to make the heating temperature distribution uniform as shown by the dotted line.

第5a図、第5b図および第5c図を参照して、第1図
に示すレーザ照射装置4で用いられている第21¥1に
示す組合せによるレーザビー11プロフイルの制御態様
を説明すると、合成ミラーMxの合成角度02を90°
とし、レーザビームL 13 + +L B 2を平行
に投射した場合、ベンゾインタミラM B 4 +MB
 2のベンド角o1を90’以下にすると、03が0°
以下となり、L T3 、とLB2が離れ(交叉せず)
、たとえばこれらの投射像は第5 b図に示干ようにセ
パレート型となるかあるいは僅か交差する。olを90
°以」二とすると1.、 B 。
With reference to FIGS. 5a, 5b, and 5c, the control mode of the laser beam 11 profile by the combination shown in No. 21\1 used in the laser irradiation device 4 shown in FIG. 1 will be explained. Mx composite angle 02 is 90°
When the laser beam L 13 + +L B 2 is projected in parallel, benzointamira M B 4 +MB
If the bend angle o1 of 2 is 90' or less, 03 becomes 0°
The following results, and L T3 and LB2 are separated (does not intersect)
For example, these projected images may be separated or slightly intersect as shown in FIG. 5b. ol 90
If it is 2, then 1. ,B.

とL +32が交叉し、たとえはこれらの投射像は第5
c図に示すようにラップ型となる。このようなど−11
の位置調整は合成ミラーMxの合成角度θ2を調整する
ことによっても行ない得る。
and L +32 intersect, for example, these projected images are the fifth
It becomes a wrap type as shown in figure c. Like this-11
The position can also be adjusted by adjusting the composite angle θ2 of the composite mirror Mx.

第1図に示す装置で用いる、第2図の組合せでは、0.
=92°、02=90°にいずれも固定して、ビームガ
イド29で第5b図や第5c図に示すレーザビーム投射
像、ならびに、第5b図の態様では両ビームの投射点間
距離を、また第5c図に示す態様では両ビームの重複距
離を連続的に各種に設定する構成となっている。第5c
図に示す態様によれば、両ビー11のパワーを同一に固
定した状態で、たとえば第4b図に示す電気抵抗加熱の
温度分布111〕に対応して温度分布を点線の如くに均
一とする1ノーザ加熱が可能である。ビームガイド29
の構造とビームプロフィルの調整制御は、第7図を参照
して後述する。
In the combination shown in FIG. 2 used in the apparatus shown in FIG.
=92° and 02=90°, and the beam guide 29 produces the laser beam projection images shown in FIGS. 5b and 5c, as well as the distance between the projection points of both beams in the embodiment of FIG. 5b. Further, in the embodiment shown in FIG. 5c, the overlapping distance of both beams is continuously set to various values. 5th c
According to the embodiment shown in the figure, when the power of both beads 11 is fixed to be the same, the temperature distribution is made uniform as shown by the dotted line, corresponding to the temperature distribution 111 of electric resistance heating shown in FIG. 4b, for example. Noza heating is possible. Beam guide 29
The structure and beam profile adjustment control will be described later with reference to FIG.

レーザ照射装置4は、第6図に示す組合せとしもよい。The laser irradiation device 4 may be a combination shown in FIG.

第6図にJEいて、レーザ発振器L G 、およびLG
2はほぼ同径の、小さいリング状のエネルギー分布を有
するレーザビームL B 1+ I−82を送出する。
In FIG. 6, JE, laser oscillator LG, and LG
2 emits a laser beam L B 1+ I-82 having approximately the same diameter and a small ring-shaped energy distribution.

レーザビームL B 、はそのままペンドミラーMbで
反射され、合成ミラーMDの中央の穴M D 、を通し
て投射されるが、レーザビームL B 2はレンズ系T
、c、T、νで拡大されて大きい径のリング状エネルギ
ー分布を有するものに変換されて合成ミラーM 1.)
の六M1〕1の周囲に当たって投射される。これにより
、大きい円筒状のビームT、、B2の中心を小さい円筒
状のビームLB2が貫通した形の合成ビームLBxが溶
接点に投射される。この合成ビームr、、 B xも、
第4図に示す如き、高周波41(抗溶接による不均一温
度分布hpに対応じて、温度分布を均一とするエネルギ
ー分布である。なお、レーザビームL B 、はリング
状(円筒状)でなく、棒状(線状)2球状(中実)であ
ってもよい。
The laser beam L B is directly reflected by the pendulous mirror Mb and is projected through the central hole M D of the composite mirror MD, but the laser beam L B 2 is reflected by the lens system T.
, c, T, ν and is converted into a composite mirror M1 having a ring-shaped energy distribution with a large diameter. )
6M1] It is projected by hitting the surrounding area of 1. As a result, a composite beam LBx in which a small cylindrical beam LB2 passes through the center of the large cylindrical beams T, , B2 is projected onto the welding point. This composite beam r,, B x is also
As shown in FIG. 4, the high frequency 41 (corresponding to the non-uniform temperature distribution hp due to anti-welding, is an energy distribution that makes the temperature distribution uniform. Note that the laser beam L B is not ring-shaped (cylindrical) but , may be rod-shaped (linear) or bispherical (solid).

次に、第7図を参照してビームガイド29の構成を説明
する。このビームガイ1くは、レーザービームの集光レ
ンズF Lおよび搬送ミラーM1゜M2te備える。レ
ーザビームLB(第2図に示すL B x = r−B
 I十L B 2 )は、常に集光レンズF■、および
搬送ミラーM1+M2の中心を通るように設定されてい
る。ビームガイドの壁部は、基部29d、中間部29b
および先端部29cの3者で成り立っている。
Next, the configuration of the beam guide 29 will be explained with reference to FIG. This beam guy 1 is equipped with a laser beam condensing lens FL and a transport mirror M1°M2te. Laser beam LB (LB x = r-B shown in Fig. 2)
I0L B 2 ) is set so as to always pass through the center of the condenser lens F■ and the transport mirrors M1+M2. The walls of the beam guide include a base portion 29d and an intermediate portion 29b.
and the tip 29c.

先端部29(、はくの字形であり、レーザービームおよ
び非酸化性ガスを放射する先端29Fは、管状体1のク
サビ形状の開き角と同じ角度の、外観がへ頭円鋪形の、
筒状体となっており、その内面は鏡面に仕上げられてい
る。くの字の曲り部にはミラーM2が装着されている。
The tip 29 (which is dogleg-shaped and emits a laser beam and non-oxidizing gas) has a diagonal shape in appearance and has the same angle as the opening angle of the wedge shape of the tubular body 1.
It has a cylindrical shape, and its inner surface has a mirror finish. A mirror M2 is attached to the bent part of the dogleg shape.

先端部29cの後端には、中間部29bの先端が挿入さ
れており、この先端を中心に先端部29cが回転し得る
と共に、−]二上下方向矢印AD3)に摺動し得る。
The distal end of the intermediate portion 29b is inserted into the rear end of the distal end portion 29c, and the distal end portion 29c can rotate around this distal end and can also slide in the -] two vertical direction arrows AD3).

中間部29bもくの字形であり曲り部にミラーM1が装
着されている。内面は鏡面に仕−にげられている。中間
部29bの後端は基部29aの先端に挿入されており、
左右方向(矢印A、D、)に摺動し得る。
The intermediate portion 29b has a dogleg shape, and a mirror M1 is attached to the bent portion. The inside surface is finished with a mirror surface. The rear end of the intermediate portion 29b is inserted into the tip of the base portion 29a,
It can slide in the left and right directions (arrows A, D,).

内面が鏡面に仕」二げられた基部29aの後端には集光
レンズFLが装着されている。また、基部29aの後端
は、レーザ照射装置4のビーム送出ガイド29oに左右
方向(矢印AD4)に摺動自在に装着されている。基部
29aには、非酸化性ガスGを導入する支管29Fが一
体に成形されており、この支管29Eに、不活性ガス、
好ましくは所定圧力のヘリウム(tIl:l )ガスが
供給される。
A condensing lens FL is attached to the rear end of the base 29a whose inner surface is mirror-finished. Further, the rear end of the base 29a is attached to a beam sending guide 29o of the laser irradiation device 4 so as to be slidable in the left-right direction (arrow AD4). A branch pipe 29F for introducing non-oxidizing gas G is integrally formed in the base 29a, and inert gas,
Preferably, helium (tIl:l) gas at a predetermined pressure is supplied.

Heガスは、基部29a、中間部 29bおよび先端部29cの内空間を通って先端29F
より溶接点に向けて噴出する。このガス流により、ビー
ムガイ1〜29が冷却されると共に、ビー11ガイ1く
内のゴミを吹出し、かつビームガイド内へのコミの侵入
を阻止する。更に、T−1eは、アルゴン(Ar)の電
離電圧15.76Vよりも高い電離電圧24.6Vであ
り、I−T eガスと実質」二同軸に放射されるレーザ
ービームによるプラズマの発生を抑制し、ビームエネル
ギーの吸収が少ない。また、Heが、先端29Fから溶
接点亘ってレーザービーム行路を流れて溶接点に向い、
管状体Iの溶接前対向面(エッヂ2:第1図)および溶
接点を覆って溶接面の酸化を防ぐ。このHe流は常時流
れているので、先端29F−溶接点間のビーム行路にお
ける温度分布が均一となり、ビームの曲りがなく、意図
した位置にビームが当る。
The He gas passes through the inner spaces of the base 29a, intermediate portion 29b, and tip 29c and reaches the tip 29F.
It ejects toward the welding point. This gas flow cools the beam guides 1 to 29, blows out dust inside the beam guide 11, and prevents dust from entering the beam guide. Furthermore, T-1e has an ionization voltage of 24.6V, which is higher than the ionization voltage of argon (Ar), which is 15.76V, and suppresses the generation of plasma due to the laser beam emitted coaxially with the I-Te gas. However, the absorption of beam energy is low. In addition, He flows along the laser beam path from the tip 29F across the welding point and heads toward the welding point,
It covers the facing surface of the tubular body I before welding (edge 2: Fig. 1) and the welding point to prevent oxidation of the welding surface. Since this He flow is constantly flowing, the temperature distribution in the beam path between the tip 29F and the welding point is uniform, the beam is not bent, and the beam hits the intended position.

以−1−に説明したビームガイドの作用を要約すると次
の通りである。
The operation of the beam guide explained below-1- can be summarized as follows.

Oビーム投射プロフィルの調整。Adjustment of O-beam projection profile.

○ミラー、レンズ等、光学系の防塵。○ Dustproofing of optical systems such as mirrors and lenses.

○溶接面エッチの酸化防止によるレーザビームの溶接前
対向面での多重反射効果の保持。
○ Maintaining the multiple reflection effect of the laser beam on the opposing surface before welding by preventing oxidation of the welding surface etch.

○レーザービー11投入路の塵、水分の除去。○Remove dust and moisture from Laserbee 11 input channel.

パワーロスの低減。Reduce power loss.

以−にに説明したビームガイド29は、図示を省略した
が、ΔD、〜AD4方向それぞ」しの位置制御機構を備
えており、次の通りの投入位置、プロフィル調整・設定
を行ない得る。
Although not shown, the beam guide 29 described above is equipped with a position control mechanism for each of the four directions ΔD and -AD, and can perform the following injection position and profile adjustment/setting.

○溶接線方向(AD+)のビーム位置調整(X Φ山)
  。
○Beam position adjustment in welding line direction (AD+) (X Φ mountain)
.

O水平方向(AD2)のビーム位置調整(Y軸)。O Horizontal direction (AD2) beam position adjustment (Y axis).

○垂゛直方向(ADa)のビーム位置調整(2ψ山) 
 。
○Vertical direction (ADa) beam position adjustment (2ψ mountain)
.

○投射パターン(ADa)の調整(L T3 、と■、
B2のX軸方向の距離調整二重なり調整)。
○Adjustment of projection pattern (ADa) (L T3, and■,
B2 distance adjustment in the X-axis direction (double adjustment).

次にこれらの3方向のビーム位置制御と投射パターンの
制御を第7図を参照して説明する。
Next, beam position control in these three directions and projection pattern control will be explained with reference to FIG.

1)溶接線方向(X軸) 焦点位置調整とガイド先端位置調整を実施するもので、
基部29aに対して中間部29bをAD、方向に調整す
る。基部29aに対して中間部29b (ミラーM+)
および先端部29c (ミラーM2)が一体となって移
動するので、ガイド先端29Fの位置調整どなり、また
、搬送ミラーMI+M2が曲率のあるミラーの場合は、
集光レンスFLとそれらのミラーMl、M、どの距離が
変化して複合集光系の特性(投射点りこおけるビー11
像)か変化する。すなわち、ビームの焦点位置の変化お
よび集光系の位置の変化(投射点におけるビー11像)
となる。これによって、照射位置に苅するビー11形状
9位置の制御が可能になるので、板厚方向での照射ビー
ム形状の制御となり、溶融形状制御が可能である。
1) Welding line direction (X-axis) This is used to adjust the focus position and guide tip position.
The intermediate portion 29b is adjusted in the direction AD with respect to the base portion 29a. Intermediate portion 29b (mirror M+) with respect to base portion 29a
Since the tip portion 29c (mirror M2) and the tip portion 29c (mirror M2) move together, the position of the guide tip portion 29F may be adjusted.
The distance between the focusing lens FL and its mirrors Ml and M changes to determine the characteristics of the composite focusing system (beam 11 at the projection point).
image) or change. That is, changes in the focal position of the beam and changes in the position of the condensing system (Bee 11 image at the projection point)
becomes. This makes it possible to control the nine positions of the shape of the bead 11 to be placed at the irradiation position, so the shape of the irradiation beam can be controlled in the thickness direction of the plate, and the melting shape can be controlled.

2)水平方向(Y i+ll) 中間部29)〕に苅して先端部29cを回転させること
によって、ミラーM、を中心にしてミラーM2(先端部
9(:)が回転し、それらのミラーの中心を通るレーザ
ービームの照射位置を水平方向で調整できる。この結果
、溶接面(エッヂ2;対面面)の片側のみの不均一溶融
を防止することができる9゜ 3)垂直方向(2軸) 先端部29 c、をAD、方向に上下することによって
ビームを板厚の中央へ、また電気抵抗溶接の加熱分布に
合せて」上下へ移動制御することができる。
2) By rotating the tip 29c in the horizontal direction (Y The irradiation position of the laser beam passing through the center can be adjusted horizontally.As a result, uneven melting on only one side of the welding surface (edge 2; facing surface) can be prevented.9゜3) Vertical direction (two axes) By moving the tip end 29c up and down in the AD direction, the beam can be controlled to move up and down to the center of the plate thickness and in accordance with the heating distribution of electric resistance welding.

4)板厚の変更に対応 管状体の原鋼板の厚み変更又は変化、もしくは厚み変動
、に対応してレーザビー11の投入位置を変化させる必
要かある。こ」しは、鋼板の下面が一定位置にあって、
厚みが増すにつれて鋼板の北面(および厚み中央)が」
一方に移動するからである。
4) Responding to changes in plate thickness Is it necessary to change the injection position of the laser beam 11 in response to changes in the thickness of the raw steel plate of the tubular body, or changes in the thickness? In this case, the bottom surface of the steel plate is in a fixed position,
As the thickness increases, the north face (and the center of the thickness) of the steel plate
This is because it moves to one side.

これに伴ってレーザービームの投入位置を−に部に移動
する必要がある。厚みが変わったときには、先端部29
cをΔF)3方向に調整してビーム投入位置を厚み中央
に合せる。これに伴う光路長の変化分を、中間部29b
をA1〕1方向に移動させることにより相殺する。
Along with this, it is necessary to move the laser beam input position to the negative side. When the thickness changes, the tip 29
Adjust c in 3 directions (ΔF) to align the beam injection position with the center of the thickness. The change in optical path length associated with this is calculated by the intermediate portion 29b.
A1] by moving in one direction.

5 ) L B = r−B x = T−’B 1+
 T−、B 2  (第5a図。
5) L B = r-B x = T-'B 1+
T-, B 2 (Fig. 5a.

第7図参照)のl−1B1とLB2の交点が略溶接点に
位置するが、基部2′9aをADd方向に移動させるこ
とにより該交点が溶接点の前後に移り、溶接点に才tけ
る1、B1とL B 2の重なり長が変化する。そこで
、基部29aをAD4方向に移動させて市なり長を設定
する(投射パターン設定)。
The intersection point of l-1B1 and LB2 (see Fig. 7) is located approximately at the welding point, but by moving the base 2'9a in the ADd direction, the intersection point moves to the front and back of the welding point, and the welding point is adjusted. 1. The overlapping length of B1 and L B 2 changes. Therefore, the base portion 29a is moved in the AD4 direction to set the city radius (projection pattern setting).

再度第1図を参照すると、パワーデータ処理器15によ
り、板厚、溶接速度およびその他の溶接条件に従って、
レーザビーム加熱を最も広範囲に使用し、高周波抵抗溶
接加熱を最少限とし、しかも温度分布を厚み方向で均一
としアブセソ1−を最低どするパワー配分および加熱パ
ターン区分に従って、高周波加熱パターンおよび加熱電
力とレーザビームLBx (LBt +r、B2)のパ
ターンおよびパワー配分が設定され、高周波電力演算器
16が高周波電源20の周波数および電圧を設定し、ま
た光学系制御器17がレーザビームLBx([、+31
+LB2)のパターンに応じてビームガイ1−29の調
整機構を制御して投射ビーム位置(厚み中央)および投
射ビーム像(パターン又はプロフィル:第5b図、第5
c図)を設定し、レーザ制御器18が合成ビームのパワ
ー配分に従ってレーザ発振器L G 1および1. G
 2それぞれの発   ・振パワーを設定する。これに
より、加熱温度分布が厚み方向で均一て熱影響部の広が
りが最も小さく、溶接欠陥がなく、しかも靭性が高い溶
接が行なわれる。また、レーザビームパワーが大きいの
で高速の溶接が可能である。
Referring again to FIG. 1, the power data processor 15 calculates the
The high-frequency heating pattern and heating power are adjusted according to the power distribution and heating pattern classification that uses laser beam heating in the widest range, minimizes high-frequency resistance welding heating, and makes the temperature distribution uniform in the thickness direction and minimizes absorption. The pattern and power distribution of the laser beam LBx (LBt +r, B2) are set, the high frequency power calculator 16 sets the frequency and voltage of the high frequency power supply 20, and the optical system controller 17 sets the pattern and power distribution of the laser beam LBx ([, +31
+LB2) The adjustment mechanism of the beam guy 1-29 is controlled according to the pattern of the projection beam position (thickness center) and the projection beam image (pattern or profile: Fig.
(Fig. c), and the laser controller 18 controls the laser oscillators L G 1 and 1 . G
2. Set the oscillation power for each. As a result, the heating temperature distribution is uniform in the thickness direction, the spread of the heat-affected zone is the smallest, there are no welding defects, and welding is performed with high toughness. Furthermore, since the laser beam power is large, high-speed welding is possible.

〔実施例〕〔Example〕

5  KW、円形ビーフ1.ビーム径50 m +n、
のCO2レーザ発振器2台な第2図に示す絹合せとし、
ベン1へfQ O、=92°2合I戊角02=90°で
ビー11を合成し、1.0KWlノ一ザ溶接機として高
周波電気抵抗溶接法とイノ1用して複合溶接を実施した
5 KW, round beef 1. Beam diameter 50 m +n,
As shown in Figure 2, two CO2 laser oscillators are used,
Bee 11 was synthesized to Ben 1 with fQ O, = 92° 2 joint angle 02 = 90°, and composite welding was performed using a high frequency electric resistance welding method and Inno 1 with a 1.0KWl nozzle welding machine. .

第1表 投射ビーム像は、横4mm、縦8n1mの第5C図に示
’J−4fi円形状にした33溶接結果は第1表の通り
であり、ノ1常に良い継手性能のパイプを造ることがで
きた。
Table 1 The projected beam image is shown in Figure 5C, which is 4mm wide and 8n1m long.The results of 33 welding into a J-4fi circular shape are shown in Table 1. was completed.

〔発明の効果〕〔Effect of the invention〕

以」−の通り本発明では比較的に厚肉のパイプ溶接が良
好に行なわれる。高周波抵抗溶接のパワーに必要最小限
として被溶接物の厚み全体を均一なdl、1度て均一な
、比較的に浅い深さに加熱し得る。
As described below, relatively thick pipes can be welded well in the present invention. As the minimum power required for high frequency resistance welding, the entire thickness of the welded object can be heated to a uniform dl and to a uniform, relatively shallow depth at once.

したかって熱影響部が小さい溶接が可能である。Therefore, welding with a small heat affected zone is possible.

また溶接速度を速くし得る。特に、厚み中央を中心にし
て所要のパターンでエネルギービームを投射し得るので
、温度分布を容易に均一化し得るし、厚みか人きい場合
でも厚み全体を均一に過不足なく加熱し得る。
Also, the welding speed can be increased. In particular, since the energy beam can be projected in a desired pattern around the center of the thickness, the temperature distribution can be easily made uniform, and even if the thickness is small, the entire thickness can be heated uniformly and without excess or deficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を一態様で実施する溶接装置の構成概要
を示すブロック図、第2図は第1図に示すlノーザ照ル
]装置4の構成を示すブロック図である。 第3図はレーザ照射装置4の他の構成例を示すブロック
図、第4図は第3図に示す構成で得られるレーザビー1
1の被溶接物への投射位置を示す説明図である。 第5a図は第2図の一部を拡大して示すブロック図、第
5b財および第5c回は、第2図の構成しこよって得ら
れる投射ビーム像を示す拡大平面図である。 第6図はレーザ照射装置4の他の構成例を示すブロック
図である。 第7図は第1図に示すビームガイド29の主要部を示す
縦断面図である。 第8a図は従来の高周波電気抵抗溶接による継手の拡大
断面図、第8h図は該継手の立上り角と靭性の関係を示
すグラフである。 第9a図は従来の高周波電気抵抗溶接における溶接エッ
チ部の溶融状態と電磁力を示す断面図、第9b図は従来
の高周波電気抵抗溶接における溶接エッヂ部の溶融状態
を示す断面図、第9c図は従来の高周波電気抵抗溶接に
おける溶接エッヂ部のアプセッ1〜後の冷却状態を示す
断面図である。 1:管状体     2:エソシ(溶接前対向面)3;
スクイズロール 4:レーザ照射装置7:接触子   
 29:ビームガイドU) 仄 D○習α刀 藉I
FIG. 1 is a block diagram showing a general configuration of a welding apparatus that embodies one embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of a welding apparatus 4 shown in FIG. 1. FIG. 3 is a block diagram showing another example of the configuration of the laser irradiation device 4, and FIG. 4 shows the laser beam 1 obtained with the configuration shown in FIG.
FIG. 1 is an explanatory diagram showing a projection position onto a workpiece to be welded. 5a is a block diagram showing an enlarged part of FIG. 2, and parts 5b and 5c are enlarged plan views showing projected beam images obtained by the configuration shown in FIG. 2. FIG. 6 is a block diagram showing another example of the configuration of the laser irradiation device 4. As shown in FIG. FIG. 7 is a longitudinal sectional view showing the main part of the beam guide 29 shown in FIG. 1. FIG. 8a is an enlarged sectional view of a joint made by conventional high-frequency electric resistance welding, and FIG. 8h is a graph showing the relationship between the rise angle and toughness of the joint. Figure 9a is a sectional view showing the molten state of the weld edge and electromagnetic force in conventional high frequency electric resistance welding, Figure 9b is a sectional view showing the molten state of the weld edge in conventional high frequency electric resistance welding, and Figure 9c is 1 is a cross-sectional view showing a cooling state of a welding edge portion after upsetting 1 in conventional high-frequency electric resistance welding. 1: Tubular body 2: Esoshi (opposite surface before welding) 3;
Squeeze roll 4: Laser irradiation device 7: Contact
29: Beam guide U)

Claims (4)

【特許請求の範囲】[Claims] (1)相向い合う溶接面が漸近し溶接点を頂点とするク
サビ形状をなす被溶接物へ電気エネルギーを供給ししか
も該クサビ形状の開放側から溶接点へエネルギービーム
を投射して、発生するジユール熱と投射エネルギービー
ムでクサビ形状の頂点を溶接温度まで加熱するエネルギ
ービーム併用電気抵抗溶接法において: 少なくとも2個のエネルギービーム発生器の各放射エネ
ルギービームを前記溶接点へ投射することを特徴とする
エネルギービーム併用電気抵抗溶接法。
(1) Electrical energy is supplied to the welded workpiece, which has a wedge shape in which opposing welding surfaces asymptotically approach and the welding point is the apex, and an energy beam is projected from the open side of the wedge shape to the welding point. In the energy beam combined electric resistance welding method in which the apex of a wedge shape is heated to a welding temperature by Joule heat and a projected energy beam, each radiant energy beam of at least two energy beam generators is projected to the welding point. Electric resistance welding method using energy beam.
(2)被溶接物の厚みに応じて、エネルギービームそれ
ぞれの投射位置およびパワーを制御する前記特許請求の
範囲第(1)項記載のエネルギービーム併用電気抵抗溶
接法。
(2) The energy beam combined electric resistance welding method according to claim (1), wherein the projection position and power of each energy beam are controlled depending on the thickness of the workpiece.
(3)被溶接物の厚みの端部を外して厚み中央で一部重
複させて各エネルギービームを投射する前記特許請求の
範囲第(1)項又は第(2)項記載のエネルギービーム
併用電気抵抗溶接法。
(3) Energy beam combination electricity according to claim (1) or (2), in which the energy beams are projected by removing the ends of the thickness of the workpiece and partially overlapping each other at the center of the thickness of the workpiece. Resistance welding method.
(4)被溶接物の厚み中央に1つのエネルギービームを
投射し、リング状もしくは楕円状のエネルギー分布を有
する他のエネルギービームをその中心を厚み中央に合せ
て投射する前記特許請求の範囲第(1)項又は第(2)
項記載のエネルギービーム併用電気抵抗溶接法。
(4) One energy beam is projected onto the center of the thickness of the workpiece, and another energy beam having a ring-shaped or elliptical energy distribution is projected with its center aligned with the center of the thickness. Paragraph 1) or Paragraph (2)
Electric resistance welding method using energy beam as described in section.
JP60002446A 1985-01-10 1985-01-10 Electric resistance welding method making combination use of energy beam Pending JPS61162281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002446A JPS61162281A (en) 1985-01-10 1985-01-10 Electric resistance welding method making combination use of energy beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002446A JPS61162281A (en) 1985-01-10 1985-01-10 Electric resistance welding method making combination use of energy beam

Publications (1)

Publication Number Publication Date
JPS61162281A true JPS61162281A (en) 1986-07-22

Family

ID=11529502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002446A Pending JPS61162281A (en) 1985-01-10 1985-01-10 Electric resistance welding method making combination use of energy beam

Country Status (1)

Country Link
JP (1) JPS61162281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337923A (en) * 2005-06-06 2006-12-14 Sony Corp Light source, and manufacturing method therefor, optical device, image generating device, and image display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100982A (en) * 1981-12-09 1983-06-15 Nippon Steel Corp Electric resistance welding using energy beam in combination
JPS59179285A (en) * 1983-03-31 1984-10-11 Toshiba Corp Laser working device
JPS59191577A (en) * 1983-04-14 1984-10-30 Nippon Steel Corp Electric resistance welding method using energy beam in combination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100982A (en) * 1981-12-09 1983-06-15 Nippon Steel Corp Electric resistance welding using energy beam in combination
JPS59179285A (en) * 1983-03-31 1984-10-11 Toshiba Corp Laser working device
JPS59191577A (en) * 1983-04-14 1984-10-30 Nippon Steel Corp Electric resistance welding method using energy beam in combination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337923A (en) * 2005-06-06 2006-12-14 Sony Corp Light source, and manufacturing method therefor, optical device, image generating device, and image display device

Similar Documents

Publication Publication Date Title
KR900002482B1 (en) High-frequency electric resistance welding method using irradiation with a laser beam
EP0243293B1 (en) Twin spot laser welding
US5500503A (en) Simultaneous laser cutting and welding of metal foil to edge of a plate
US3417223A (en) Welding process using radiant energy
US4377735A (en) Laser working treatment process capable of controlling the form of heated portion of a steel material
KR101420950B1 (en) A welding process and a welding arrangement
US20210260690A1 (en) Method for splash-free welding, in particular using a solid-state laser
JPH08238584A (en) Production of metallic pipe with longitudinally welded seam
JPS613682A (en) Consumable electrode type gas shielded arc welding method
JP2002346777A (en) Method for combined welding with laser beam and arc
GB2283448A (en) Improvements in or relating to electron beam welding
JPS61162281A (en) Electric resistance welding method making combination use of energy beam
JP2009050894A (en) Laser welding method and laser welding equipment
US4673794A (en) Electron beam welding method
JPS58100982A (en) Electric resistance welding using energy beam in combination
US5343015A (en) Laser assisted high frequency welding
GB2099349A (en) Laser working process
JP3774536B2 (en) Butt welding method and apparatus for hot rolled steel slab
JPH0852512A (en) Manufacture of welded tube
JPH0214155B2 (en)
JPH0829425B2 (en) Laser welding method
KR100621786B1 (en) High energy density beam welding system using molten metal droplet jetting
JPS61253186A (en) Welding method for energy beam using electric energy as well
JPS59232676A (en) Electric resistance welding method using energy beam in combination
JPS59163092A (en) Production of steel plate frame