JPS61162008A - Production of plastic optical fiber - Google Patents
Production of plastic optical fiberInfo
- Publication number
- JPS61162008A JPS61162008A JP60003498A JP349885A JPS61162008A JP S61162008 A JPS61162008 A JP S61162008A JP 60003498 A JP60003498 A JP 60003498A JP 349885 A JP349885 A JP 349885A JP S61162008 A JPS61162008 A JP S61162008A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- optical fiber
- core
- optical
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導波のプラスチックファイバに係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a plastic fiber for optical waveguide.
特にグレーテッド・インテ・7クス型のプラスチック光
ファイバの製造方法に関する。In particular, the present invention relates to a method of manufacturing a graded inte x type plastic optical fiber.
プラスチック光ファイバは、光信号の送受を行う電子装
置間にあって伝送損失が左程問題とされない近距離の光
伝送路として多数使用されているが、これを光通信用の
ガラスファイバに比べると。Plastic optical fibers are widely used as short-distance optical transmission lines between electronic devices that transmit and receive optical signals, where transmission loss is not as much of an issue, but compared to glass fibers for optical communications.
光透過特性に関して、赤外波長域に光吸収があるものの
製造が容易なことから安価であり、また可撓性並びに機
械的強度が共に高い等の特長がある。Regarding light transmission properties, although it absorbs light in the infrared wavelength range, it is easy to manufacture and therefore inexpensive, and has features such as high flexibility and mechanical strength.
従来、光導波ファイバはコア(芯線)として光学樹脂例
えばポリメチルメタクリレート樹脂(P。Conventionally, optical waveguide fibers are made of optical resin, such as polymethyl methacrylate resin (P), as the core.
lyMethyl MethAcrylate PM
MA ) + ポリカーボネート樹脂(PC) 、ある
いはPMMAとpcとの共重合樹脂等が使用される。さ
らに前記樹脂に弗素を入れると光屈折率が下がることか
ら、これをコア外装樹脂層として成形せしめた光集束性
ファイバが実用化されている。即ち、コアと該コアの外
装保護樹脂装着の屈折率が階段状に変るステップインデ
ックス型ファイバが実用になっている。lyMethyl MethAcrylate PM
MA) + polycarbonate resin (PC), or a copolymer resin of PMMA and PC, etc. are used. Furthermore, since adding fluorine to the resin lowers the optical refractive index, a light-focusing fiber in which fluorine is molded as a core-exterior resin layer has been put into practical use. That is, a step index type fiber in which the refractive index of the core and the outer protective resin attached to the core changes stepwise has been put into practical use.
他方、コアの屈折率がその軸心から周辺に向ってなだら
かに減少する光集束性の所謂、グレーテッド・インデッ
クス型コアファイバは、製造上の観点から各種の問題が
あり実用化が遅れている。On the other hand, so-called graded-index core fibers, which have light focusing properties in which the refractive index of the core gradually decreases from the axis toward the periphery, have various problems from a manufacturing standpoint, and their practical application has been delayed. .
本発明は、コア軸心から半径方向の周辺に向かって屈折
率が連続的に減少する光ファイバの実用化要請にもとづ
き提案されたものである。The present invention was proposed based on the need for practical use of an optical fiber in which the refractive index continuously decreases from the core axis toward the radial periphery.
〔従来の技術と発明が解決しようとする問題点〕第2図
はステップインデックス型ファイバの屈折率特性で図中
、1はコアの光軸である。[Prior art and problems to be solved by the invention] FIG. 2 shows the refractive index characteristics of a step-index fiber, and in the figure, 1 is the optical axis of the core.
コア直径(d1部分3は媒体屈折率nが均質一様なn1
=1.49の光学樹脂、又その外周は弗素をブレンドさ
せた均質一様な屈折率nz (nz <fi、 )の
樹脂クラッドになるコア外周のクラッド層4である。該
層4は紫外線照射になる硬化形シリコン樹脂によっても
形成することが出来る。Core diameter (d1 part 3 is n1 where the medium refractive index n is homogeneous)
=1.49, and its outer periphery is a cladding layer 4 on the outer periphery of the core, which is a resin cladding with a homogeneous and uniform refractive index nz (nz < fi, ) blended with fluorine. The layer 4 can also be formed of a curable silicone resin that is irradiated with ultraviolet rays.
ところで、入射光がnlとnlの境界面で全反射するス
テップインデックス型に対して、コア光軸1を頂点とし
その屈折率n1が周辺に向かって漸減してn3となる第
3図の屈折率分布特性ファイバは加工が複雑でありコス
ト的観点から問題がある。By the way, for the step index type in which the incident light is totally reflected at the interface between nl and nl, the refractive index in Figure 3 has the core optical axis 1 as the apex and the refractive index n1 gradually decreases toward the periphery to n3. Distributed characteristic fibers are complicated to process and have problems from a cost standpoint.
〔問題点を解決するための手段〕 前記の問題点は。[Means for solving problems] The above problem is.
光ファイバ樹脂を無水弗素水素酸に浸漬し電解弗素化反
応を用いて前記光ファイバ軸に対してその半径方向屈折
率が所定の屈折率分布特性を形成せしめた本発明のプラ
スチック光ファイバとして解決される。The present invention has been solved as a plastic optical fiber in which the optical fiber resin is immersed in anhydrous fluoric acid and an electrolytic fluorination reaction is used to form a predetermined refractive index distribution characteristic in the radial refractive index with respect to the optical fiber axis. Ru.
弗素添加になるポリエチルメタクリレート(PMMA)
等の前記光学的樹脂はその屈折率が低下することに着目
するもので、これを無水弗化水素酸の電解弗素化反応で
コア表面への弗素化処理、あるいは弗素の注入処理を行
うものである(弗素化法。Fluorinated polyethyl methacrylate (PMMA)
The focus is on the reduction of the refractive index of the above optical resins, and this is achieved by fluorination treatment on the core surface by electrolytic fluorination reaction of anhydrous hydrofluoric acid, or by fluorine injection treatment. Yes (fluorination method.
又はSimons process法とも云う。参考文
献、化学総説NO,2717−36,1980”)。It is also called the Simons process method. Reference, Chemical Review No. 2717-36, 1980").
以下、第1図の光学的樹脂の弗素化反応実施例について
本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the example of the fluorination reaction of optical resin shown in FIG.
第1図はプラスチックファイバの弗素化反応をおこなう
電解槽の模式図である。光ファイバ10は。FIG. 1 is a schematic diagram of an electrolytic cell in which a fluorination reaction of plastic fibers is carried out. The optical fiber 10 is.
一般に光学樹脂溶融槽からノズル吐出により繊維状に形
成される。Generally, it is formed into a fiber shape by discharging it from an optical resin melting tank through a nozzle.
弗素化反応電解槽11は鉄またはモネル製の容器で形成
される。槽内の無水弗素化酸溶媒12はイオン化能力が
大きいとされるが1例えば前記PMMA樹脂等の有機化
合物に対してはプロトン受容により溶解し導電性となる
。The fluorination reaction electrolytic cell 11 is formed of a container made of iron or monel. Although the anhydrous fluorinated acid solvent 12 in the tank is said to have a high ionization ability, it dissolves organic compounds such as the above-mentioned PMMA resin by accepting protons and becomes conductive.
電解槽11には陽掻13としニッケルまたはニッケル合
金(モネル等)を、陰極14とし鉄、&r4等をそれぞ
れ電極基体として用いて適宜の電解電圧で弗素化処理が
される。In the electrolytic cell 11, a positive electrode 13 made of nickel or a nickel alloy (monel, etc.), a cathode 14 made of iron, &r4, etc. are used as electrode substrates, and fluorination treatment is carried out at an appropriate electrolytic voltage.
前記弗素化処理により例えば前記のPMM^の環式化合
物は。For example, the above-mentioned PMM^ cyclic compound can be produced by the above-mentioned fluorination treatment.
の如く、メタンCHコの水素が引き抜かれる過程を経て
、 CH,はペルフルオロ化合物とする弗化炭素CF3
に置換される。Through the process of extracting hydrogen from methane CH, CH becomes a perfluorocarbon compound, CF3.
will be replaced with
このような過程を含んでコア表面の弗素化処理を行うこ
とによりコア固有の屈折率、n1=1.49に対して表
面側での屈折率が最も低いn3=1.39とする第3図
の屈折率分布特性のコアが形成される。即ち、光軸1を
頂点として光軸から半径方向に離れるに従って屈折率が
漸減する光学的ファイバが容易に実現される。By performing fluorination treatment on the core surface including such a process, the refractive index on the surface side is the lowest, n3 = 1.39, compared to the core's inherent refractive index, n1 = 1.49. A core with a refractive index distribution characteristic is formed. In other words, an optical fiber whose refractive index gradually decreases with the optical axis 1 as the apex as it moves away from the optical axis in the radial direction can be easily realized.
以上説明のように本発明においては、従来の光ファイバ
コア樹脂を電解弗素化反応槽に浸漬して電解するのみで
、屈折率がグレーテッド・インデ製造方法は実用的価値
は大きい。As explained above, in the present invention, the method of manufacturing a conventional optical fiber core resin with a graded refractive index by simply immersing it in an electrolytic fluorination reaction tank and electrolyzing it has great practical value.
第1図はプラスチックのファイバの弗素化方法実施例と
する電解槽模式図。
第2図はステップインデックス型光ファイバの屈折率分
布特性図。
第3図の本発明に係るグレーテッド・インデックス型フ
ァイバコアの屈折率分布特性図である。
図中、11は弗素化反応電解槽。FIG. 1 is a schematic diagram of an electrolytic cell as an example of a method for fluorinating plastic fibers. FIG. 2 is a refractive index distribution characteristic diagram of a step index type optical fiber. 4 is a refractive index distribution characteristic diagram of the graded index type fiber core according to the present invention shown in FIG. 3. FIG. In the figure, 11 is a fluorination reaction electrolytic cell.
Claims (1)
応を用い、前記光ファイバ樹脂のファイバ軸に対してそ
の半径方向屈折率が所定の屈折率分布特性として形成さ
れることを特徴とするプラスチック光ファイバの製造方
法。The optical fiber resin is immersed in anhydrous hydrofluoric acid and an electrolytic fluorination reaction is used, and the radial refractive index of the optical fiber resin is formed as a predetermined refractive index distribution characteristic with respect to the fiber axis. Method of manufacturing plastic optical fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60003498A JPS61162008A (en) | 1985-01-12 | 1985-01-12 | Production of plastic optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60003498A JPS61162008A (en) | 1985-01-12 | 1985-01-12 | Production of plastic optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61162008A true JPS61162008A (en) | 1986-07-22 |
Family
ID=11559010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60003498A Pending JPS61162008A (en) | 1985-01-12 | 1985-01-12 | Production of plastic optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61162008A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614253A (en) * | 1993-06-16 | 1997-03-25 | Sumitomo Electric Industries, Ltd. | Plastic optical fiber preform, and process and apparatus for producing the same |
US5639512A (en) * | 1993-06-18 | 1997-06-17 | Sumitomo Electric Industries, Ltd. | Plastic optical fiber preform, and process and apparatus for producing the same |
FR2827295A1 (en) * | 2001-07-13 | 2003-01-17 | Saint Gobain | Acrylic sheet material with increased density at the surface after fluorination treatment, for use e.g. in aircraft portholes and windscreens with enhanced resistance to crazing |
-
1985
- 1985-01-12 JP JP60003498A patent/JPS61162008A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614253A (en) * | 1993-06-16 | 1997-03-25 | Sumitomo Electric Industries, Ltd. | Plastic optical fiber preform, and process and apparatus for producing the same |
US5851666A (en) * | 1993-06-16 | 1998-12-22 | Sumitomo Electric Industries, Ltd. | Plastic optical fiber preform, and process and apparatus for producing the same |
US5639512A (en) * | 1993-06-18 | 1997-06-17 | Sumitomo Electric Industries, Ltd. | Plastic optical fiber preform, and process and apparatus for producing the same |
US5891570A (en) * | 1993-06-18 | 1999-04-06 | Sumitomo Electric Industries, Ltd. | Plastic optical fiber preform having a jacket layer |
US5916495A (en) * | 1993-06-18 | 1999-06-29 | Sumitomo Electric Industries, Ltd. | Plastic optical fiber preform, and process and apparatus for producing the same |
FR2827295A1 (en) * | 2001-07-13 | 2003-01-17 | Saint Gobain | Acrylic sheet material with increased density at the surface after fluorination treatment, for use e.g. in aircraft portholes and windscreens with enhanced resistance to crazing |
WO2003006538A1 (en) * | 2001-07-13 | 2003-01-23 | Saint-Gobain Glass France | Surface-modified methyl methacrylate polymer based transparent sheet material |
CN1294188C (en) * | 2001-07-13 | 2007-01-10 | 法国圣戈班玻璃厂 | Surface-modified methyl methacrylate polymer based transparent sheet material |
US7211290B2 (en) | 2001-07-13 | 2007-05-01 | Saint-Gobain Glass France | Surface-modified methyl methacrylate polymer based transparent sheet material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dislich | Plastics as optical materials | |
US5995696A (en) | Hollow waveguide and method of making same | |
US7058271B2 (en) | Plastic optical fiber | |
JPS59210401A (en) | Optical fiber made of plastic material and manufacture thereof | |
JP2006238097A (en) | Optical communication system | |
JP3444352B2 (en) | Optical transmission line manufacturing method | |
US20030099451A1 (en) | Small diameter, high strength optical fiber | |
JPH1164665A (en) | Optical fiber | |
Al-Rubaiyee et al. | Nanostructured coating of graphene nanoparticles deposited onto a cladding etched no-core optical fiber for temperature measurement | |
JP5521480B2 (en) | Plastic clad optical fiber core and optical fiber cable | |
JPS61162008A (en) | Production of plastic optical fiber | |
CN1668948A (en) | Photonic crystal optical waveguide | |
EP0264818B1 (en) | Manufacturing method for a plastics optical fiber | |
JP3530630B2 (en) | Method of manufacturing refractive index distribution type optical fiber and base material thereof | |
JPH04165311A (en) | Manufacture of photo waveguide passage | |
JP2000214342A (en) | Plastic clad optical fiber and its production | |
JP2011107217A (en) | Method for manufacturing plastic clad optical fiber core wire, and plastic clad optical fiber core wire | |
JPH0843678A (en) | Optical fiber lens and its production | |
JP3750671B2 (en) | Manufacturing method of optical transmission line | |
JP3489764B2 (en) | Refractive index distribution type optical resin material | |
Oliveira | Novel Techniques and Devices for Optical Communications and Sensing Technologies | |
JPH01193701A (en) | Plastic optical fiber | |
WO2012144005A1 (en) | Plastic-clad optical fiber core and optical fiber cable | |
Ba et al. | Tailoring whispering-gallery fields in optical black hole cavities | |
Lee | Collimation scheme for fiber lens using polymer coating |