JPS6116172B2 - - Google Patents

Info

Publication number
JPS6116172B2
JPS6116172B2 JP11887681A JP11887681A JPS6116172B2 JP S6116172 B2 JPS6116172 B2 JP S6116172B2 JP 11887681 A JP11887681 A JP 11887681A JP 11887681 A JP11887681 A JP 11887681A JP S6116172 B2 JPS6116172 B2 JP S6116172B2
Authority
JP
Japan
Prior art keywords
probe
tip
tooth
tooth movement
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11887681A
Other languages
Japanese (ja)
Other versions
JPS5819250A (en
Inventor
Shuhei Furuichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Morita Manufaturing Corp
Original Assignee
J Morita Manufaturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Morita Manufaturing Corp filed Critical J Morita Manufaturing Corp
Priority to JP11887681A priority Critical patent/JPS5819250A/en
Publication of JPS5819250A publication Critical patent/JPS5819250A/en
Publication of JPS6116172B2 publication Critical patent/JPS6116172B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Description

【発明の詳細な説明】 この発明は歯牙動揺度を測定診断するための装
置に使用する探触器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a probe used in a device for measuring and diagnosing tooth movement.

歯周疾患等において診断する場合歯牙動揺度の
診断は不可欠である。
Diagnosis of the degree of tooth movement is essential when diagnosing periodontal diseases.

従来歯牙動揺度の診断では術者がピンセツト又
は指で頬舌方向や近遠心方向に歯牙を動かした時
の感覚で判断する方法が一般的に行なわれていた
のであるが、この方法は術者の経験や個性の上に
主観も加わつて充分に正確な判断ができない欠点
を有している。
Conventionally, the degree of tooth movement has generally been diagnosed by the operator using forceps or fingers to judge by the feeling when the tooth is moved in the buccolingual or mesio-distal direction; This has the disadvantage of not being able to make sufficiently accurate judgments due to the addition of subjectivity in addition to the individual's experience and individuality.

また研究段階では患者の頭部を安頭台へ強固に
固定しておいた上で押圧ゲージで歯牙を押すか又
は引くかして、その時の歯牙の変位を左右の臼歯
を基準として歯科用マイクロメータあるいは歯科
用ダイヤルゲージで測定することにより定量的な
診断を行なう方法が用いられていたのであるが、
患者を安頭台に強固に固定しなければならずまた
臼歯を基準にとるために前歯しか診断できない等
の欠点が多く一般的な方法として普及することは
ほとんどなかつたのである。
In addition, during the research stage, the patient's head was firmly fixed on a rest table, and a pressure gauge was used to push or pull the teeth, and the displacement of the teeth at that time was measured using a dental micro- Quantitative diagnosis methods were used by measuring with a meter or dental dial gauge, but
This method had many drawbacks, such as requiring the patient to be firmly fixed on a stable and only being able to diagnose the front teeth because the molars were taken as a reference, so it was hardly ever popularized as a general method.

更に、この発明の直接の背影となる歯牙の共振
周波数を測定する方法も研究段階で用いられてい
たのである。すなわち歯牙が粘性を含んでスプリ
ングで質量(歯牙本体の質量)がなかつた歯牙動
揺モデルを考え、この共振周波数が動揺の程度に
応じて反比例するという規則性、すなわち動揺度
が進むと共振周波数が低下するという規則性に基
づいて歯牙動揺度を判定しようとするものであ
る。
Furthermore, a method for measuring the resonant frequency of teeth, which is the direct background to this invention, was also used at the research stage. In other words, we consider a tooth movement model in which the tooth contains viscosity and has no mass (mass of the tooth body) due to the spring, and the resonant frequency is inversely proportional to the degree of movement.In other words, as the degree of movement progresses, the resonance frequency increases. This method attempts to determine the degree of tooth movement based on the regularity of decrease.

しかしながらこの方法は患者の頭部を固定した
上で歯牙舌側に小型の加速度センサーを仮接着し
た状態にした上で歯科用ハンマー又は電磁振動駆
動装置により歯へ振動を与えて、その時の歯牙の
動揺による振動加速度を検出して動揺周波数を判
定する方法であり、患者頭部の着実な固定が困難
なことや、測定毎に加速度センサーを歯牙へ仮装
着し測定後取り外す必要があつて繁雑でかつ実用
には不向きであつた。また、実公昭56−28985号
には、歯牙を挾持体で挾み、該挾持体に伝達軸を
介して駆動部から正弦波のストレスを連続的に与
える歯牙の揺動測定装置が開示されている。しか
しながらこの装置を用いて歯牙の揺動を測定する
場合、挾持体で不定形な歯牙を挾まなければなら
ず、作業が面倒であるばかりでなく、患者に不快
感を与える等の欠点があり、更に連続的にストレ
スを与えるために直流サーボモーターを使用する
関係上、装置が大型になり、また、長時間にわた
つて患者に苦痛をしいる欠点があつた。
However, this method involves fixing the patient's head, temporarily bonding a small acceleration sensor to the lingual side of the tooth, and applying vibration to the tooth using a dental hammer or an electromagnetic vibration drive device. This method determines the vibration frequency by detecting the vibration acceleration caused by vibration, and it is complicated because it is difficult to securely fix the patient's head, and it is necessary to temporarily attach an acceleration sensor to the tooth and remove it after each measurement. And it was unsuitable for practical use. Furthermore, Japanese Utility Model Publication No. 56-28985 discloses a tooth swing measurement device in which a tooth is held between a pair of clamping bodies and a sine wave stress is continuously applied to the clamping body from a drive unit via a transmission shaft. There is. However, when using this device to measure tooth swing, it is necessary to hold irregularly shaped teeth with a clamping member, which not only makes the work troublesome but also has disadvantages such as causing discomfort to the patient. Furthermore, since a DC servo motor is used to continuously apply stress, the device becomes large and has the disadvantage of causing pain to the patient over a long period of time.

出願人は上記の様な従来の事情に鑑みて、圧電
素子を用いて歯牙に与えたインパルス衝撃によつ
て歯牙の共振周波数で生じる機械振動を電気振動
として検出し、更に周波数アナライザーを介して
周波数分析した結果を表示器に表示させることを
を主たる特徴とした歯牙動揺度診断装置を提案し
ているがこの発明は上記装置に使用する手軽でか
つ取扱の簡単な探触器を得ることを目的とするも
のである。
In view of the above-mentioned conventional circumstances, the applicant used a piezoelectric element to detect mechanical vibrations generated at the resonant frequency of the tooth due to an impulse impact applied to the tooth as an electric vibration, and further analyzed the frequency using a frequency analyzer. A tooth movement diagnostic device has been proposed whose main feature is to display the analyzed results on a display, but the purpose of this invention is to obtain a convenient and easy-to-handle probe for use in the device. That is.

この発明は第1図にその概容を示す様に圧電素
子Pを備えた探触子を弾性材を用いてケース3に
保持し、更に上記探触子1にインパルス衝撃を与
えるための駆動部を備えて、上記探触子1を介し
歯牙に加えられた静圧と、歯牙に与えられるイン
パルス衝撃によつて歯牙に生ずる振動性とを上記
圧電素子で電圧に変換し、更に上記探触子1を介
して歯牙にインパルス衝撃を与える機能をも有す
ることを主たる特徴とするものである。
As schematically shown in FIG. 1, this invention holds a probe equipped with a piezoelectric element P in a case 3 using an elastic material, and further includes a drive section for applying an impulse shock to the probe 1. The piezoelectric element converts the static pressure applied to the tooth through the probe 1 and the vibration generated in the tooth due to the impulse impact applied to the tooth into voltage, and further converts the static pressure applied to the tooth through the probe 1 into voltage. The main feature is that it also has the function of applying an impulse impact to the teeth via the .

上記の様に構成した探触器は第1図に示す様な
概容を有する歯牙動揺診断装置に適用するのであ
る。以下第1図について簡単に説明する。探触器
10の圧電素子Pの出力は静圧検出回路20に入
力されており、探触器を手で持つて、探触子1先
端を被診断歯牙Aに押しあてた時の静圧が一定値
に達したときに確認信号S1を出力する。
The probe configured as described above is applied to a tooth movement diagnosing device having an outline as shown in FIG. Below, FIG. 1 will be briefly explained. The output of the piezoelectric element P of the probe 10 is input to the static pressure detection circuit 20, and the static pressure when the probe 1 is held in the hand and the tip of the probe 1 is pressed against the tooth A to be diagnosed is determined. When a certain value is reached, a confirmation signal S1 is output.

静圧検出回路20の出力は駆動電流発生回路3
0に入力されており、更に該駆動電流発生回路3
0の出力は探触器10の駆動部5に入力されてい
る。静圧検出回路20が前記確認信号S1を発信す
ると、駆動電流発生回路30から探触器の駆動部
5に駆動電流が出力され探触子1を介して被診断
歯牙Aにインパルス衝撃を与えるのである。
The output of the static pressure detection circuit 20 is sent to the drive current generation circuit 3.
0, and furthermore, the drive current generation circuit 3
The output of 0 is input to the drive section 5 of the probe 10. When the static pressure detection circuit 20 transmits the confirmation signal S1 , a drive current is outputted from the drive current generation circuit 30 to the drive section 5 of the probe, and an impulse shock is applied to the tooth A to be diagnosed via the probe 1. It is.

圧電素子Pの出力は一方周波数アナライザ40
に入力され、更に該アナライザ40には表示器5
0が接続されている。上記確認信号S1発生と同時
に周波数アナライザ40はセツト状態となり、上
記の様にして歯牙Aに与えられたインパルス衝撃
によつて歯牙Aに発生した振動を周波数分析して
表示器50に表示するのである。診断者はこの様
にして表示された歯牙の振動周波数が高い成分を
多く含むか、低い成分を多く含むかによつて歯牙
動揺度を判定することになる。
The output of the piezoelectric element P is on the other hand a frequency analyzer 40
The analyzer 40 also has a display 5.
0 is connected. Simultaneously with the generation of the confirmation signal S1 , the frequency analyzer 40 enters the set state, and analyzes the frequency of the vibration generated in the tooth A by the impulse impact applied to the tooth A as described above, and displays it on the display 50. be. The diagnostician determines the degree of tooth movement based on whether the vibration frequency of the tooth displayed in this manner contains many high-frequency components or many low-frequency components.

第2図、第3図、第4図はこの発明に係る探触
器の実施例を示すものである。
FIG. 2, FIG. 3, and FIG. 4 show embodiments of the probe according to the present invention.

まずこの発明には上記機能を発揮するための中
核的な役割を荷なう探触子1を用いる。探触子1
は棒体本体21の先端に打振チツプ22を取付け
た棒体2の該本体21と打振チツプ22との間に
圧電素子Pを挾み込んだものである。棒体2の本
体21、圧電素子P、打振チツプ22の3者の取
り付け手段は種々考えられ、極単にいえば3者を
接着剤で貼り合せてもよい。しかしながら、より
耐久性を持たしめるための確実な手段として第2
図〜第4図には棒体本体21に打振チツプ22を
螺着した構成を示す。すなわち本体21に設けた
雌ネジに打振チツプ22の雄ネジを螺合させるの
であり、この両者の間に打振チツプ22の雄ネジ
が緩く貫通する程度の穴を設けた圧電素子Pが挾
み込まれている。
First, the present invention uses a probe 1 that plays a central role in achieving the above functions. Probe 1
The piezoelectric element P is sandwiched between the rod body 21 and the vibration tip 22 of the rod body 2, which has a vibration tip 22 attached to the tip thereof. Various methods can be considered for attaching the main body 21 of the rod 2, the piezoelectric element P, and the vibration chip 22, and to put it simply, the three may be bonded together with an adhesive. However, as a surefire way to make it more durable,
4 to 4 show a configuration in which a vibration tip 22 is screwed onto a rod main body 21. That is, the male screw of the vibration chip 22 is screwed into the female screw provided on the main body 21, and the piezoelectric element P, which has a hole large enough for the male screw of the vibration chip 22 to loosely pass through, is inserted between the two. It is included.

また第7図には棒体本体21に対して打振チツ
プ22を蓋する様に螺着した実施例を示した。
Further, FIG. 7 shows an embodiment in which a vibration tip 22 is screwed onto the rod main body 21 so as to cover it.

この探触子1は歯牙の振動を検出する際に加速
度センサーとしての機能を有するものであるから
発振体すなわち歯牙の振動を正確に取り出す必要
上できるだけ歯牙の重量に対して軽量にする必要
がありアルミやチタン系の軽合金が望ましく、こ
の実施例ではポリアセタール樹脂、ジユラコン又
はデルリンの直径7mmの円柱材を用いている。特
に先端部の打振チツプ22は上記インパルス及び
歯牙振動を伝達するだけの機能を有すれば足りる
のであるから材質的にも形状的にもできるだけ軽
量化を図る必要がある。従つて第2図〜第4図の
例ではテーパー状に先が細くなつた打振チツプ2
2を用いている。更に効率よく歯牙振動を電圧に
変換するためには圧電素子Pの特性インピーダン
スは棒体2の特性インピーダンス近くにしてお
き、かつ棒体2の長手方向の力に対して圧電指数
の高いものを用いる。
Since this probe 1 has a function as an acceleration sensor when detecting the vibration of the tooth, it needs to be as light as possible compared to the weight of the tooth in order to accurately extract the vibration of the oscillator, that is, the tooth. A light alloy such as aluminum or titanium is preferable, and in this embodiment, a cylindrical material having a diameter of 7 mm made of polyacetal resin, Diuracon, or Delrin is used. In particular, since it is sufficient for the vibration tip 22 at the tip to have the function of transmitting the above-mentioned impulses and tooth vibrations, it is necessary to reduce the weight as much as possible in terms of material and shape. Therefore, in the examples shown in FIGS. 2 to 4, the striking tip 2 has a tapered tip.
2 is used. In order to convert tooth vibration into voltage more efficiently, the characteristic impedance of the piezoelectric element P should be close to the characteristic impedance of the rod 2, and a piezoelectric element with a high piezoelectric index with respect to the force in the longitudinal direction of the rod 2 should be used. .

上記探触子1はケース3に弾性材4を用いて支
持されている。この様にしておくと歯牙振動は効
率よく探触子1の棒体本体21に伝達されること
になる。ここに用いる弾性材4についてもできる
だけ重量の軽い材質のものを用い探触子1の実効
質量を増加させない様にするのがよい。更にここ
に用いる弾性材4のコンプライアンスはできるだ
け大きいものを選択するのがよい。すなわち、こ
の保持部で歯牙振動との共振を生じることがない
ようにするためである。
The probe 1 is supported by a case 3 using an elastic material 4. By doing so, the tooth vibrations will be efficiently transmitted to the rod body 21 of the probe 1. The elastic material 4 used here is preferably made of a material that is as light in weight as possible so as not to increase the effective mass of the probe 1. Furthermore, the compliance of the elastic material 4 used here is preferably selected to be as large as possible. That is, this is to prevent resonance with tooth vibration from occurring in this holding portion.

第3図はスプリングバネを弾性材として用いた
場合を示したものである。駆動磁石52の前面と
探触子1の後端との間には、更に別のスプリング
バネ4を挿入して歯牙への適切な押圧力を得る様
になつている。
FIG. 3 shows a case where a spring spring is used as the elastic material. Another spring spring 4 is inserted between the front surface of the drive magnet 52 and the rear end of the probe 1 to obtain an appropriate pressing force against the tooth.

探触子1は駆動部5によつて歯牙に対してイン
パルス衝撃を与えられる様になつている。基本的
には駆動コイル51に駆動電流発生回路から出力
される駆動電流を流すことによつて電気−機械変
換をする構成とするのであり、一般に用いられて
いる種々の実施例を適用することができる。第2
図、第3図に示す場合は上記駆動コイル51によ
る電磁力を直接探触子1に伝達する構成としたも
のであり以下更に説明する。探触子1の後端に軽
量の円筒材2′を取り付け該円筒材2′に駆動コイ
イル51を巻きケース3の後端壁には上記円筒材
2′内に緩く嵌入させた駆動磁石52を取り付け
ている。尚駆動磁石52の形成する磁界がコイル
51の周辺で強い平行磁界M5を形成する様に駆
動磁石52のケース側の極に更にコイル51を覆
う磁性体筒53を取り付けている。この様に駆動
部5を構成し、駆動コイル51に駆動電流発生回
路(第1照参照)からインパルス電流を流すと、
強い平行磁界M5との反発あるいは吸引力によつ
て探触子1を介して歯牙にインパルス衝撃が与え
られるのである。
The probe 1 is configured so that an impulse impact can be applied to the tooth by a driving section 5. Basically, the configuration is such that electrical-mechanical conversion is performed by passing a drive current output from a drive current generation circuit through the drive coil 51, and various commonly used embodiments can be applied. can. Second
In the case shown in FIGS. 3 and 3, the electromagnetic force from the drive coil 51 is directly transmitted to the probe 1, and will be further explained below. A lightweight cylindrical member 2' is attached to the rear end of the probe 1, and a driving coil 51 is wound around the cylindrical member 2'.A driving magnet 52, which is loosely fitted into the cylindrical member 2', is mounted on the rear end wall of the case 3. It is installed. A magnetic tube 53 is further attached to the case side pole of the drive magnet 52 so that the magnetic field formed by the drive magnet 52 forms a strong parallel magnetic field M 5 around the coil 51. When the drive unit 5 is configured in this way and an impulse current is passed through the drive coil 51 from the drive current generation circuit (see first reference),
An impulse impact is applied to the tooth via the probe 1 due to the repulsion or attraction of the strong parallel magnetic field M5 .

第4図の実施例では上記電磁力によつて発生し
た機械力を先端に重量球57を取付けたスプリン
グバネ56に一旦蓄え、該スプリングバネ56に
よつて押し出される重量球57が探触子1の後端
に衝突することによつてインパルス衝撃を発生す
るものであり、先端にスプリングバネ56を介し
て重量球57を取り付けたプランジヤー55を、
探触子1の後側に弾性材59を用いてケース3に
支持している。この場合重量球57が探触子1の
少し後方に位置する様になつており、該重量球は
スプリングバネで押し出された時に正確に探触子
後端に衝突する様に、該重量球が緩く嵌り込む揺
動筒60に納められている。プランジヤー55は
ケース3に取り付けられた空芯の駆動コイル51
の空芯部51′を貫通し、その径を空芯部51′の
前方より後方を太くしているのである。駆動部5
をこの様に構成して駆動コイル51に一定時間駆
動電流を流すと第5図に示す様な作動を示す。
In the embodiment shown in FIG. 4, the mechanical force generated by the electromagnetic force is temporarily stored in a spring spring 56 having a weighted ball 57 attached to the tip thereof, and the weighted ball 57 pushed out by the spring spring 56 moves the probe 1. It generates an impulse impact by colliding with the rear end, and has a plunger 55 with a weight ball 57 attached to the tip via a spring spring 56.
The probe 1 is supported on the case 3 using an elastic material 59 on the rear side. In this case, the weight ball 57 is positioned slightly behind the probe 1, and the weight ball 57 is arranged so that when it is pushed out by the spring spring, it collides accurately with the rear end of the probe. It is housed in a swinging tube 60 that fits loosely into it. The plunger 55 is an air-core drive coil 51 attached to the case 3.
It penetrates through the air core portion 51', and its diameter is made thicker at the rear than at the front of the air core portion 51'. Drive part 5
When constructed in this way and a driving current is applied to the driving coil 51 for a certain period of time, the operation shown in FIG. 5 is exhibited.

第5図は探触子1と駆動部5との動きを時間の
経過に従つて示したものであつてaが探触子、b
が駆動部、cが駆動部のプランジヤーと重量球の
動きをグラフ化したものである。
FIG. 5 shows the movement of the probe 1 and the drive unit 5 over time, where a is the probe and b is the probe.
is the drive part, and c is a graph of the movement of the plunger and weight ball of the drive part.

まず、時間t=t0は初期状態であつて外部の駆
動電流発生回路30から駆動流出力がない状態で
ある。次に探触子1が被診断歯牙に一定の圧力で
押出され、静圧検知回路によつてその圧力が一定
値に達した時に出される確認信号に従つて駆動電
流が出力された状態が時間t=t0に示す状態であ
る。この時プランジヤは駆動コイル51に引き付
けられて、スプリングバネ56にエネルギを蓄積
する。この様にしてスプリングバネ56に蓄積さ
れたエネルギーによつて重量球58が前方へ押し
だされて探触子1の後端にt=t0で衝突させるの
である。この時最も効果的なのはスプリングバネ
56が伸び切る直前に上記衝突を発生させること
であり、従つて重量球57と探触子1の後端との
距離を予め調整しておく必要がある。伸び切つた
スプリングバネ56は次第に縮み、初期位置に戻
つた時点t=t2で駆動電流を切るとプランジヤー
55も初期位置に戻り、1回の工程を終了したこ
とになる。
First, time t=t 0 is an initial state in which there is no driving current output from the external driving current generating circuit 30. Next, the probe 1 is pushed against the tooth to be diagnosed with a constant pressure, and the static pressure detection circuit outputs a driving current according to the confirmation signal issued when the pressure reaches a constant value. This is the state shown at t= t0 . At this time, the plunger is attracted to the drive coil 51 and stores energy in the spring spring 56. The energy accumulated in the spring 56 in this manner pushes the weight ball 58 forward and causes it to collide with the rear end of the probe 1 at t=t 0 . At this time, the most effective method is to cause the collision just before the spring spring 56 is fully extended, and therefore it is necessary to adjust the distance between the weight ball 57 and the rear end of the probe 1 in advance. The fully extended spring spring 56 gradually contracts and returns to its initial position. When the drive current is cut off at time t= t2, the plunger 55 also returns to its initial position, thus completing one process.

第2図、第3図に示す駆動部5は比較的部品点
数が少なくなる利点を有しているが、駆動コイル
51は駆動電流に対してインダクタンスとして働
き、インパルス電流自体が急瞬であつても探触子
1に与える衝撃がそれ程急瞬とならない欠点を有
している。一方第4図に示す様に駆動部を構成す
ると、多少部品点数が多くなるが、急瞬な衝撃を
探触子1に与えることができる利点を有している
のである。
The drive section 5 shown in FIGS. 2 and 3 has the advantage of having a relatively small number of parts, but the drive coil 51 acts as an inductance with respect to the drive current, and the impulse current itself is instantaneous. However, the disadvantage is that the impact on the probe 1 is not very sudden. On the other hand, if the drive section is configured as shown in FIG. 4, the number of parts will increase somewhat, but it has the advantage of being able to apply a sudden shock to the probe 1.

第6図a,b,cは探触子1の先端の打振チツ
プ22の先端形状についての種々の実施例であ
る。第2図の様に打振チツプ22を先細りのテー
パー状とした場合には、被診断歯牙Aに頬側から
打振チツプ22を押しあてて診断するのである。
第3図aに示した様に先端部をL字状にすると、
埋没歯の診断を行なうことができる。同図bの様
に先端を2股にすると押し付け、又は引き付けの
両方向の圧力による診断が可能であり、更に同図
cの様に先端を鉤状にすると、引き付け圧による
診断が可能となる。これ等打振チツプは状況に応
じて使い分けると効果的な診断を行なうことがで
きるのである。
6a, b, and c show various embodiments of the shape of the tip of the vibration tip 22 at the tip of the probe 1. FIG. When the percussion tip 22 has a tapered shape as shown in FIG. 2, the percussion tip 22 is pressed against the tooth A to be diagnosed from the buccal side for diagnosis.
If the tip is made into an L-shape as shown in Figure 3a,
A diagnosis of an impacted tooth can be made. If the tip is bifurcated as shown in Figure b, diagnosis can be made using pressure in both directions, pushing or pulling.Furthermore, if the tip is made into a hook shape as shown in Figure c, diagnosis can be made by pulling pressure. If these swing chips are used depending on the situation, effective diagnosis can be made.

ただし第4図に示す実施例の駆動部5を用いた
場合には、第6図cに示す先端が鉤状の打振チツ
プ22を用いることができない。
However, when the drive unit 5 of the embodiment shown in FIG. 4 is used, it is not possible to use the vibration tip 22 having a hook-shaped tip as shown in FIG. 6c.

第8図は、この発明を被診断歯牙に押しあてた
状態を等価回路として描いたモデルである。歯牙
Aは質量M1がコンプライアンスC1と粘性抵抗R1
を介して歯茎に繋がれており、探触子1は質量
M2が棒材20のコンプライアンスC2と弾性材4
のコンプライアンスC3とを介してケース3に繋
がれている。
FIG. 8 is a model depicting, as an equivalent circuit, the state in which the present invention is pressed against a tooth to be diagnosed. Tooth A has mass M 1 , compliance C 1 and viscous resistance R 1
The probe 1 is connected to the gums via the
M 2 is the compliance of bar 20 C 2 and elastic material 4
Compliance of C 3 and is connected to Case 3.

ここで大切なことは、歯牙のインパルス衝撃に
よる振動を、探触子1の内部(質量M2とコンプ
ライアンスC2)あるいは探触子1とケース3(質
量M2とコンプライアンスC3)の共振周波数で吸収
してしまわないことである。
What is important here is that the vibration caused by the impulse impact of the tooth is reduced to the resonance frequency of the interior of the probe 1 (mass M 2 and compliance C 2 ) or the probe 1 and case 3 (mass M 2 and compliance C 3 ). It is important not to absorb it.

従つてこの発明に於ては棒体2としてはできる
だけ硬質の材料を用いて探触子1自身の共振周波
数を歯牙の共振周波数帯域(102オーダ)よりで
きるだけ高くとり、また弾性材4のコンプライア
ンスC3をできるだけ大きくして探触子1と弾性
材4の共振周波数を歯牙共振周波数帯域よりでき
るだけ低くとつている。
Therefore, in this invention, the rod body 2 is made of as hard a material as possible, the resonant frequency of the probe 1 itself is set as high as possible than the resonant frequency band of the tooth (10 2 order), and the compliance of the elastic material 4 is C3 is made as large as possible to keep the resonance frequency of the probe 1 and elastic material 4 as low as possible below the tooth resonance frequency band.

以上説明した様にこの発明は歯牙動揺度診断装
置に適用することによつて単に手で持つて探触子
を被診断歯牙に押しあてるだけで歯牙動揺度を客
観的に測定出来る効果を有している。
As explained above, this invention has the effect of objectively measuring the degree of tooth movement by simply holding the probe in the hand and pressing it against the tooth to be diagnosed by applying it to a tooth movement degree diagnosing device. ing.

更に第2図第3図に示す様に駆動部として駆動
コイルと駆動磁石を用いた場合には以下の様な別
の用途を有している。すなわちこの探触器の探触
子を一定の圧力で歯牙に押しあて、駆動コイルに
特定周波数の電流を流し、圧電素子の起電力を測
定することによつて、該特定周波数に対する歯牙
インピーダンスを検出するのである。このインピ
ーダンスも歯牙動揺度を測定する目安として得る
のである。
Furthermore, as shown in FIGS. 2 and 3, when a drive coil and a drive magnet are used as the drive section, other uses are available as follows. In other words, the tooth impedance for the specific frequency is detected by pressing the probe of this probe against the tooth with a constant pressure, passing a current of a specific frequency through the drive coil, and measuring the electromotive force of the piezoelectric element. That's what I do. This impedance is also obtained as a standard for measuring the degree of tooth movement.

また第4図に示した場合の様に、駆動部として
スプリングコイルによつて押し出される重量球を
用いた場合には、重量球によつて極めて急瞬なイ
ンパルス衝撃を探触子に与えることができる。
Furthermore, when a weighted ball pushed out by a spring coil is used as the drive unit, as shown in Figure 4, it is possible for the weighted ball to apply an extremely sudden impulse impact to the probe. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明が適用される歯牙動揺度診断
装置、第2図、第3図、第4図は、この発明の実
施例、第5図は、第4図に示す実施例を用いた場
合の作動説明図。第6図は打振チツプの種々の実
施例を示すものであり、第7図は探触子の実施
例、第8図はこの発明の探触器を歯牙に押しあて
た場合のモデル図である。 図中、1……探触子、2……棒体、21……棒
体本体、22……打振チツプ、3……ケース、4
……弾性材、5……駆動部、56……スプリング
コイル、57……質量球、A……歯牙、P……圧
電素子。
Fig. 1 shows a tooth movement degree diagnostic device to which this invention is applied, Figs. 2, 3, and 4 show an embodiment of the invention, and Fig. 5 shows a device using the embodiment shown in Fig. 4. An explanatory diagram of the operation in this case. Fig. 6 shows various embodiments of the percussion tip, Fig. 7 shows an embodiment of the probe, and Fig. 8 shows a model of the probe of this invention pressed against a tooth. be. In the figure, 1... Probe, 2... Rod body, 21... Rod body, 22... Vibration tip, 3... Case, 4
...Elastic material, 5...Drive unit, 56...Spring coil, 57...Mass sphere, A...Tooth, P...Piezoelectric element.

Claims (1)

【特許請求の範囲】 1 歯牙にインパルス衝撃を与えることによつて
歯牙に生ずる機械的振動を電気的振動に変換し、
該電気的振動の周波数分析をすることによつて歯
牙動揺度を判定する歯牙動揺度診断装置に使用す
る探触器に於て、棒体本体とその先端に取付けた
打振チツプとで構成される棒体の前記棒体本体と
打振チツプとの間に圧電素子を介在させた探触子
を、先端部をケースの先端開口部から突出させて
該ケースに弾性材を用いて保持し、更に前記ケー
スと前記探触子との間に駆動コイルと駆動磁石を
設け、駆動電流発生回路からのインパルス電流に
よる前記コイルと前記磁石との間の磁界の反発力
もしくは吸引力を前記探触子に直接伝達するか、
または、前記ケース内に配置された駆動コイルに
より発生する電磁力を使用し、前記探触子の後端
に重量球を衝突させて前記探触子にインパルス衝
撃を与えるための駆動部を備えることを特徴とす
る歯牙動揺度診断装置の探触器。 2 先細のテーパー状の打振チツプを用いた特許
請求の範囲第1項に記載の歯牙動揺度診断装置の
探触器。 3 先端がL字状となつた打振チツプを用いた特
許請求の範囲第1項に記載の歯牙動揺度診断装置
の探触器。 4 先端が鉤状になつた打振チツプを用いた特許
請求の範囲第1項に記載の歯牙動揺度診断装置の
探触器。 5 先端が二股になつた打振チツプを用いた特許
請求の範囲第1項に記載の歯牙動揺度診断装置の
探触器。
[Claims] 1. Converting mechanical vibrations generated in teeth into electrical vibrations by applying an impulse impact to the teeth,
A probe used in a tooth movement diagnostic device that determines tooth movement by frequency analysis of the electrical vibration is composed of a rod body and a percussion tip attached to its tip. A probe having a piezoelectric element interposed between the rod main body and the vibration tip of the rod is held in the case using an elastic material with the tip protruding from the tip opening of the case, Further, a drive coil and a drive magnet are provided between the case and the probe, and the repulsion or attraction force of the magnetic field between the coil and the magnet due to the impulse current from the drive current generation circuit is applied to the probe. communicate directly to or
Alternatively, a drive unit is provided for applying an impulse shock to the probe by colliding a weighted ball with the rear end of the probe using electromagnetic force generated by a drive coil disposed in the case. A probe for a tooth movement diagnostic device featuring: 2. A probe for a tooth movement degree diagnosing device according to claim 1, which uses a tapered percussion tip. 3. A probe for a tooth movement degree diagnosing device according to claim 1, which uses a percussion tip with an L-shaped tip. 4. A probe for a tooth movement diagnostic device according to claim 1, which uses a percussion tip with a hook-shaped tip. 5. A probe for a tooth movement degree diagnosing device according to claim 1, which uses a percussion tip with a bifurcated tip.
JP11887681A 1981-07-28 1981-07-28 Probe instrument of apparatus for diagnosis of tooth moving degree Granted JPS5819250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11887681A JPS5819250A (en) 1981-07-28 1981-07-28 Probe instrument of apparatus for diagnosis of tooth moving degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11887681A JPS5819250A (en) 1981-07-28 1981-07-28 Probe instrument of apparatus for diagnosis of tooth moving degree

Publications (2)

Publication Number Publication Date
JPS5819250A JPS5819250A (en) 1983-02-04
JPS6116172B2 true JPS6116172B2 (en) 1986-04-28

Family

ID=14747299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11887681A Granted JPS5819250A (en) 1981-07-28 1981-07-28 Probe instrument of apparatus for diagnosis of tooth moving degree

Country Status (1)

Country Link
JP (1) JPS5819250A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540995B2 (en) * 2000-09-08 2004-07-07 財団法人電力中央研究所 Method and apparatus for continuous separation analysis of metallic mercury and water-soluble mercury in gas
CN107615040B (en) * 2015-06-25 2020-03-13 麦克赛尔株式会社 Hardness meter
WO2018126244A1 (en) * 2016-12-30 2018-07-05 Perimetrics, Llc System and method for determining structural characteristics of an object

Also Published As

Publication number Publication date
JPS5819250A (en) 1983-02-04

Similar Documents

Publication Publication Date Title
US20230366777A1 (en) System and method for determining structural characteristics of an object
JP7148520B2 (en) Systems and methods for determining structural features of objects
JP2024059870A (en) Determining the structural characteristics of an object
JPS58192536A (en) Plexor
US3653373A (en) Apparatus for acoustically determining periodontal health
EP2791642B1 (en) System for determining structural characteristics of an object
JP3095413U (en) Oscillation measurement device for teeth or artificial implants
JPS6116172B2 (en)
US5796005A (en) Flex meter for sports game implements
US6997887B2 (en) Evaluation of reflected time-energy profile for determination of damping capacity
JPH0325175B2 (en)
CN209091406U (en) A kind of dental articulation force measuring device based on surface acoustic wave sensor
JPS6057347B2 (en) Tooth mobility diagnostic device
JPH05285162A (en) Tooth mobility measuring instrument and hammer unit
FI109269B (en) Method and apparatus for measurement of eye pressure
JPH05337141A (en) Probe and measuring apparatus for degree of oscillation
CN2351751Y (en) Tension weighing apparatus
JP2002250740A (en) Momentum-measuring device
JPH0730016Y2 (en) Periodontal tissue diagnostic device
JPH04279157A (en) Tooth oscillation measuring method and apparatus therefor
JPH08233712A (en) Material measuring apparatus and bone strength measuring apparatus
JPS632012Y2 (en)
JPH0126293B2 (en)
JPH07100155A (en) Probe for diagnosing living body
JPH0618581B2 (en) Tooth mobility measuring device