JPS6116161A - Wheel idling controller - Google Patents

Wheel idling controller

Info

Publication number
JPS6116161A
JPS6116161A JP13571084A JP13571084A JPS6116161A JP S6116161 A JPS6116161 A JP S6116161A JP 13571084 A JP13571084 A JP 13571084A JP 13571084 A JP13571084 A JP 13571084A JP S6116161 A JPS6116161 A JP S6116161A
Authority
JP
Japan
Prior art keywords
signal
pressure
wheel speed
actuator
driving wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13571084A
Other languages
Japanese (ja)
Other versions
JPH0364336B2 (en
Inventor
Akihiko Mori
昭彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13571084A priority Critical patent/JPS6116161A/en
Publication of JPS6116161A publication Critical patent/JPS6116161A/en
Publication of JPH0364336B2 publication Critical patent/JPH0364336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems

Abstract

PURPOSE:To prevent driving wheels from being idled by regulating a braking pressure on the bases of the detected results relating to the acceleration of speed of the driving wheels or the slippage between the speeds of the driving wheels and non-driving wheels. CONSTITUTION:Both engine revolution speed pulses from wheel speed sensors 16a-16d and an engine revolution pulse from the ignition 24 of an engine are input to a controlling circuit 17. Said circuit 17 calculates each speed of wheels according to a controlling program, accelerated or decelerated speed of driving wheels, and slippage between the speeds of the driving and the non-driving wheels. The signal from the circuit 17 activates a braking liquid reflux preventing actuator 18. If the pressure of the liquid is demanded to be increased, the actuator 18 operates pressure increasing actuator 19a or 19b and contrarily, if the pressure thereof is demanded to be decreased, the actuator 18 operates a pressure reducing actuator 20a or 20b.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は車両の雪道での発進時等に発生する駆動車輪
の空転を制御する車輪空転制御装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a wheel slip control device for controlling the slip of drive wheels that occurs when a vehicle starts on a snowy road.

〔従来技術〕[Prior art]

従来、車両の雪道、砂地発進や急発進時に発生する駆動
車輪の空転を制御するにはノ/スリップデフ等の名称で
呼ばれている装置がめる。この装置は、リア7ヤフトが
クラッチ板によって連結されておシ、このため片輪が空
転を始めるとクラッチ板の抵抗によシある程度空転を防
止し、かつ他力の車輪のトルクを増加させることができ
る。しかしこの装置においても駆動車輪両輪の空転に対
しては何ら制御機能を有せず、運転者の運転技能に頼る
しかない。
Conventionally, a device called a no/slip differential has been used to control the slippage of the drive wheels that occurs when a vehicle starts on a snowy road, on sandy ground, or suddenly starts. In this device, the rear 7 shafts are connected by a clutch plate, so that when one wheel starts to spin, the resistance of the clutch plate prevents it to some extent and increases the torque of the other wheel. I can do it. However, this device also does not have any control function for the idling of both drive wheels, and must rely on the driving skills of the driver.

また近年、いわゆるアノテスキツド制飢装置を利用し、
駆動車輪の空転を検出した場合ブレーキ圧を制御する装
置が開発されておシ、これは例えば特開昭58−202
142号公報などに開示されている。
In addition, in recent years, the so-called Anoteskity starvation device has been used,
A device has been developed to control the brake pressure when slipping of the drive wheels is detected, and this is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-202.
This is disclosed in Publication No. 142 and the like.

しかし上述した装置等による駆動輪の空転制御は、その
応答性1機構部品構造および規模等で問題がちシ、未だ
実用には至っていないのが実情である。
However, the idling control of the driving wheels using the above-mentioned devices and the like is prone to problems in terms of responsiveness, structure of mechanical components, scale, etc., and the reality is that it has not yet been put to practical use.

し発明の概要〕 この発明は上記の問題に鑑みてなされたもので。Summary of the invention] This invention was made in view of the above problems.

車輪の空転を駆動車輪速の加速度あるいは非駆動車輪速
とのスリップ量で検知して制動圧を加圧し。
The brake pressure is increased by detecting wheel slippage based on the acceleration of the driving wheel speed or the amount of slip between the driving wheel speed and the non-driving wheel speed.

駆動車輪速の減速度おるいは非駆動車輪速とのスリップ
量で制動圧を減圧するようにしだ制i!11をエンンン
回転数に基づき、かつ駆動車輪の両輪を各々独立に制i
を行うよう構成することにより、駆動車輪の空転を未然
に防止できる車輪空転制菌装置を提供することを目的と
する。
The braking pressure is reduced by the deceleration of the driving wheel speed or the amount of slip between the driving wheel speed and the non-driving wheel speed. 11 based on the engine rotation speed, and independently control both wheels of the drive wheel.
An object of the present invention is to provide a wheel slip sterilization device that can prevent drive wheels from slipping by being configured to perform the following steps.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図はこの発明の車輪空転側倒装置の構成を示すブロック
図でアシ、図中、1は駆動車輪。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a block diagram showing the configuration of the wheel slip side tilting device of the present invention. In the figure, 1 is a drive wheel.

2はこの駆動車輪lの車速を検出する駆動車輪速検出手
段、3は検出された駆動車輪速に基づいて該車輪のカロ
・減速度を演算する加減速度演算手段である。4は駆動
車輪1を制動する制動器で、この制動器4の制動圧を増
加させる加圧アクチュエータ5と、制動圧を減少させる
減圧アクチュエータ6とが接続される。また、7は非駆
動車輪、8はこの非駆動車輪7の車速を検出する非駆動
車輪速検出手段、9は検出された非駆動車輪速に対し前
記駆動車輪速が所定値以上であるかを判断する加圧信号
判定手段、IOは同様に所定値以下であるかを判断する
減圧信号判定手段である。さらに。
2 is a driving wheel speed detecting means for detecting the vehicle speed of the driving wheel l, and 3 is an acceleration/deceleration calculating means for calculating the caro and deceleration of the wheel based on the detected driving wheel speed. Reference numeral 4 denotes a brake that brakes the driving wheels 1, and a pressure actuator 5 that increases the braking pressure of the brake 4 and a pressure reducing actuator 6 that decreases the braking pressure are connected to the brake device 4. Further, 7 is a non-driving wheel, 8 is a non-driving wheel speed detection means for detecting the vehicle speed of this non-driving wheel 7, and 9 is a non-driving wheel speed detecting means for detecting the vehicle speed of the non-driving wheel 7, and 9 is a checker for determining whether the driving wheel speed is higher than a predetermined value with respect to the detected non-driving wheel speed. The pressurization signal determining means for determining, IO, is similarly a depressurizing signal determining means for determining whether the pressure is below a predetermined value. moreover.

11は前記駆動車輪速の加速度が所定値以上の場合、前
記加圧アクチュエータ5に駆動信号を出力する加圧信号
出力手段、12は同様に減速度が所定値以下の場合、減
圧アクチュエータ6に駆動信号を出力する減圧信号出力
手段であfi、13は。
11 is a pressurizing signal output means for outputting a drive signal to the pressurizing actuator 5 when the acceleration of the driving wheel speed is above a predetermined value, and 12 is a pressurizing signal output means for outputting a drive signal to the pressurizing actuator 5 when the deceleration is below a predetermined value. Fi, 13 is a pressure reduction signal output means for outputting a signal.

前記加圧信号出段9が信号を出力しかつ前記減圧信号出
力手段12の出力がない場合に加圧アクチュエータ5を
駆動する信号を出力し、減圧信号判定手段10が信号を
出力していて加圧信号出力手段11の出力がない場合に
減圧アクチュエータ6を駆動する信号を出力する加減圧
信号判定手段である。また、14は上記加圧信号判定手
段9.減圧信号判定手段10.加圧信号出力手段11お
よび減圧信号出力手段12で用いられている所定値をエ
ノノノ回転数によって変更するエンソン回転数検出手段
である9、そしてこのように構成された駆動車輪の制御
装置(4)は両輪に対して各々独立して設けられ、 <
B)はその−力の駆動車輪側の制御装置で、前記制御装
置囚と同様に構成されている3゜第2図は本発明の具体
的な構成を示すもので、この図において、15aは前輪
衣ブレーキ、15bは前輪圧ブレーキ、15Cは後輪右
ブレーキ、L5dは後輪左ブレーキで、これらにはそれ
ぞれ車輪速セフす16a〜16dが配設されている。
When the pressure signal output stage 9 outputs a signal and the pressure reduction signal output means 12 does not output a signal, it outputs a signal to drive the pressure actuator 5, and when the pressure reduction signal determination means 10 outputs a signal and the pressure reduction signal output means 12 does not output a signal, it outputs a signal to drive the pressure actuator 5. This is a pressure increase/decrease signal determination means that outputs a signal for driving the pressure reduction actuator 6 when there is no output from the pressure signal output means 11 . Further, reference numeral 14 denotes the pressurization signal determining means 9. Decompression signal determining means 10. 9, which is an engine rotation speed detection means for changing the predetermined value used by the pressurization signal output means 11 and the pressure reduction signal output means 12, depending on the rotation speed; and a drive wheel control device (4) configured as described above. are provided independently for both wheels, and <
B) is a control device on the drive wheel side of the force, which is constructed in the same way as the control device described above. Fig. 2 shows a specific configuration of the present invention, and in this figure, 15a is a A front tire brake, 15b is a front wheel pressure brake, 15C is a rear right brake, L5d is a rear left brake, and wheel speed controls 16a to 16d are disposed on these, respectively.

17はこれら車輪速セ/す16a、16b、16c。Reference numeral 17 indicates the speed of these wheels 16a, 16b, and 16c.

L6dからの信号が人力されると共に、エノジンのイグ
ニツンヨン24より工/ジン回転パルスが入力される制
御回路であり、この制御回路17に内蔵したマイクロコ
ンピュータは後述する制御プログラムに基づいて各車輪
速を演算し、また駆動車輪(この実施例では前輪駆動車
両とする)の加・減速度を演算し、さらに非駆動車輪(
後輪)速とのスリップ量も演算する。そして駆動車輪の
空転を上記前・減速度とスリップ量により判断すると。
This is a control circuit in which the signal from L6d is input manually, and the engine/engine rotation pulse is input from the ignition ignition 24 of the engine, and the microcomputer built into this control circuit 17 controls each wheel speed based on the control program described later It also calculates the acceleration and deceleration of the driving wheels (in this example, the front wheel drive vehicle), and also calculates the acceleration and deceleration of the driving wheels (in this example, the front wheel drive vehicle).
The amount of slip with respect to the rear wheel speed is also calculated. And if the slippage of the drive wheels is judged based on the above-mentioned front/deceleration and slip amount.

以下に説明する各種制御用アクチュエータに信号を出力
する。即ちこの信号は制動圧逆流防止用アクチュエータ
18を作動させ、加圧要求ならば加圧アクチュエータ1
9aまたは19bを作動させ。
Signals are output to various control actuators described below. That is, this signal operates the brake pressure backflow prevention actuator 18, and if pressurization is required, the pressurization actuator 1 is activated.
Activate 9a or 19b.

逆に減圧要求ならば減圧アクチュエータ20aまたは2
0bを作動させるものである3、−1制動圧はブレーキ
液を蓄えている貯蔵室21から制動圧の低下を検出する
装置と連動しているモータ22等によって常に加圧され
た状態で蓄圧器23に蓄積され得られている。制動圧は
加圧状態の場合。
Conversely, if there is a request for pressure reduction, the pressure reduction actuator 20a or 2
The 3, -1 braking pressure that operates 0b is constantly pressurized by a motor 22 etc. that is linked to a device that detects a decrease in braking pressure from a storage chamber 21 that stores brake fluid. It has been accumulated and obtained in 23. Braking pressure is when pressurized.

蓄圧器23よシ加圧アクチュエータ19aまたは19b
を介して前輪ブレーキ15a、15bに供給される。ま
た減圧状態の場合、減圧アクチュエータ20aまたは2
0bを通シ貯蔵室2エヘ戻る。
Pressure accumulator 23 and pressurizing actuator 19a or 19b
It is supplied to the front wheel brakes 15a, 15b via. In addition, in the case of a reduced pressure state, the reduced pressure actuator 20a or 2
Pass through 0b and return to storage room 2e.

そして加ψ減圧アクチュエータ19a、19bおよび2
Qa+20bが両方共作動していない場合は現在の制動
圧の保持状態となる。
and pressure reduction actuators 19a, 19b and 2
If both Qa+20b are not operating, the current braking pressure is maintained.

次に、制御回路17に内蔵したマイ夛ロコ、ノピュータ
の動作を第3図に示すフローチャートに基づいて説明す
る。
Next, the operation of the personal locomotive and computer built in the control circuit 17 will be explained based on the flowchart shown in FIG.

先ず、スタートしてステップ1(81)においてイニシ
ャライズし、ステップ2(82)において後輪(非駆動
輪)の車輪速vRを演算す′る。本実施例のように後輪
の両方の車輪速が入力されているときは片刃の車輪速で
代表する。車輪速の演算方法としては、ある時間内に人
力された車輪速パルス数をPとし、測定を始めて最初の
パルスが入力された時刻T□ と最終パルスが入力され
た時刻T2より。
First, the process is started and initialized in step 1 (81), and the wheel speed vR of the rear wheels (non-driving wheels) is calculated in step 2 (82). When the wheel speeds of both rear wheels are input as in this embodiment, the wheel speed of a single edge is representative. The method for calculating the wheel speed is as follows: Let P be the number of wheel speed pulses manually input within a certain period of time, and use the time T□ when the first pulse is input after measurement starts and the time T2 when the last pulse is input.

の式で求める周期測定法がある。なおここでKは定数で
ある。ステップ3(S3)ではこれと同様な方法によシ
前右輪車輸速VFRを演算する。ステップ4(84)は
この前右輪の加・減速度GFHの演算を行う。ここで加
・減速度GFRは次の方法で算出される。即ち、マイク
ロコノピユータは所定時間周期′でステップ2(S2)
〜ステップ22(822)を実行しているので、加・減
速度は上記車輪速を用い。
There is a period measurement method that uses the formula: Note that K is a constant here. In step 3 (S3), the front right-wheel vehicle transport speed VFR is calculated in a similar manner. Step 4 (84) calculates the acceleration/deceleration GFH of the front right wheel. Here, the acceleration/deceleration GFR is calculated by the following method. That is, the microcontroller performs step 2 (S2) at a predetermined time period.
~Step 22 (822) is being executed, so the above wheel speed is used for acceleration and deceleration.

GFR=Vyn(II VFR((]        
−=−−(2)の式で代替することができる。ここでV
FR(へ)は現在の車輪速、VFR(aはコノピユータ
の一周期前の車輪速である。そしてGFR> 0ならば
現在加速中であシ、逆にGFR(0ならば減速中である
。ステップ5(85)では上記と同様な方法で前左輪車
輪速vFLを演算し、ステップ6(86,)では前左輪
加・減速度GFLを演算している。次にステップ7(8
7)においてエンジン回転数NEを演算する。演算方法
は車輪速と全く向様な周期測定法で演算できる。fcだ
し定数にの値は異なる。ステップ8(S8)では上記エ
ンジン回転数NEが所定値A□ 以上であるか否かを判
断している3、もしNE≧A□ ならばステップ9(8
9)で力ロ減速度の所定値α0.α2.スリップ量の所
定値eよ、e2を変更する。もしNE<Aユ ならばス
テップ10(SIO)でエンジノ回転数NEがA2≦N
E<A。
GFR=Vyn(II VFR(()
-=-- It can be replaced by the expression (2). Here V
FR (to) is the current wheel speed, VFR (a is the wheel speed one cycle ago of the controller. If GFR > 0, the vehicle is currently accelerating; conversely, if GFR (0), the vehicle is decelerating. In step 5 (85), the front left wheel speed vFL is calculated in the same manner as above, and in step 6 (86,) the front left wheel acceleration/deceleration GFL is calculated.Next, in step 7 (8
In 7), the engine rotation speed NE is calculated. The calculation method can be calculated using a period measurement method that is completely similar to wheel speed. The values of fc and constants are different. In step 8 (S8), it is determined whether or not the engine speed NE is greater than or equal to a predetermined value A□.If NE≧A□, step 9 (8
9), the predetermined value α0 of the deceleration is set. α2. The predetermined value e2 of the slip amount is changed. If NE<Ayu, then in step 10 (SIO) the engine rotation speed NE is A2≦N.
E<A.

であるか否かを判断する。もしこの条件が滴注されると
ステップ11(S11)で、上記ステップ9(89)と
同様にα0.α2+el+e2  の値を変更する3、
またもしA2≦NE<A工でなけれは、ステップ12(
812)でα0.α2+el*e2  に初期値を代入
する。次にステップ13(S13)では上記前右輪加・
減速度GFRが所定値α□ 以上であるか否かを判断し
ている。もしGFR2α□ であるならば、ステップ1
4(S14)においてブレーキ圧の逆流防止アクチュエ
ータを駆動する信号を出力し、ステップ15(815)
で加圧アクチュエータを駆動する信号を出力しかつ減圧
アクチュエータを非作動とするように信号を止める。ス
テップ16(Si2)では上記加・減速度GFRが所定
値α2以下であるか否かを判断している。もしGFR≦
α2であるならばステップ17(817)において減圧
アクチュエータを駆動する信号を出力しかつ加圧アクチ
ュエータを非作動とするように信号を止める。ステップ
18(818)では駆動車輪速VFRと非駆動車輪速v
Rとの差、つまシスリップ量が所定値e1 以上か否か
を判断する。もしVFR−vR≧e□−c”あるならば
ステップl 4 (814)へ行き加圧モードとなる。
Determine whether or not. If this condition is applied, in step 11 (S11), α0. Change the value of α2+el+e2 3.
Also, if A2≦NE<A, step 12 (
812) with α0. Assign the initial value to α2+el*e2. Next, in step 13 (S13), the above-mentioned front right wheel load and
It is determined whether the deceleration GFR is equal to or greater than a predetermined value α□. If GFR2α□, step 1
Step 4 (S14) outputs a signal to drive the brake pressure backflow prevention actuator, and Step 15 (815)
outputs a signal to drive the pressure actuator and stops the signal so as to disable the pressure reduction actuator. In step 16 (Si2), it is determined whether the acceleration/deceleration GFR is less than or equal to a predetermined value α2. If GFR≦
If α2, in step 17 (817), a signal is output to drive the pressure reduction actuator, and the signal is stopped so as to deactivate the pressure actuator. In step 18 (818), the driving wheel speed VFR and the non-driving wheel speed v
It is determined whether the difference from R and the amount of syslip is equal to or greater than a predetermined value e1. If VFR-vR≧e□-c”, the process goes to step l4 (814) and enters the pressurization mode.

ステップl 9 (519)では上記スリップ量が所定
fiie2.以下か否かを判断する1、もしvFRVR
≦e2  であるならばステップ17(817)へ行き
減圧モードとなる。ステツブ20(S20)は前左輪に
ついて同様なフローを有し処理される。ステップ21(
S21)においては本制御が終了したか否かを判断する
。本制御終了とは例えば、後輪車輪速が所定値以上とな
った。ブレーキペダルが踏まれた。減圧モードが所定時
間以上続いた、エツジ/回転数が所定値以下になった等
によシ判断する。制御終了と判断するとステップ22(
S22)で逆流防止アクチュエータを非作動とするよう
に信号を止める。ステップ22(822)実行後、ある
いはステップ21(S21)で制御未終了と判断すると
ステラ7’2(82)に戻シ、同様の手順で各ステップ
を実行する。
In step l9 (519), the slip amount is set to a predetermined fiie2. Determine whether or not less than or equal to 1, if vFRVR
If ≦e2, the process goes to step 17 (817) and the pressure reduction mode is entered. Step 20 (S20) has a similar flow and is processed for the front left wheel. Step 21 (
In S21), it is determined whether this control has ended. For example, the end of this control means that the rear wheel speed becomes equal to or higher than a predetermined value. The brake pedal was pressed. The determination is made based on whether the decompression mode has continued for a predetermined time or more, the edge/rotation speed has fallen below a predetermined value, etc. When it is determined that the control has ended, step 22 (
In S22), the signal is stopped so as to deactivate the backflow prevention actuator. After executing step 22 (822), or if it is determined in step 21 (S21) that the control has not been completed, the process returns to Stella 7'2 (82) and executes each step in the same manner.

この発明の車輪空転制御装置の動作を時間経過に従って
表わすと第4図に示すようになる。先ず、その(a) 
K示すように前輪片側の車輪速25.後輪片側の車輪速
26の如く発進したとし、その時のエンジン回転数は(
b)に示す28であったとする。
The operation of the wheel slip control device of the present invention is shown in FIG. 4 as time passes. First, (a)
As shown in K, the wheel speed of one front wheel is 25. Assume that the vehicle starts at a wheel speed of 26 on one side of the rear wheels, and the engine speed at that time is (
Suppose that it is 28 as shown in b).

コノピユータによジエンジン回転数信号をN工、N2の
2種類の所定値で区別するとこの信号は(5)に示す2
9になる。またエンジン回転数を無視すればコンピュー
タによシ、加速度・減速度信号は(d)。
When the engine speed signal is distinguished by two predetermined values, N and N2, this signal is 2 as shown in (5).
Becomes 9. Also, if you ignore the engine speed, the computer will calculate the acceleration/deceleration signal as shown in (d).

(e)で示す30.31となる。さらにスリップ量の2
種類の所定値を簡単のためe0=82=e とするとス
リップ量信号は(f)で示す32と演算される。
It becomes 30.31 shown in (e). In addition, the amount of slip is 2
If the predetermined value of the type is set as e0=82=e for simplicity, the slip amount signal is calculated as 32 as shown in (f).

ここで上記エツジ/回転数によシ各所定値を変更すると
加速度信号は(g)で示す33の如くエンジン回転数が
高いほど所定値α□は小さい値とする。
Here, when each predetermined value is changed according to the edge/rotation speed, the acceleration signal is as shown in 33 shown in (g), and the higher the engine speed, the smaller the predetermined value α□.

また減速度信号は(h)で示す34となシ、所定値α2
は逆に大きい値となる。さらにスリップ量信号は(i)
に示す35の如くエツジ/回転数が高いほど所定値eは
小さい値となる。つまシ、エノソン回転数が高いという
ことはエンジン出力が大きいとみなし、空転がより発生
しやすい状況、あるいはスリップ量が大きい状態と考え
る。そこで本発明では早めに制御を開始しようとする目
的でエツジ/回転数を用いる。即ち、エツジ/回転数を
無視したブレーキ圧は(j)に示す36となるが、エツ
ジ/回転数に依存させるとブレーキ圧は(8)に示す3
7となる。
In addition, the deceleration signal is 34, which is indicated by (h), and is a predetermined value α2.
On the contrary, it becomes a large value. Furthermore, the slip amount signal is (i)
As shown in 35, the higher the edge/rotation speed, the smaller the predetermined value e becomes. A high rotational speed is considered to mean a high engine output, and is considered to be a situation in which idling is more likely to occur, or a state in which the amount of slip is large. Therefore, in the present invention, edge/rotation speed is used for the purpose of starting control early. In other words, the brake pressure ignoring the edge/rotation speed is 36 as shown in (j), but if it is made dependent on the edge/rotation speed, the brake pressure is 3 as shown in (8).
It becomes 7.

なお、加・減速信号33.34とスリップ量信号35に
は優先順位が存在し、加・減速度信号の力が優先順位が
高いので、加圧、減圧間モードが存在する所は加・減速
度信号に依存する。
Note that there is a priority order for the acceleration/deceleration signals 33 and 34 and the slip amount signal 35, and the force of the acceleration/deceleration signal has a higher priority, so where the mode between pressurization and depressurization exists, the acceleration/deceleration signal Depends on speed signal.

また、本装置において、加・減圧アクチュエータを作動
させる駆動信号が第5図(a)の38の如く出力される
と、該信号に伴いブレーキ圧は39のようになる゛(第
5図(b))。
In addition, in this device, when a drive signal for operating the pressure increase/decrease actuator is output as shown at 38 in Fig. 5(a), the brake pressure becomes 39 in accordance with the signal (Fig. 5(b) )).

ここで上記駆動信号を第5図(c)の40の如くパルス
駆動すると、ブレーキ圧は41となシ、ブレーキ圧39
とは異なる圧力を有することになる(第5図(d))。
Here, when the above drive signal is pulse-driven as shown in 40 in FIG. 5(c), the brake pressure becomes 41, and the brake pressure becomes 39.
(Fig. 5(d)).

39のブレーキ加圧を急加圧とよぶと41はいわゆる緩
加圧となシ、制動制御はさらにきめ細かい制御を有する
こととなる。例えば加・減速度信号は急却減圧モードを
使用し、スリップ量信号は緩加・減圧モードとするとブ
レーキ圧は第4図(鎖の42に示すようになる。
If the brake pressurization at 39 is called sudden pressurization, then 41 is what is called slow pressurization, and the brake control has even more fine-grained control. For example, if the acceleration/deceleration signal uses the rapid acceleration/depressurization mode and the slip amount signal uses the slow acceleration/depressurization mode, the brake pressure will be as shown in FIG. 4 (chain 42).

なお、本装置は制動時に車輪がロックしそうになると制
動圧を減圧アクチュエータ6の作動にて減圧し、その減
圧によって車輪の回転が復帰すると再び制動圧を加圧ア
クチュエータ5の作動によって加圧するというアンチス
キッド制御にも使用可能であることは言うまでもない。
In addition, this device has an anti-static system in which when the wheels are about to lock during braking, the brake pressure is reduced by the operation of the pressure reduction actuator 6, and when the rotation of the wheel is restored due to the pressure reduction, the braking pressure is increased again by the operation of the pressure increase actuator 5. Needless to say, it can also be used for skid control.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の車輪空転制御装置によ
れば、車輪の空転を検知し、加・減速度とスリップ量お
よびエンジン回転数に応じてその制動圧を駆動車輪の両
輪に対して各々独立に制御するよう構成したので、駆動
車輪の空転防止の制御が確冥に得られ、車両の清らかな
走行をもたらすことが可能である。また、空転によって
無駄になっている車輪トルクをよシ適切に駆動トルクと
して利用できる効果がある。
As explained above, according to the wheel slip control device of the present invention, wheel slip is detected and the braking pressure is applied to each of the two drive wheels according to acceleration/deceleration, slip amount, and engine speed. Since the wheels are configured to be controlled independently, it is possible to surely control the driving wheels to prevent them from spinning, and it is possible to bring about clean running of the vehicle. Additionally, wheel torque that is wasted due to wheel slipping can be used more appropriately as driving torque.

【図面の簡単な説明】 第1図は発明の車輪空転制御装置の構成を示すブロック
図、第2図はこの発明の一実施例による車輪空転制御装
置の構成図、第3図はマイクロコンピュータの動作を示
す制御プログラムのフローチャート、第4図はこの発明
の車輪空転制御装置の動作波形図、第5図は加圧アクチ
ュエータ駆動信号出力に対するブレーキ圧の変化を表わ
す図である。 ■・・・駆動車輪、2・・・駆動車輪速検出手段、3・
・・加減速度演算手段、4・・・制動器、5・・・加圧
アクチュエータ、6・・・減圧アクチュエータ、7・・
・非駆動車輪、8・・・非駆動車輪速検出手段、9・・
・加圧信号判定手段、10・・・減圧信号判定手段、1
1・・・加圧信号出力手段、12・・・減圧信号出力手
段、13・・・加減圧信号出力判定手段、14・・・エ
ンジン回転数検出手段、24・・・エンジンのイグニッ
ション。 25・・・駆動車輪速、26・・・非駆動車輪速、29
・・・工/ジ/回転数信号、30.33・・・加速度信
号。 31.34・・・減速度信号、32.35・・・スリッ
プ量信号、38.40・・・加圧アクチュエータ駆動信
号。
[Brief Description of the Drawings] Fig. 1 is a block diagram showing the configuration of a wheel slip control device according to the invention, Fig. 2 is a block diagram showing the configuration of a wheel slip control device according to an embodiment of the invention, and Fig. 3 is a block diagram showing the configuration of a wheel slip control device according to an embodiment of the invention. FIG. 4 is a flowchart of a control program showing the operation, FIG. 4 is an operation waveform diagram of the wheel slip control device of the present invention, and FIG. 5 is a diagram showing changes in brake pressure with respect to pressure actuator drive signal output. ■... Drive wheel, 2... Drive wheel speed detection means, 3.
... Acceleration/deceleration calculating means, 4... Brake device, 5... Pressure actuator, 6... Pressure reduction actuator, 7...
- Non-driven wheel, 8... Non-driven wheel speed detection means, 9...
- Pressure signal determination means, 10...Reduction signal determination means, 1
DESCRIPTION OF SYMBOLS 1... Pressurization signal output means, 12... Pressure reduction signal output means, 13... Pressure reduction signal output determination means, 14... Engine rotation speed detection means, 24... Engine ignition. 25... Drive wheel speed, 26... Non-drive wheel speed, 29
...Eng/J/rotation speed signal, 30.33...Acceleration signal. 31.34...Deceleration signal, 32.35...Slip amount signal, 38.40...Pressure actuator drive signal.

Claims (1)

【特許請求の範囲】[Claims] 車両の駆動車輪の車輪速を検出する駆動車輪速検出手段
、検出された駆動車輪速に基づいて上記駆動車輪の加・
減速度を演算する加減速度演算手段、上記駆動車輪の制
動を行う制動器、この制動器の制動圧を増加させる加圧
アクチュエータ、上記制動器の制動圧を減少させる減圧
アクチュエータ、非駆動車輪側の少なくとも一つの車輪
速を検出する非駆動車輪速検出手段、この非駆動車輪速
に対し上記駆動車輪速が所定値以上であるかを判定する
加圧信号判定手段、上記非駆動車輪速に対し上記駆動車
輪速が所定値以下であるかを判定する減圧信号判定手段
、上記駆動車輪速の加速度が所定値以上の場合に上記加
圧アクチュエータに駆動信号を出力する加圧信号、出力
手段、上記駆動車輪速の減速度が所定値以下の場合に上
記減圧アクチュエータに駆動信号を出力する減圧信号出
力手段、上記加圧信号判定手段が信号を出力しかつ上記
減圧信号出力手段の出力がない場合に上記加圧アクチュ
エータを駆動する信号を出力し、上記減圧信号判定手段
が信号を出力しかつ上記加圧信号出力手段の出力がない
場合に上記減圧アクチュエータを駆動する信号を出力す
る加減圧信号出力判定手段、上記加圧信号判定手段と減
圧信号判定手段と加圧信号出力手段と減圧信号出力手段
とに用いられる上記所定値をエンジン回転数に基づいて
変更するエンジン回転数検出手段からなる駆動車輪の制
御装置を駆動車輪の両輪に対して各々独立に設けたこと
を特徴とする車輪空転制御装置。
Driving wheel speed detection means for detecting the wheel speed of the driving wheels of the vehicle, and adjusting the driving wheel speed based on the detected driving wheel speed.
Acceleration/deceleration calculating means for calculating deceleration, a brake for braking the driving wheels, a pressurizing actuator for increasing the braking pressure of the brake, a pressure reducing actuator for decreasing the braking pressure for the brake, and at least one on the non-driving wheel side. non-driving wheel speed detection means for detecting wheel speed; pressurization signal determining means for determining whether the driving wheel speed is greater than or equal to a predetermined value with respect to the non-driving wheel speed; and the driving wheel speed relative to the non-driving wheel speed. a pressure reduction signal determining means for determining whether or not the driving wheel speed is below a predetermined value; Depressurization signal output means outputs a drive signal to the depressurization actuator when the deceleration is below a predetermined value, and when the pressurization signal determination means outputs a signal and there is no output from the depressurization signal output means, the depressurization actuator pressure reduction signal output determination means for outputting a signal for driving the pressure reduction actuator when the pressure reduction signal determination means outputs a signal and there is no output from the pressure reduction signal output means; Drives a drive wheel control device comprising an engine rotation speed detection means that changes the predetermined values used for the pressure signal determination means, the pressure reduction signal determination means, the pressure increase signal output means, and the pressure reduction signal output means based on the engine rotation speed. A wheel slip control device characterized in that it is provided independently for both wheels of a wheel.
JP13571084A 1984-06-29 1984-06-29 Wheel idling controller Granted JPS6116161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13571084A JPS6116161A (en) 1984-06-29 1984-06-29 Wheel idling controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13571084A JPS6116161A (en) 1984-06-29 1984-06-29 Wheel idling controller

Publications (2)

Publication Number Publication Date
JPS6116161A true JPS6116161A (en) 1986-01-24
JPH0364336B2 JPH0364336B2 (en) 1991-10-04

Family

ID=15158073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13571084A Granted JPS6116161A (en) 1984-06-29 1984-06-29 Wheel idling controller

Country Status (1)

Country Link
JP (1) JPS6116161A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227864A (en) * 1986-03-29 1987-10-06 Hino Motors Ltd Power steering used in vehicle
US4796959A (en) * 1986-07-10 1989-01-10 Alfred Teves Gmbh Brake system with control of brake slip and traction slip
JPH026254A (en) * 1988-06-27 1990-01-10 Honda Motor Co Ltd Device for controlling slip of driving wheel of vehicle
JP2007075388A (en) * 2005-09-15 2007-03-29 Chugoku Electric Power Co Inc:The Sprinkler and security room with sprinkler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227864A (en) * 1986-03-29 1987-10-06 Hino Motors Ltd Power steering used in vehicle
JPH0587428B2 (en) * 1986-03-29 1993-12-16 Hino Motors Ltd
US4796959A (en) * 1986-07-10 1989-01-10 Alfred Teves Gmbh Brake system with control of brake slip and traction slip
JPH026254A (en) * 1988-06-27 1990-01-10 Honda Motor Co Ltd Device for controlling slip of driving wheel of vehicle
JP2007075388A (en) * 2005-09-15 2007-03-29 Chugoku Electric Power Co Inc:The Sprinkler and security room with sprinkler

Also Published As

Publication number Publication date
JPH0364336B2 (en) 1991-10-04

Similar Documents

Publication Publication Date Title
US7292924B2 (en) Vehicle stability control enhancement using tire force characteristics
JP2002002470A (en) Traction controller for vehicle
JPS63106167A (en) Wheel slip controller and control method of car
US4877295A (en) Antiskid control device
JPH01145253A (en) Antilock controller for four-wheel drive vehicle
US20040158368A1 (en) Method and device for recognising raised wheels of a vehicle
US6535809B1 (en) Vehicle engine torque control with engine drag control mode
JP3324779B2 (en) Vehicle traction control method
JPH0350059A (en) Braking pressure control device
JP2500857B2 (en) Anti-skidding control device
JPS6116161A (en) Wheel idling controller
JPS6116164A (en) Wheel slip controller
JP3295974B2 (en) Anti-skid control device
JPS62146758A (en) Dummy vehicle speed generator of wheel slip preventive device
JPS62203863A (en) Antiskid control device for vehicle
JP2650459B2 (en) Acceleration slip control device
JPH0811565A (en) Differential controller for vehicle
JP3478102B2 (en) Automobile slip rate control device
JPH0436031A (en) Driving force controller for vehicle
JP2743490B2 (en) Anti-skid control device
JPS6116162A (en) Idling controller of wheel
JP2800263B2 (en) Anti-skid control device
JP2712715B2 (en) Anti-skid control device
JPH01145241A (en) Drive power controller for vehicle
JPH0417737A (en) Driving force controller for vehicle