JPS6116129B2 - - Google Patents

Info

Publication number
JPS6116129B2
JPS6116129B2 JP1104181A JP1104181A JPS6116129B2 JP S6116129 B2 JPS6116129 B2 JP S6116129B2 JP 1104181 A JP1104181 A JP 1104181A JP 1104181 A JP1104181 A JP 1104181A JP S6116129 B2 JPS6116129 B2 JP S6116129B2
Authority
JP
Japan
Prior art keywords
molded product
mold
rough
base material
insulating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1104181A
Other languages
Japanese (ja)
Other versions
JPS57124805A (en
Inventor
Tadayoshi Murakami
Kojiro Ootsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1104181A priority Critical patent/JPS57124805A/en
Publication of JPS57124805A publication Critical patent/JPS57124805A/en
Publication of JPS6116129B2 publication Critical patent/JPS6116129B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulating Bodies (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、耐熱性・不燃性を有し、かつ電気
絶縁性、耐電弧性に優れた例えば吹消型回路遮断
器の消弧板、車両用制御器の絶縁仕切り板、車両
抵抗器の絶縁座などに好適に使用出来る無機質系
絶縁物の製造方法に関する。 ところで無機質繊維および無機質紛末にホウ酸
と酸化亜鉛もしくは酸化カルシウムからなる結合
材を組合わせて絶縁基材を作成した後、加熱加圧
成形して得る絶縁物の製造方法は、特公昭54−
7359号公報等で既に知られている。 これらに開示されている方法によれば、130〜
200℃に昇温している金型時に絶縁基材を充填
し、100〜300Kg/cm2の加圧力で成形物を得る事が
説明されている。すなわち結合材の主成分である
ホウ酸の熱変化による溶融で、補強材料を結着さ
せ、結合材の成分として介在している酸化亜鉛、
酸化カルシウム等と含水ホウ酸塩を形成する事に
よりホウ酸の熱変化後の水に耐する可逆性を無く
し耐水性の向上を計り、かつ含水ホウ酸塩を形成
する事で、例えばホウ酸の熱変化の最終の形とし
て無水ホウ酸になつた場合は約450℃の温度で溶
融するがこの場合、含水ホウ酸塩を形成すること
で、それ以上の温度になつても溶融しないものに
なり耐熱性の向上をも計つている。 ところで緻密な成形物ならびに耐水性、耐熱性
の優れたものを得るためには、ホウ酸の熱変化と
それに伴い発生する分解水の存在が非常に重要で
ある。すなわち成形時分解水を成形物中から極力
外部へ飛散させないようにして成形すればホウ酸
の熱変化による変成形が水との共存下で溶融を呈
し、結着効果を発揮し、かつ、酸化亜鉛、酸化カ
ルシウムと反応して含水ホウ酸塩を形成し易い
が、逆に成形時分解水が成形物中から自由に外部
に飛散するような状態では十分な結着効果を発揮
し難く、かつ含水ホウ酸塩を形成し難いため得ら
れた成形物は、耐水性、耐熱性に劣る場合があ
る。 しかるに本発明者らはこれらの事実をもとに従
来公知の製造方法を検討した結果、従来の製造方
法に問題点がある事が判明した。従来の製造方法
では、昇温した金型等に絶縁基材を充填し、加圧
して成形物を得る方法がとられている。 この方法による場合、絶縁基材が金型などに充
填された時点から結合材としてのホウ酸が分解を
開始し、加圧されるまでの間、金型外へ分解した
水が飛散する。(正ホウ酸が90℃から熱変化を開
始する)とくに金型壁と接した絶縁基材の結着効
果を発揮するホウ酸が最悪の場合、熱変化を終え
結着効果の乏しいものとなつた時点で加圧される
事になり、成形物の表面層は、当然しまりの悪い
ものとなり、この傾向は温度の高い場合、あるい
は成形物の厚物を得ようとする場合に顕著に現わ
れる。 成形物の表面層が多孔質である場合、特性的に
は強度はもちろん、多湿雰囲気下での電気絶縁性
などが劣り、また寸法形状などの点では寸法不良
を発生し易い。また多孔質のみにとどまらずホウ
酸と酸化亜鉛などが反応し難いため含水ホウ酸塩
は形成されず湿気等の水分により加水分解を受け
易く、かつ耐熱性の劣るものである。 以上のごとく従来の製造方法では、成形物の外
周部分には欠陥がありそのため表面層を用途によ
つては0.5〜1.0mm程度研磨して使用するが、成形
物が凹凸形状を有する場合など、加工が複雑とな
り、製造が困難となる場合がある。 この発明は従来品に伴う欠陥を排斥するために
鋭意研究した結果なされたものであり、成形物の
表面層まで均一にしまり、かつ厚物品凹凸形状品
などを問題なく得る事ができまた特性の安定な成
形物を得るための製造方法に関するものである。 この発明は、絶縁基材を100〜130℃の温度で加
圧し粗成形物をつくり、この粗成形物を160〜250
℃の温度で加圧して成形物を得ることにより、成
形物の表面層まで緻密なしまりを有したものを得
ることを骨子とするものであり、前記従来品の欠
陥をすべて排斥するものである。 粗成形物をつくる理由についてであるが特に厚
物品、大形品の場合、絶縁基材をそのまま加熱さ
れた金型に入れる従来の方法では充填する時間が
長いため、加圧するまでの時間が当然長く、それ
までに絶縁基材中の特にホウ酸が熱変化を呈する
ためであり、前記欠陥が現われ易い。粗成形物を
作成しておれば短時間に金型内に挿入でき加圧出
来るため、ホウ酸の熱変化に伴う分解水分は外部
に飛散し難いため、有効に働き、成形物の外周部
まで緻密なものを容易に得る事が出来る。なお粗
成形物を得る方法として100〜130℃の温度で加圧
する理由は、常温で加圧しても取扱いが悪く、形
状破壊をおこし易いもので、この発明の方法を用
いることにより、取扱いが非常に容易な強度を有
したものを得る。強度を具備する理由は100〜130
℃の温度で加圧することにより、絶縁基材中のホ
ウ酸が1部熱変化し結着効果を有し、粗成形物の
形状を維持する強度を与えているものと思われる
が大部分は未分解のままで残つている。100℃未
満の温度では、粗成形物の強度が乏しく取扱いが
困難である。130℃を越えるとホウ酸の熱変化が
活発となり、また一部含水ホウ酸塩を形成するた
め硬化し、つぎの成形の段階で流れの悪いものと
なり、従来品の欠陥を排斥することが困難であ
る。 加圧力としては100Kg/cm2以上であれば十分を
取扱い上支障のない強度を有した粗成形物を得る
ことができる。 この粗成形物は次の成形までの間例えば空調室
またはシリカゲル中など水分の少ない場所で保管
するのが好ましい。 粗成形物をつくることにより保管場所の面積な
ども少なくすることができる。つぎに粗成形物を
160〜250℃の加熱された金型等に挿入し、加圧し
て目的とする成形物を得るが、ホウ酸が最も活発
に熱変化する温度で加圧する事が緻密な成形品を
得る事になり、上記範囲が適当である。また粗成
形物を金型に挿入したら直に加圧することが必要
であり本発明により粗成形物を得て、充填時間を
大幅に短縮しても粗成形物を加圧する時間が長い
と、温度が高いためホウ酸の熱変化が進み、従来
品と同様な結果になり易い。しかるに粗成形物を
金型に挿入したら少なくとも5〜10秒以内に加圧
されなければならない。 ところで温度が160℃未満の場合、粗成形物が
常温から昇温される過程にあるため、加圧時間が
長く必要であり、また得られる成形物もしまりの
良いものが得られ難い。250℃を越えるとホウ酸
の熱変化が急激に進むため、粗成形品を金型等に
挿入後加圧を極めて早くかけないと、従来品と余
り差異のないものとなり、好しくない。最も操作
が容易でかつ均一なしまりを有する成形物を得る
温度範囲は上記範囲が好しい。 本発明に用いる絶縁基材であるが、マイカ紛
末、ガラス繊維、アスベスト繊維以外にセラミツ
クフアイバー、岩綿など補強効果を有する絶縁材
料であれば使用できるものである。また補強材料
以外に電気絶縁性を有する金属酸化物およびそれ
らの水酸化物、炭酸塩など要求性能に応じて組合
わせて用いる事ができる。ホウ酸を主体とした結
合材としては、正ホウ酸または正ホウ酸とメタホ
ウ酸の混在物、もしくは正ホウ酸と無水ホウ酸の
混在物をそれぞれ酸化亜鉛、あるいは酸化カルシ
ウムなどと組合せた混合物を用いることができ
る。 また上記材料で構成される絶縁基材に熱硬化性
ならびに熱可塑性の樹脂紛末を添加したものも使
用することもできる。 つぎにこの発明を実施例ならびに比較例を用い
てさらに具体的に説明する。 実施例 1 天然金雲母紛末(粒度60〜100メツシユ)350
g、正ホウ酸(粒度40〜60メツシユ)82.2g、無
水ホウ酸(粒度40〜60メツシユ)78.5g、酸化亜
鉛(粒度300メツシユ以下)49.3gを石川式播潰
機に入れ10分間混合して絶縁基材と調製した。つ
ぎに高さ100mm、幅124.5mm、長さ124.5mmの粗成
形金型をプレスの熱盤間で120℃に加熱し、前記
絶縁基材を金型内に充填し、加圧力200Kg/cm2
10分間加圧した。つぎに金型よりとりだし厚さ約
15mm、幅124.5mm、長さ124.5mmの粗成形物を得
た。一方成形金型として高さ50mm、幅125mm、長
さ125mmで中央位置に深さ3mm、外径50mmの突起
部を有した金型をプレスの熱盤間で185℃に昇温
させ、そのなかに前記粗成形物を入れ直に300
Kg/cm2の加圧力で加圧した。加圧時間は20分間お
こなつた後金型を80℃以下に冷却してから加圧を
とき、成形物をとりだした。平板の中央部に高さ
3mm、外径50mmの突起部を有する成形物を得た。
同様にして合計3枚の成形物を作成し、80℃から
200℃まで20℃間隔で段階的に昇温させ、各々3
時間保持して熱処理をおこない、本発明品を得
た。 実施例 2 絶縁基材の調製は実施例1と同様にした。粗成
形物を得るため粗成形金型の温度を100℃とし加
圧力を300Kg/cm2で10分間加圧し厚さ約15mm、幅
124.5mm、長さ124.5mmの粗成形物を得た。以下実
施例1と同様にして平板の中央部に高さ3mm、外
径50mmの突起部を有する成形物を3枚作成し、以
下実施例1と同じ熱処理をおこない本発明品を得
た。 実施例 3 絶縁基材の調製は実施例1と同様にした。粗成
形物を得るため粗成形金型の温度を130℃とし加
圧力を200Kg/cm2で5分間加圧し、厚さ約14mm、
幅124.5mm、長さ124.5mmの粗成形物を得た。以下
実施例1と同様にして平板の中央部に高さ3mm、
外径50mmの突起部を有する成形物を3枚作成し
た。以下実施例1と同じ熱処理をおこない本発明
品を得た。 実施例 4 実施例1と同様にして粗成形物を得た後実施例
1と同じ成形金型を用い金型温度250℃にして粗
成形物を入れ、加圧力300Kg/cm2で20分間おこな
い、以下実施例1と同様にして、平板の中央部に
高さ3mm、外径50mmの突起部を有する成形物を3
枚作成した。以下実施例1と同じ熱処理をおこな
い本発明品を得た。 実施例 5 実施例1と同様にして粗成形物を得た後、実施
例1と同じ成形金型を用い、金型温度160℃にし
て粗成形物を入れ、加圧力300Kg/cm2で20分間お
こない、以下実施例1と同様にして、平板の中央
部に高さ3mm、外径50mmの突起部を有する成形物
を3枚作成した。以下実施例1と同じ熱処理をお
こない本発明品を得た。 実施例 6 実施例1の天然金雲母紛末の代りにアスベスト
繊維(ジヨンスマンビル製5クラス品)を用いた
以外は、実施例1と同様にして本発明品3枚作成
した。 実施例 7 実施例1の天然金雲母紛末の代りにガラス繊維
(旭フアイバーKK製繊維長3mm)を用いた以外
は実施例1と同様にして本発明品3枚作成した。 実施例 8 天然金雲母紛末(粒度60〜100メツシユ)304.3
g、正ホウ酸(粒度40〜60メツシユ)71.5g、無
水ホウ酸(粒度40〜60メツシユ)16.1g、酸化亜
鉛(粒度300メツシユ以下)42.8gを石川式播潰
機で10分間混合した。ついでポリフエニレンサル
フアイド樹脂紛末(粒度200メツシユ以下)を
65.0g加えさらに5分間混合して絶縁基材を調整
した。つぎに実施例1で使用した粗成形金型を用
い、プレス熱盤間で125℃に加熱し、前記絶縁基
材を金型内に充填し、加圧力300Kg/cm2で10分間
加圧した。 つぎに金型よりとりだし、厚さ約15mm、幅
124.5mm、長さ124.5mmの粗成形物を得た。 一方成形金型として高さ50mm、幅125mm、長さ
125mmで中央位置に深さ3mm、外径50mmの突起部
を有した金型をプレスの熱盤間で200℃に昇温さ
せ、その中に前記粗成形物を入れ、直に300Kg/
cm2の加圧力で20分間加圧した後、金型を80℃以下
に冷却してから加圧をとき成形物をとりだした。
平板の中央部に高さ3mm、外径50mmの突起部を有
する成形物を得た。同様にして合計3枚の成形物
を作成し、80℃から350℃まで5℃/minの昇温
速度で上げ5時間保持した後、電気炉よりとりだ
し本発明品を得た。 比較例 1 実施例1と同じ組成の絶縁基材を作成した後、
粗成形物を作成せずに、前記絶縁基材を185℃昇
温している成形金型に充填し、直に300Kg/cm2
加圧力で20分間加圧した後、金型を80℃以下に冷
却してから加圧をとき、成形物をとりだした。平
板の中央部に高さ3mm、外径50mmの突起部を有す
る成形物を得た。同様にして合計3枚の成形物を
作成し、以下実施例1と同じ熱処理をおこない比
較品を作成した。 比較例 2 実施例1と同じ組成の絶縁基材を作成した後、
実施例1で使用した粗成形金型を常温にして、前
記絶縁基材を金型内に充填し、加圧力100Kg/cm2
で10分間加圧した。金型よりのとりだしは特に丁
寧におこなつた。粗成形物形状維持が困難なため
厚さ1.5mmのステンレス鉄板上にのせて取扱いを
行なつた。粗成形物の形状は触れるとくずれるた
め測定しなかつたが、粗成形金型の寸法より幅、
長さとも大きくなつていた。以下実施例1と同様
にして、比較品を3枚作成した。 比較例 3 実施例1と同じ組成の絶縁基材を作成した後、
実施例1で使用した粗成形金型を80℃にして前記
絶縁基材を金型内に充填し、加圧力100Kg/cm2
10分間加圧した。粗成形物の取扱いは比較例2と
同様にした。以下実施例1と同様にして比較品を
3枚作成した。 比較例 4 実施例1と同じ組成の絶縁基材を作成した後、
実施例1で使用した粗成形金型を150℃にして前
記絶縁基材を金型内に充填し、加圧力100Kg/cm2
で10分間加圧した。粗成形物の厚さ12mm、幅
124.5mm、長さ124.5mmの形状を有していた。以下
実施例1と同様にして比較品3枚を作成した。実
施例および比較例で得たものについて測定された
特性を第1表に示す。
This invention has heat resistance, nonflammability, and excellent electrical insulation and arc resistance, such as arc extinguishing plates for blowout type circuit breakers, insulating partition plates for vehicle controllers, and insulating seats for vehicle resistors. The present invention relates to a method for manufacturing an inorganic insulator that can be suitably used for such purposes. By the way, a method for manufacturing an insulating material by combining inorganic fibers and inorganic powder with a binder made of boric acid and zinc oxide or calcium oxide to create an insulating base material, and then molding it under heat and pressure is described in Japanese Patent Publication No. 1973-
This is already known from Publication No. 7359, etc. According to the methods disclosed in these, 130~
It is explained that an insulating base material is filled into a mold while the temperature is being raised to 200°C, and a molded product is obtained by applying a pressure of 100 to 300 kg/cm 2 . In other words, the reinforcing material is melted by thermal change of boric acid, which is the main component of the binder, and zinc oxide, which is present as a component of the binder, binds the reinforcing material.
By forming a hydrated borate with calcium oxide, etc., we aim to improve water resistance by eliminating the reversibility of boric acid to withstand water after thermal change, and by forming a hydrated borate, for example, When it becomes boric anhydride as the final form of thermal change, it melts at a temperature of about 450°C, but in this case, it forms a hydrous borate that does not melt even at higher temperatures. It is also designed to improve heat resistance. Incidentally, in order to obtain a dense molded product and one with excellent water resistance and heat resistance, the thermal change of boric acid and the presence of decomposed water generated as a result of it are very important. In other words, if the molding is done in such a way that the decomposed water is not scattered from the inside of the molded product to the outside as much as possible, the deformation caused by the thermal change of boric acid will melt in the coexistence with water, exhibiting a binding effect, and preventing oxidation. It easily reacts with zinc and calcium oxide to form a hydrated borate, but on the other hand, it is difficult to exhibit sufficient binding effect in conditions where decomposed water during molding freely scatters to the outside from the molded product. Since it is difficult to form a hydrous borate, the obtained molded product may have poor water resistance and heat resistance. However, as a result of examining conventionally known manufacturing methods based on these facts, the present inventors found that the conventional manufacturing methods had problems. In conventional manufacturing methods, an insulating base material is filled into a heated mold or the like, and a molded article is obtained by applying pressure. In this method, boric acid as a binder starts to decompose from the moment the insulating base material is filled into a mold, and the decomposed water scatters out of the mold until pressurization is applied. (Orthoboric acid starts to change thermally at 90°C.) In the worst case, boric acid, which exerts a binding effect on the insulating base material in contact with the mold wall, finishes thermally changing and becomes less effective in binding. As soon as the temperature is high, pressure is applied, and the surface layer of the molded product naturally becomes less compact, and this tendency becomes more noticeable when the temperature is high or when trying to obtain a thick molded product. When the surface layer of a molded product is porous, it has poor properties such as strength and electrical insulation in a humid atmosphere, and is likely to have dimensional defects in terms of size and shape. In addition to being porous, boric acid and zinc oxide are difficult to react with, so hydrated borates are not formed, and they are easily hydrolyzed by moisture such as moisture, and have poor heat resistance. As mentioned above, in the conventional manufacturing method, there are defects on the outer periphery of the molded product, so the surface layer is polished by about 0.5 to 1.0 mm depending on the application. Processing may be complicated and manufacturing may be difficult. This invention was made as a result of intensive research to eliminate the defects associated with conventional products, and it is possible to uniformly compact down to the surface layer of molded products, and to obtain thick products with uneven shapes without any problems. The present invention relates to a manufacturing method for obtaining a stable molded product. In this invention, an insulating base material is pressurized at a temperature of 100 to 130°C to make a rough molded product, and this rough molded product is heated to a temperature of 160 to 250°C.
The main idea is to obtain a molded product with dense compaction down to the surface layer by pressurizing it at a temperature of °C, and eliminates all the defects of the conventional products. . As for the reason for making rough molded products, especially in the case of thick or large products, the conventional method of putting the insulating base material as it is into a heated mold takes a long time to fill, so of course it takes a long time to pressurize it. This is because the boric acid in the insulating base material undergoes thermal changes by then, and the defects are likely to appear. If a rough molded product is made, it can be inserted into the mold in a short time and pressurized, so the decomposition water due to the thermal change of boric acid is difficult to scatter to the outside, so it works effectively and reaches the outer periphery of the molded product. You can easily obtain detailed objects. The reason for pressurizing at a temperature of 100 to 130°C to obtain a rough molded product is that even if it is pressed at room temperature, it is difficult to handle and easily breaks its shape. Obtain something with easy strength. The reason for having strength is 100-130
By pressurizing at a temperature of ℃, some of the boric acid in the insulating base material is thermally changed and has a binding effect, giving it the strength to maintain the shape of the rough molded product, but most of it is It remains undecomposed. At temperatures below 100°C, the strength of the crude molded product is poor and handling is difficult. When the temperature exceeds 130℃, the thermal change of boric acid becomes active, and it hardens to form a partially hydrated borate, which causes poor flow in the next molding stage, making it difficult to eliminate the defects of conventional products. It is. As long as the pressing force is 100 kg/cm 2 or more, a rough molded product can be obtained that has enough strength to handle without any problems. It is preferable to store this crude molded product in a place with low moisture content, such as in an air-conditioned room or in a silica gel chamber, until the next molding. By making rough molded products, the area required for storage can also be reduced. Next, the rough molded product
It is inserted into a mold heated to 160-250℃ and pressurized to obtain the desired molded product. Pressure is applied at the temperature at which boric acid undergoes the most active thermal change to obtain a dense molded product. Therefore, the above range is appropriate. In addition, it is necessary to pressurize the rough molded product immediately after inserting it into the mold, and even if the rough molded product is obtained by the present invention and the filling time is significantly shortened, if the time to pressurize the rough molded product is long, the temperature Due to the high temperature, the thermal change of boric acid progresses, and results are likely to be similar to those of conventional products. However, once the rough molded product is inserted into the mold, it must be pressurized within at least 5 to 10 seconds. By the way, when the temperature is less than 160°C, the crude molded product is in the process of being heated from room temperature, so a long pressurizing time is required, and it is difficult to obtain a molded product with good firmness. If the temperature exceeds 250°C, the thermal change of boric acid will proceed rapidly, so unless pressurization is applied very quickly after inserting the rough molded product into a mold, the product will not be much different from conventional products, which is not desirable. The above-mentioned temperature range is preferable for obtaining molded products that are easiest to operate and have uniform compactness. As the insulating base material used in the present invention, in addition to mica powder, glass fiber, and asbestos fiber, any insulating material that has a reinforcing effect such as ceramic fiber or rock wool can be used. In addition to reinforcing materials, electrically insulating metal oxides, their hydroxides, carbonates, etc. can be used in combination depending on the required performance. As a binder mainly composed of boric acid, a mixture of orthoboric acid, a mixture of orthoboric acid and metaboric acid, or a mixture of orthoboric acid and boric anhydride combined with zinc oxide or calcium oxide, etc. is used. Can be used. It is also possible to use an insulating base material made of the above materials to which thermosetting or thermoplastic resin powder is added. Next, the present invention will be explained in more detail using Examples and Comparative Examples. Example 1 Natural phlogopite powder (particle size 60-100 mesh) 350
g, orthoboric acid (particle size 40-60 mesh), 82.2 g, anhydrous boric acid (particle size 40-60 mesh) 78.5 g, and zinc oxide (particle size 300 mesh or less) 49.3 g were placed in an Ishikawa-type crusher and mixed for 10 minutes. An insulating base material was prepared. Next, a rough forming mold with a height of 100 mm, a width of 124.5 mm, and a length of 124.5 mm is heated to 120°C between the hot plates of a press, and the insulating base material is filled into the mold, and a pressing force of 200 kg/cm 2 is applied. in
Pressure was applied for 10 minutes. Next, take it out from the mold to a thickness of approx.
A crude molded product measuring 15 mm, width 124.5 mm, and length 124.5 mm was obtained. On the other hand, a mold with a height of 50 mm, a width of 125 mm, a length of 125 mm, and a projection with a depth of 3 mm and an outer diameter of 50 mm in the center was heated to 185°C between the hot platens of a press, and Place the rough molded product directly into the
Pressure was applied at a pressure of Kg/cm 2 . After applying pressure for 20 minutes, the mold was cooled to 80° C. or lower, then pressurization was applied, and the molded product was taken out. A molded article having a protrusion with a height of 3 mm and an outer diameter of 50 mm at the center of the flat plate was obtained.
In the same way, a total of 3 molded products were made and heated to 80°C.
The temperature was raised stepwise at 20°C intervals up to 200°C, and each
A product of the present invention was obtained by heat treatment for a certain period of time. Example 2 The insulating base material was prepared in the same manner as in Example 1. In order to obtain a rough molded product, the temperature of the rough molding mold was set to 100℃, and the pressure was applied for 10 minutes at a pressure of 300 kg/cm 2 to a thickness of approximately 15 mm and a width.
A crude molded product with a length of 124.5 mm and a length of 124.5 mm was obtained. Thereafter, in the same manner as in Example 1, three molded products each having a protrusion with a height of 3 mm and an outer diameter of 50 mm in the center of a flat plate were prepared, and then heat treated in the same manner as in Example 1 to obtain a product of the present invention. Example 3 The insulating base material was prepared in the same manner as in Example 1. In order to obtain a rough molded product, the temperature of the rough molding mold was set to 130℃, and the pressure was applied for 5 minutes at a pressure of 200 kg/cm 2 to a thickness of approximately 14 mm.
A rough molded product with a width of 124.5 mm and a length of 124.5 mm was obtained. Thereafter, in the same manner as in Example 1, a height of 3 mm was placed at the center of the flat plate.
Three molded products having protrusions with an outer diameter of 50 mm were made. Thereafter, the same heat treatment as in Example 1 was performed to obtain a product of the present invention. Example 4 After obtaining a rough molded product in the same manner as in Example 1, using the same molding mold as in Example 1, the mold temperature was set to 250°C, the rough molded product was put in, and the molding was carried out at a pressure of 300 kg/cm 2 for 20 minutes. Then, in the same manner as in Example 1, three molded products having a protrusion with a height of 3 mm and an outer diameter of 50 mm in the center of a flat plate were prepared.
I created one. Thereafter, the same heat treatment as in Example 1 was performed to obtain a product of the present invention. Example 5 After obtaining a rough molded product in the same manner as in Example 1, using the same molding mold as in Example 1, the mold temperature was set to 160°C, the rough molded product was put in, and the molded product was heated at a pressure of 300 kg/cm 2 for 20 minutes. After that, in the same manner as in Example 1, three molded products each having a protrusion with a height of 3 mm and an outer diameter of 50 mm in the center of a flat plate were created. Thereafter, the same heat treatment as in Example 1 was performed to obtain a product of the present invention. Example 6 Three pieces of products of the present invention were prepared in the same manner as in Example 1, except that asbestos fiber (Class 5 product manufactured by Johns Manville) was used instead of the natural phlogopite powder in Example 1. Example 7 Three products of the present invention were prepared in the same manner as in Example 1, except that glass fiber (manufactured by Asahi Fiber KK, fiber length: 3 mm) was used instead of the natural phlogopite powder in Example 1. Example 8 Natural phlogopite powder (particle size 60-100 mesh) 304.3
g, orthoboric acid (particle size: 40 to 60 mesh), 71.5 g, anhydrous boric acid (particle size: 40 to 60 mesh), 16.1 g, and zinc oxide (particle size: 300 mesh or less), 42.8 g were mixed for 10 minutes using an Ishikawa crusher. Next, add polyphenylene sulfide resin powder (particle size of 200 mesh or less).
65.0g was added and mixed for an additional 5 minutes to prepare an insulating base material. Next, using the rough forming mold used in Example 1, the mold was heated to 125°C between press heating plates, the insulating base material was filled into the mold, and the mold was pressurized at a pressure of 300 kg/cm 2 for 10 minutes. . Next, take it out from the mold, about 15mm thick and wide.
A crude molded product with a length of 124.5 mm and a length of 124.5 mm was obtained. On the other hand, as a mold, the height is 50 mm, the width is 125 mm, and the length is
A mold with a diameter of 125 mm and a protrusion of 3 mm in depth and 50 mm in outer diameter at the center was heated to 200°C between hot platens of a press, the rough molded product was placed therein, and the mold was heated to 300 kg/cm.
After pressurizing at a pressure of cm 2 for 20 minutes, the mold was cooled to 80° C. or below, pressurized, and the molded product was taken out.
A molded article having a protrusion with a height of 3 mm and an outer diameter of 50 mm at the center of the flat plate was obtained. A total of three molded products were prepared in the same manner, and the temperature was raised from 80° C. to 350° C. at a rate of 5° C./min, held for 5 hours, and then taken out from the electric furnace to obtain a product of the present invention. Comparative Example 1 After creating an insulating base material with the same composition as Example 1,
Without creating a rough molded product, the insulating base material was filled into a mold whose temperature had been raised to 185°C, and after directly pressurizing it at a pressure of 300 kg/cm 2 for 20 minutes, the mold was heated to 80°C. After cooling to the following temperature, pressure was applied and the molded product was taken out. A molded article having a protrusion with a height of 3 mm and an outer diameter of 50 mm at the center of the flat plate was obtained. A total of three molded products were created in the same manner, and the same heat treatment as in Example 1 was performed to create a comparative product. Comparative Example 2 After creating an insulating base material with the same composition as Example 1,
The rough molding mold used in Example 1 was brought to room temperature, the insulating base material was filled into the mold, and a pressing force of 100 kg/cm 2 was applied.
Pressure was applied for 10 minutes. The removal from the mold was done with particular care. Since it was difficult to maintain the shape of the rough molded product, it was handled by placing it on a stainless steel plate with a thickness of 1.5 mm. I did not measure the shape of the rough molded product because it would collapse if touched, but the width,
It had also grown in length. Thereafter, three comparative products were prepared in the same manner as in Example 1. Comparative Example 3 After creating an insulating base material with the same composition as Example 1,
The rough molding mold used in Example 1 was heated to 80°C, and the insulating base material was filled into the mold, and the mold was heated at a pressure of 100 kg/cm 2 .
Pressure was applied for 10 minutes. The crude molded product was handled in the same manner as in Comparative Example 2. Thereafter, three comparative products were prepared in the same manner as in Example 1. Comparative Example 4 After creating an insulating base material with the same composition as Example 1,
The rough molding mold used in Example 1 was heated to 150°C, and the insulating base material was filled into the mold, and the pressing force was 100Kg/cm 2
Pressure was applied for 10 minutes. Rough molded product thickness 12mm, width
It had a shape of 124.5 mm and a length of 124.5 mm. Thereafter, three comparative products were prepared in the same manner as in Example 1. Table 1 shows the properties measured for those obtained in Examples and Comparative Examples.

【表】【table】

【表】 粗成形物の外観は取扱いが容易であるか否か手
に触れて判断した。手で触れて、形状変化をきた
さないものを良とした。 成形物の外観は、特に突起部の状態を観察し
た。特性試験は、厚さ3mm、外径50mmの突起部を
きりとり、吸水率、水に浸漬後の外観変化、曲げ
強さ、絶縁抵抗をそれぞれもとめた。吸水率は厚
さ3mm、外径50mmをそのまま用い150℃で4時間
乾燥後、重量を測定した。つぎに純水中に24時間
浸漬させた後、布等で表面を拭きとり重量を測定
した。重量増を吸水量とし元の重量との比率であ
らわし、吸水率とした。同時に試料の外観変化を
肉眼観察した。 曲げ強さは厚さ3mm、外径50mmの形状から最長
品がとれる位置で、原厚さで幅25mmのものをとり
支点間30mmで測定した。 絶縁抵抗は厚さ3mm、外径50mmの形状から原厚
さで幅20mm、長さ40mmのものをとり、以下
JISK6911に従い1000Vポータブルメガーで測定し
た。測定条件としては常態時40℃相対湿度95%
RH中で24時間放置したものについて測定した。 第1表の結果よりこの発明の製造方法によれば
吸水率の小さいしかも耐水性ならびに多湿雰囲気
下での絶縁抵抗の優れたものを得ることができ
る。 絶縁基材を粗成形品をつくらずに成形した場合
(比較例1)金型内に充填する時間が長いため従
来品と同様、金型に接した部分から、絶縁基材中
のホウ酸が熱変化を起し、分解した水分が加圧さ
れるまでの間自由に外部に飛散し、次の段階で加
圧されても結着効果の乏しいものとなり、かつ酸
化亜鉛、酸化カルシウムと反応しないため、耐水
性の劣るものしか得られないことが明らかであ
る。 絶縁基材を何らかの形で粗成形したものは(比
較例2,3)成形金型に挿入後直に加圧する事が
出来るため、成形物は比較的良好な特性を有する
ものを得る事ができる。しかしながら成形物の寸
法形状が厚物、あるいは大型品になつた場合には
粗成形品を取扱う事が非常に困難となり、かつ成
形金型に挿入する場合、粗成形品の形状がくず
れ、充填ムラを起し易い。少なくとも粗成形物の
取扱いが容易である事が必要である。この発明は
粗成形品を容易に取扱う事ができるものであり、
成形物の特性の安定したものを問題なく製造する
事ができる。すなわち100〜130℃の温度で加圧す
る事により絶縁基材中のホウ酸を少量熱変化さ
せ、その結着効果を利用したもので、以後の成形
物の作成には支障をきたさない。ただ130℃を超
える温度ではホウ酸の熱変化が活発なため(比較
例4)成形物の作成時に流れないほどの問題が発
生する。 以上のように、この発明による製造方法によれ
ば粗成形物を湿気の少ない場所で保管する事がで
きかつ場所もとらなく、さらに平板形状品などは
粗成形物品間に、鉄板あどのスペーサーを介する
ことにより1回の成形で複数枚の成形物を得る事
が出来るなど製造効率を高める点でも効果を有す
るものである。
[Table] The appearance of the crude molded product was judged by touching whether it was easy to handle or not. Those that did not change shape when touched with the hand were considered good. The appearance of the molded product was observed, especially the state of the protrusions. For characteristic tests, a protrusion with a thickness of 3 mm and an outer diameter of 50 mm was cut out, and the water absorption rate, change in appearance after immersion in water, bending strength, and insulation resistance were determined. The water absorption rate was measured by drying the sample with a thickness of 3 mm and outer diameter of 50 mm at 150° C. for 4 hours, and then measuring the weight. Next, after immersing it in pure water for 24 hours, the surface was wiped off with a cloth and the weight was measured. The increase in weight was defined as the amount of water absorbed, and was expressed as a ratio to the original weight, which was defined as the water absorption rate. At the same time, changes in the appearance of the samples were observed with the naked eye. The bending strength was measured at the position where the longest part could be taken from a shape with a thickness of 3 mm and an outer diameter of 50 mm, and with a width of 25 mm at the original thickness and a distance of 30 mm between supporting points. The insulation resistance is as follows from a shape with a thickness of 3 mm and an outer diameter of 50 mm, with an original thickness of 20 mm in width and 40 mm in length.
Measured with a 1000V portable megger according to JISK6911. Measurement conditions are 40℃ and 95% relative humidity.
Measurements were made on samples left in RH for 24 hours. According to the results shown in Table 1, according to the manufacturing method of the present invention, it is possible to obtain a product having a low water absorption rate and excellent water resistance and insulation resistance in a humid atmosphere. When the insulating base material is molded without making a rough molded product (Comparative Example 1) As it takes a long time to fill the mold, the boric acid in the insulating base material leaks from the part in contact with the mold, similar to the conventional product. A thermal change occurs, and the decomposed moisture freely scatters outside until it is pressurized, and even if it is pressurized in the next step, it has poor binding effect and does not react with zinc oxide or calcium oxide. Therefore, it is clear that only products with poor water resistance can be obtained. If the insulating base material is roughly molded in some way (Comparative Examples 2 and 3), it can be pressurized immediately after being inserted into the mold, so it is possible to obtain a molded product with relatively good properties. . However, when the size and shape of the molded product becomes thick or large, it becomes very difficult to handle the rough molded product, and when inserting it into the mold, the shape of the rough molded product collapses and uneven filling occurs. It is easy to cause At least, it is necessary that the rough molded product be easy to handle. This invention allows rough molded products to be easily handled,
It is possible to produce molded products with stable characteristics without any problems. That is, by pressurizing at a temperature of 100 to 130°C, the boric acid in the insulating base material is thermally changed by a small amount, and its binding effect is utilized, so that it does not interfere with the subsequent production of molded products. However, at temperatures exceeding 130°C, the thermal change of boric acid is active (Comparative Example 4), which causes problems such as non-flowing during the creation of molded products. As described above, according to the manufacturing method of the present invention, rough molded products can be stored in a place with low humidity and do not take up much space.Furthermore, for flat plate-shaped products, a spacer such as a steel plate is installed between the rough molded products. It is also effective in increasing manufacturing efficiency, such as by making it possible to obtain a plurality of molded products in one molding process.

Claims (1)

【特許請求の範囲】[Claims] 1 マイカ紛末、ガラス繊維およびアスベスト繊
維から選ばれた少くとも一つの補強材料とホウ酸
を主成分とした結合材を含む絶縁基材を加熱加圧
成形して成形物を得る無機質系絶縁物の製造方法
において、上記絶縁基材を100〜130℃の温度で加
圧し、あらかじめ粗成形物を得た後この粗成形物
を160〜250℃の温度で再び加圧して成形物を得る
事を特徴とする無機質系絶縁物の製造方法。
1. An inorganic insulator obtained by heating and press-molding an insulating base material containing at least one reinforcing material selected from mica powder, glass fiber, and asbestos fiber and a binder whose main component is boric acid. In the manufacturing method, the above-mentioned insulating base material is pressurized at a temperature of 100 to 130 °C to obtain a rough molded product in advance, and then this rough molded product is pressurized again at a temperature of 160 to 250 °C to obtain a molded product. A method for producing characteristic inorganic insulators.
JP1104181A 1981-01-27 1981-01-27 Method of producing inorganic series insulator Granted JPS57124805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104181A JPS57124805A (en) 1981-01-27 1981-01-27 Method of producing inorganic series insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104181A JPS57124805A (en) 1981-01-27 1981-01-27 Method of producing inorganic series insulator

Publications (2)

Publication Number Publication Date
JPS57124805A JPS57124805A (en) 1982-08-03
JPS6116129B2 true JPS6116129B2 (en) 1986-04-28

Family

ID=11766962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104181A Granted JPS57124805A (en) 1981-01-27 1981-01-27 Method of producing inorganic series insulator

Country Status (1)

Country Link
JP (1) JPS57124805A (en)

Also Published As

Publication number Publication date
JPS57124805A (en) 1982-08-03

Similar Documents

Publication Publication Date Title
US4636416A (en) Shaped microporous thermal insulation body with sheathing and process for making same
KR100666385B1 (en) Microporous heat-insulating body
JPS6116129B2 (en)
US2996106A (en) Method of manufacturing inorganically bonded micaceous sheet
GB2093012A (en) Refractory or heat-resistant composite articles
JPS6257041B2 (en)
CN117413006A (en) Foam layer with thermal barrier properties
JPH0127012B2 (en)
JPS6044274B2 (en) Method of producing boron nitride fiber articles from boron oxide fibers
JPH0324414B2 (en)
US3623897A (en) Novel foamable glass compositions comprising copper
US4412010A (en) Arc resistant insulator
JPS6115524B2 (en)
JP3998838B2 (en) Nonflammable sealing material for electronic parts
US3592771A (en) Tubular heating elements and magnesia insulation therefor and method of production
CA1058877A (en) Method for hydrating silicate glasses
JP3217646B2 (en) Ceramic sound absorbing material
US2577923A (en) Method of producing parts
JPS6115528B2 (en)
JP3060086B2 (en) Manufacturing method of fireproof coating material
JPS6115525B2 (en)
KR20030075879A (en) Inorganic Insulation Including Inorganic Foam Material and Method of Manufacturing Thereof
GB2108977A (en) Water resistant and thermally insulating silicate articles and compositions and method for the production thereof
KR800000253B1 (en) Method for making hydrosilicate thermoplastic materials
JPS5845933B2 (en) Method for manufacturing heat-resistant electrical insulators