JPS6116127B2 - - Google Patents

Info

Publication number
JPS6116127B2
JPS6116127B2 JP165781A JP165781A JPS6116127B2 JP S6116127 B2 JPS6116127 B2 JP S6116127B2 JP 165781 A JP165781 A JP 165781A JP 165781 A JP165781 A JP 165781A JP S6116127 B2 JPS6116127 B2 JP S6116127B2
Authority
JP
Japan
Prior art keywords
mold
molding material
molded product
temperature
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP165781A
Other languages
Japanese (ja)
Other versions
JPS57115703A (en
Inventor
Tadayoshi Murakami
Yoshiaki Sakamoto
Kojiro Ootsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP165781A priority Critical patent/JPS57115703A/en
Publication of JPS57115703A publication Critical patent/JPS57115703A/en
Publication of JPS6116127B2 publication Critical patent/JPS6116127B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulating Bodies (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は新規な無機質系絶縁物の連鮮製造法に
関する。さらに詳しくは、耐熱性、不燃性を有
し、耐電弧性、耐衝撃性にすぐれた無機質系絶縁
物の連続製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for continuously producing inorganic insulators. More specifically, the present invention relates to a method for continuously producing an inorganic insulator that is heat resistant, nonflammable, and has excellent arc resistance and impact resistance.

従来、成形材料として無機質繊維や無機質紛
末、たとえばアスベスト繊維、ガラス繊維、マイ
カ紛末などをホウ酸と酸化亜鉛との混合物を結合
剤として加熱加圧成形により結着してうる電気絶
縁物の製造法は、特公昭54−7539号公報や特公昭
54−7360号公報などで公知である。それら明細書
に記載されている方法によれば、130〜200℃に加
熱した金型などに成形材料を充填し、加圧力100
〜300Kg/cm2で加熱加圧成形して成形物をうるこ
とが記載されている。
Conventionally, inorganic fibers and powders such as asbestos fibers, glass fibers, mica powders, etc. are used as molding materials, and electrical insulators are made by bonding them together by heat-pressing molding using a mixture of boric acid and zinc oxide as a binder. The manufacturing method is described in Tokuko No. 54-7539 and Tokuko Sho.
This method is known from, for example, Japanese Patent No. 54-7360. According to the methods described in those specifications, molding material is filled into a mold heated to 130 to 200°C, and a pressure of 100°C is applied.
It is described that a molded product can be obtained by heat-pressing molding at ~300 Kg/cm 2 .

すなわち結合剤の主成分であるホウ酸の熱変化
に伴う溶融で無機質繊維または無機質紛末を結着
させ、結合剤の成分として介在している酸化亜鉛
と含水ホウ酸塩を形成し、それにより耐水性の向
上をはかり、同時に高融点のものとなるため耐熱
性の向上をもはかつている。しかるにえられる成
形物が耐水性、耐熱性のすぐれたものであるか否
かは含水ホウ酸塩を形成しているか否かに密接に
関係する。
In other words, boric acid, which is the main component of the binder, melts due to thermal changes to bind inorganic fibers or inorganic powder, forming zinc oxide and hydrated borate, which are present as components of the binder. It aims to improve water resistance, and at the same time, because it has a high melting point, it also improves heat resistance. However, whether or not the resulting molded product has excellent water resistance and heat resistance is closely related to whether or not a hydrous borate is formed.

そこで本発明者らは成形物中に含水ホウ酸塩を
形成させる方法について究明した結果、ホウ酸に
酸化亜鉛を混在させ、さらに無機質繊維などを加
えた成形材料を単に加熱加圧すれば形成されると
いう簡単なものではなく、ホウ酸の熱変化に伴う
分解分が含水ホウ酸塩の形成に重要な役割を果し
ていることが判明した。
Therefore, the present inventors investigated a method for forming a hydrous borate in a molded product, and found that it can be formed by simply heating and pressing a molding material containing boric acid mixed with zinc oxide and further adding inorganic fibers. It was found that the decomposition of boric acid due to thermal changes plays an important role in the formation of hydrated borate.

すなわち成形材料を加熱加圧成形する際、ホウ
酸の熱変化に伴う分解水分を成形材料もしくは成
形物以外へ自由に逃がしたばあいは、たとえば
2ZnO・3B2O3・7H2O、さらには2ZnO・3B2O3
3H2Oななどの含水ホウ酸塩が形成され難く、え
られる成形物は耐水性はもちろん、耐熱性にも劣
るのものである。一方ホウ酸の熱変化に伴う分解
水分を成形材料または成形物内に保留させたばあ
いには、前記のごとき含水ホウ酸塩が形成され、
耐水性および耐熱性にすぐれた成形物がえられる
ことが判明した。
In other words, when molding a molding material under heat and pressure, if the decomposition water due to the thermal change of boric acid is allowed to freely escape to other than the molding material or molded product, for example,
2ZnO・3B 2 O 3・7H 2 O, and even 2ZnO・3B 2 O 3
Hydrous borates such as 3H 2 O are difficult to form, and the resulting molded products are poor in not only water resistance but also heat resistance. On the other hand, if the decomposition water due to thermal changes in boric acid is retained in the molding material or molded product, the above-mentioned hydrated borate is formed,
It has been found that a molded product with excellent water resistance and heat resistance can be obtained.

これら判明した事実をもとに従来公知の製造法
を検討した結果、つぎのような問題点が含まれて
いることが明らかになつた。
As a result of examining the conventionally known manufacturing methods based on these revealed facts, it became clear that they included the following problems.

(1) 130〜200℃に加熱された金型などに成形材料
を充填したばあい、充填時より加圧されるまで
の間、結合剤成分として成形材料中に含有され
ているホウ酸が熱変化を開始し(H3BO3は90℃
から熱変化をきたす)、とくに金型などに接し
た部分の成形材料中のホウ酸は短時間に熱変化
し、いずれも熱変化に伴うホウ酸の分解水分
が、成形材料以外へ逃げ、充填時間が長いばあ
いはホウ酸の熱変化が進んだ状態で加圧される
ことになり、含水ホウ酸塩は形成され難く、え
られる成形物は耐水性や耐熱性に劣る。
(1) When filling a molding material into a mold heated to 130-200°C, the boric acid contained in the molding material as a binder component is exposed to heat from the time of filling until it is pressurized. Starts changing ( H3BO3 at 90℃
In particular, the boric acid in the molding material in contact with the mold changes heat in a short period of time, and the decomposition water of the boric acid due to the thermal change escapes outside the molding material and fills it. If the time is long, the boric acid will be pressurized in a state where the thermal change has progressed, making it difficult to form a hydrated boric acid salt, and the resulting molded product will have poor water resistance and heat resistance.

(2) 従来の製造方法では成形材料を加熱加圧した
のち、加圧保持の状態で熱盤または金型などを
成形時の温度より下げ成形物を取り出す方法が
採られている。この方法によるのは、成形物の
温度を成形時の温度より下げないで金型から取
り出すと成形物が膨れたり割れたりするからで
ある。
(2) Conventional manufacturing methods involve heating and pressurizing the molding material, then lowering the temperature of the hot platen or mold below the molding temperature while maintaining the pressure to remove the molded product. This method is used because if the molded product is removed from the mold without lowering its temperature below the temperature during molding, the molded product will swell or crack.

成形物が膨れるのは成形時の温度で結合剤、
とくにホウ酸の熱変化物が柔かいためであり、
しかるに膨れの現象は含水ホウ酸塩が形成され
ないばあいに起りやすく、従来の製造法の欠陥
が現われているものと考えられる。また成形物
の割れは成形物中の自由水の量および蒸気圧が
高いために生じるばあいが多く、従来の製造法
は温度を下げることにより自由水の蒸気圧を低
くしている(ここでいう自由水はホウ酸の熱変
化に際し分解して生じる水分のうち、含水ホウ
酸塩を形成させる必要水分以外の成形物中に含
有されている余剰の水をいう)。すなわちこの
自由水の量を少なくすることにより、成形物中
の結合剤としてのホウ酸および酸化亜鉛が含水
ホウ酸塩を形成し、成形温度下でも硬くなつた
ばあいには従来の製造法のような冷却工程を必
要とせず、加熱加圧成形後に直接金型により成
形物を取り出すことが可能である。
The molded product swells due to the temperature during molding, due to the binder,
In particular, this is because the heat-changeable product of boric acid is soft.
However, the phenomenon of blistering is likely to occur when hydrated borate is not formed, and is considered to be a manifestation of a defect in the conventional manufacturing method. In addition, cracks in molded products are often caused by the high amount and vapor pressure of free water in the molded product, and conventional manufacturing methods lower the vapor pressure of free water by lowering the temperature (here, The term "free water" refers to excess water contained in the molded product, other than the water necessary to form a hydrated borate, out of the water generated by decomposition during thermal change of boric acid). In other words, by reducing the amount of free water, boric acid and zinc oxide as a binder in the molded product form a hydrated borate, which becomes hard even at the molding temperature. It is possible to take out the molded product directly from the mold after heat-pressing molding without requiring such a cooling step.

ただし従来の製造法では、前記のごとく冷却
工程を要するため成形物を数多く成形するばあ
いには、そのたびごとに熱盤または金型の温度
をあげなければならず、消費エネルギーや成形
時間の観点からも製造経費が高いものである。
However, conventional manufacturing methods require a cooling process as described above, so when molding a large number of molded products, the temperature of the heating platen or mold must be raised each time, reducing energy consumption and molding time. From this point of view, manufacturing costs are high.

以上のごとく、従来の製造法でか耐水性、耐熱
性などの特性面に欠陥が生じやすいと同時に製造
効率がいちじるしく劣るといつた問題があるた
め、これらの欠陥に注目し、安価でかつ特性のす
ぐれた無機質系絶縁物を検討した結果、つぎのこ
とが判明した。
As mentioned above, conventional manufacturing methods tend to have defects in characteristics such as water resistance and heat resistance, and at the same time, the manufacturing efficiency is significantly inferior. As a result of investigating excellent inorganic insulators, the following was discovered.

まず成形時にホウ酸の分解水分を成形材料また
は成形物外へ逃げがたくして加熱加圧成形するこ
とで含水ホウ酸塩を形成させ、耐水性、耐熱性に
すぐれた成形物をうる。
First, during molding, the decomposed water of boric acid is prevented from escaping to the outside of the molding material or molded material, and the material is heated and pressed to form a hydrated boric acid salt, thereby obtaining a molded product with excellent water resistance and heat resistance.

ついで加熱加圧成形後、成形物を冷却しないで
金型から取り出すことが可能であれば、熱盤また
は金型をつぎの成形過程で再び昇温させないでよ
いため、加熱加圧時間のサイクルで成形物を連続
的にうることができ、安価な無機質系絶縁物をう
ることができる。
If it is possible to remove the molded product from the mold without cooling it after heating and pressing, there is no need to raise the temperature of the heating platen or the mold again in the next molding process, so the cycle of heating and pressing time Molded articles can be obtained continuously, and inexpensive inorganic insulators can be obtained.

これらの点を具体化させる方法を確立するべく
鋭意研究を重ねた結果、160〜170℃まで加熱可能
な熱盤装置を有する加圧装置と金型を備え、金型
を搬送する装置、離型装置ならびに90℃未満に冷
却する装置および成形材料を金型に充填する装置
から構成された設備と、成形材料として無機質繊
維または無機質紛末とホウ酸および酸化亜鉛から
なる組成物を用い、成形材料中のホウ酸の含有率
が8.0〜22.5%の範囲内の成形材料を90℃未満の
温度の金型に充填し160〜170℃に昇温している熱
盤間に挿入後ただちに50Kg/cm2以上の加圧力で加
圧し、成形材料の温度が155〜165℃になつてから
5分間以上加圧保持したのち、金型から成形物を
取り出す工程を反復することにより無機質系絶縁
物を連続的に成形してうる連続製造法を見出し、
本発明を完成するにいたつた。
As a result of intensive research to establish a method to make these points a reality, we developed a pressurizing device with a heating platen device that can heat up to 160-170℃, a mold, a device for transporting the mold, and a mold release device. The equipment consists of a cooling device, a device for cooling the molding material to below 90°C, and a device for filling the mold with the molding material. Immediately after filling a mold at a temperature of less than 90℃ with a molding material with a boric acid content within the range of 8.0 to 22.5% and inserting it between hot plates heated to 160 to 170℃, 50 kg/cm Pressurize with a pressure of 2 or more, hold the pressure for at least 5 minutes after the temperature of the molding material reaches 155 to 165℃, and then repeat the process of taking out the molded product from the mold to continuously form an inorganic insulator. Discovered a continuous manufacturing method that allows molding
We have now completed the present invention.

つぎに本発明の製造法について詳細に説明す
る。
Next, the manufacturing method of the present invention will be explained in detail.

まずホウ酸の熱変化に伴う分解水分を逃がさな
いためには、成形材料を金型に充填する際金型の
温度は90℃未満であるのが好適である。金型の温
度が90℃以上であると成形材料中にある結合剤と
してのホウ酸が熱変化を呈し、好ましくない。す
なわち少なくとも成形材料を金型に充填する際に
はホウ酸が熱変化を呈さない温度であるのが必要
である。金型に成形材料を充填したのち、160〜
170℃に昇温してある熱盤間に挿入し(熱盤は加
圧装置に取り付けられている)、ただちに50Kg/
cm2以上の加圧力で加圧して成形材料の温度が155
〜165℃になつてから5分間以上加熱加圧保持し
たのち、金型より成形物を取り出す。熱盤の温度
は160〜170℃が好適であり、160℃より低いと含
水ホウ酸塩を充分形成させることができず、耐水
性、耐熱性のわるいものとなり、170℃より高い
とホウ酸の熱変化により生じた分解水分が成形物
外へ活発に移動するために含水ホウ酸塩を充分形
成させることが出来難く耐水性、耐熱性のわるい
ものとなり、いずれも好ましくない。
First, in order to prevent decomposition water from escaping due to thermal changes in boric acid, it is preferable that the temperature of the mold be less than 90° C. when filling the mold with the molding material. If the temperature of the mold is 90° C. or higher, boric acid as a binder in the molding material exhibits thermal changes, which is not preferable. That is, at least when filling the mold with the molding material, it is necessary that the temperature is such that boric acid does not exhibit any thermal change. After filling the mold with molding material, 160 ~
Insert between heating plates that have been heated to 170℃ (the heating plates are attached to a pressurizing device), and immediately weigh 50 kg/
The temperature of the molding material is 155 cm by pressing with a pressure of more than 2 cm.
After the temperature reaches ~165°C, heat and pressure is maintained for 5 minutes or more, and then the molded product is taken out from the mold. The temperature of the heating plate is preferably 160 to 170°C. If it is lower than 160°C, it will not be possible to form hydrated borate sufficiently, resulting in poor water resistance and heat resistance. If it is higher than 170°C, boric acid will deteriorate. Since the decomposed moisture generated by thermal changes actively moves out of the molded product, it is difficult to form a sufficient amount of hydrated borate, resulting in poor water resistance and poor heat resistance, both of which are undesirable.

また155〜165℃になつてから5分間以上加熱加
圧保持するのは、155℃以上の温度でホウ酸の熱
変化が充分行なわれ、5分間以上の加熱加圧で酸
化亜鉛(ZnO)との反応による含水ホウ酸塩が形
成されるからであり、また加圧力が50Kg/cm2以上
必要であるのは、50Kg/cm2より低いと緻密な成形
物をうることができないことと含水ホウ酸塩の形
成が充分できないためである。
In addition, the reason for holding heat and pressure for more than 5 minutes after the temperature reaches 155 to 165℃ is to ensure that boric acid is sufficiently thermally changed at a temperature of 155℃ or higher, and that zinc oxide (ZnO) is This is because hydrated borate is formed by the reaction of This is because acid salts cannot be formed sufficiently.

熱盤の温度を冷却水を流すことで冷却して金型
の温度を下げ(成形物の温度を下げる)、成形物
を取り出す方法があるが、本発明においては熱盤
の温度はそのままで金型から成形物を取り出すこ
とができる。
There is a method of cooling the temperature of the hot platen by flowing cooling water to lower the temperature of the mold (lowering the temperature of the molded product) and taking out the molded product, but in the present invention, the temperature of the hot platen remains the same and the molded product is removed. The molded product can be removed from the mold.

すなわち前記のごとく成形物を高い温度下にお
いて割れや膨れを生じさせずに取り出すために
は、成形物中に含水ホウ酸塩を形成させ、かつ反
応に寄与しないホウ酸から生じる自由水の量を規
制する必要がある。ところで成形物中に占める自
由水の量の規制は成形材料中のホウ酸の含有率と
比例関係にあるため、成形材料の全構成材料に対
するホウ酸の含有率を調整することで可能であ
る。そこで前記したごとく、高温下で金型から最
も安定に成形物を取り出すことができ成形物の割
れや膨れを生じることなくかつ緻密なものである
ことを前提条件として、従来公知のホウ酸−酸化
亜鉛系結合剤、たとえばH3BO3−ZnO系、H3BO3
−B2O3−ZnO系の組成物を用い、無機質繊維ま
たは無機質紛末と組合わせた成形材料における
H3BO3の含有率を種々検討した結果、成形材料中
に占めるH3BO3の含有率が8.0〜22.5%の範囲内
で、とくに好適には10.0〜18.5%の範囲内で前記
前提条件が満たされることが明らかとなつた。
In other words, in order to take out the molded product without cracking or blistering at high temperatures as mentioned above, it is necessary to form a hydrated boric acid salt in the molded product and reduce the amount of free water generated from boric acid that does not contribute to the reaction. It needs to be regulated. By the way, the amount of free water that occupies a molded product is regulated in proportion to the content of boric acid in the molding material, so it is possible by adjusting the content of boric acid in all constituent materials of the molding material. Therefore, as mentioned above, the conventionally known boric acid-oxidation Zinc-based binders, such as H 3 BO 3 −ZnO-based, H 3 BO 3
-B 2 O 3 - In a molding material using a ZnO-based composition in combination with inorganic fiber or inorganic powder
As a result of various studies on the content of H 3 BO 3 , it was found that the content of H 3 BO 3 in the molding material was within the range of 8.0 to 22.5%, particularly preferably within the range of 10.0 to 18.5%. It became clear that the requirements were met.

成形材料中に占めるH3BO3の含有率が8.0%よ
り低いばあいは高い加圧力(500Kg/cm2以上)を
加えても緻密な成形物がえられ難く、22.5%より
高いばあいは従来と同じ冷却工程を入れなければ
割れを発生しやすく、いずれも好ましくない。
If the content of H 3 BO 3 in the molding material is lower than 8.0%, it is difficult to obtain a dense molded product even if high pressure (500 Kg/cm 2 or more) is applied, and if it is higher than 22.5%, it is difficult to obtain a dense molded product. If the same cooling process as conventional methods is not used, cracks are likely to occur, which is not desirable.

なお本発明において用いる成形材料に樹脂紛
末、ガラス紛末、金属酸化物、金属水酸化物など
を添加して併用してもよい。
Note that resin powder, glass powder, metal oxide, metal hydroxide, etc. may be added to the molding material used in the present invention and used in combination.

成形材料中に占めるH3BO3の含有率の前記範囲
および前記の製造法でえられる本発明における無
機質系絶縁物はX線回析などから判断して含水ホ
ウ酸塩の形成を充分認めることができかつ耐水性
にすぐれたものであり、マイカ紛末を結着させた
成形物などは700℃以上に加熱しても溶融しない
耐熱不燃性にすぐれ、さらに耐電弧性および耐衝
撃性にもすぐれた無機質系絶縁物である。
The inorganic insulator of the present invention obtained by the above-mentioned range of H 3 BO 3 content in the molding material and the above-mentioned production method should sufficiently recognize the formation of hydrated borate as judged from X-ray diffraction etc. molded products bound with mica powder have excellent heat-resistant, non-flammable properties that do not melt even when heated to over 700°C, and are also arc resistant and impact resistant. It is an excellent inorganic insulator.

かかる無機質系絶縁物は吹消型回路遮断器の消
弧材料、車両用抵抗器の絶縁性、電気炉の絶縁ワ
ツシヤなどのとくに耐熱、不燃性が要求される機
器の絶縁材料として適用できる。つぎに本発明の
製造法を図面に基づいて説明する。
Such inorganic insulators can be used as arc-extinguishing materials for blowout type circuit breakers, insulating materials for vehicle resistors, insulating washers for electric furnaces, and other equipment that particularly requires heat resistance and nonflammability. Next, the manufacturing method of the present invention will be explained based on the drawings.

第1図は連続的に成形物をうるための加圧装置
に平面図、第2図は金型内へ成形材料が充填され
搬送される状態の断面図、第3図は加熱加圧成形
状態を示す断面図、第4図は離型状態を示す断面
図、第5図は金型を清掃する状態を示す断面図、
第6図は金型を冷却する状態の断面図、第7図は
成形材料を充填材料から金型内へ充填した状態の
断面図である。
Fig. 1 is a plan view of the pressurizing device for continuously obtaining molded products, Fig. 2 is a cross-sectional view of the state in which the molding material is filled and conveyed into the mold, and Fig. 3 is the state of heating and pressure molding. 4 is a sectional view showing the mold release state, FIG. 5 is a sectional view showing the mold cleaning state,
FIG. 6 is a cross-sectional view of the mold being cooled, and FIG. 7 is a cross-sectional view of the mold filled with molding material from the filling material.

第1図において、充填装置7に成形材料12が
貯わえられ、下方に金型3がステンレス製のエン
ドレスベルト8により搬送されてくると充填装置
7から所定量だけ成形材料12が充填されたの
ち、振動装置9に搬送され、金型3内の成形材料
12がならされる。金型3はエンドレスベルト8
上に固定されエンドレスベルト8の移動により搬
送される。なお金型3は枠3aと底板3bで構成
され、成形材料12と接する面にはテフロン加工
部3cが設けられ離型を容易にしている。エンド
レスベルト8はモーター14により駆動されるキ
ヤリアローラー10により所定のサイクルで矢印
方向に移動する。金型3と接するエンドレスベル
ト8には第4図における離型の際エアーシリンダ
ー5cのヘツドが通過できるように貫通孔8aが
設けられている。
In FIG. 1, molding material 12 is stored in a filling device 7, and when a mold 3 is conveyed downward by an endless belt 8 made of stainless steel, a predetermined amount of molding material 12 is filled from the filling device 7. Thereafter, it is transported to a vibration device 9, and the molding material 12 in the mold 3 is leveled. Mold 3 is endless belt 8
It is fixed on the top and conveyed by the movement of the endless belt 8. The money mold 3 is composed of a frame 3a and a bottom plate 3b, and a Teflon-treated part 3c is provided on the surface in contact with the molding material 12 to facilitate mold release. The endless belt 8 is moved in the direction of the arrow in a predetermined cycle by a carrier roller 10 driven by a motor 14. The endless belt 8 in contact with the mold 3 is provided with a through hole 8a through which the head of the air cylinder 5c can pass during mold release in FIG.

第2図において振動装置9により成形材料12
がならされたのち加圧装置1に搬送される。その
際キヤリアローラー10面には浅い溝10aが複
数個設けられており、エンドレスベルト8の滑り
を防止している。
In FIG. 2, the molding material 12 is
After being smoothed out, it is transported to the pressurizing device 1. At this time, a plurality of shallow grooves 10a are provided on the surface of the carrier roller 10 to prevent the endless belt 8 from slipping.

第3図は熱盤装置2と一体化した加圧装置1に
より加熱加圧成形している状態を示し、熱盤装置
2はたとえばアスベストセメント板などの断熱材
2aを介して加圧装置1に取付けられ、電熱ヒー
タもしくはスチームにより160〜170℃に昇温され
ている。上部位置のある熱盤装置2は金型3の押
金の目をし、加圧装置1内に搬送されてくるとす
ぐに加圧装置1により50Kg/cm2以上の加圧力で加
圧され、熱盤装置2により加熱される。金型3内
の成形材料12の温度が155〜165℃に到達してか
ら5分間以上保持される。加熱加圧はエンドレス
ベルト8も同時に行なわれる。加熱加圧保持され
たのち、加圧が解かれて熱盤装置2が金型3から
離されて金型3が離型装置4に搬送され、金型押
え枠4aにより保持され、エアーシリンダーボツ
クス4b内にあるエアーシリンダー4cによりエ
ンドレスベルトの貫通孔8aを通過して金型3の
底板3bが押し上げられ、枠3a上に成形物13
が押し上げられるとエアーシリンダー4dにより
出納容器11に成形物13が投入される。
FIG. 3 shows a state in which heating and pressure forming is carried out by the pressurizing device 1 integrated with the hot platen device 2. The temperature is raised to 160-170℃ using an electric heater or steam. The heating platen device 2 located at the upper part serves as the presser of the mold 3, and as soon as it is conveyed into the pressurizing device 1, it is pressurized by the pressurizing device 1 with a pressure of 50 kg/cm 2 or more, It is heated by the heating plate device 2. After the temperature of the molding material 12 in the mold 3 reaches 155 to 165°C, it is maintained for 5 minutes or more. The endless belt 8 is also heated and pressurized at the same time. After being held under heat and pressure, the pressure is released and the heating platen device 2 is separated from the mold 3, and the mold 3 is conveyed to the mold release device 4, held by the mold holding frame 4a, and placed in the air cylinder box. The bottom plate 3b of the mold 3 is pushed up through the through hole 8a of the endless belt by the air cylinder 4c inside the air cylinder 4b, and the molded product 13 is placed on the frame 3a.
When the molded product 13 is pushed up, the molded product 13 is thrown into the storage container 11 by the air cylinder 4d.

ついでエアーシリンダー4cがエアーシリンダ
ーボツクス4b内に移動すると同時にエンドレス
ベルト8により、第5図における清掃装置5に搬
送され、回転ブラシ5aにより付着物が除去され
たのち、エアーノズル5cより圧縮空気が送ら
れ、付着物は吹き飛ばされる。なお清掃装置5は
局排設備5b内に設けられている。
Next, the air cylinder 4c moves into the air cylinder box 4b, and at the same time is conveyed by the endless belt 8 to the cleaning device 5 shown in FIG. and the deposits are blown away. Note that the cleaning device 5 is provided within the local drainage equipment 5b.

金型3の清掃が終ると金型3はエンドレスベル
ト8により第6図における冷却装置6に搬送され
た水冷盤6b間で冷却される。水冷盤6b内には
水冷管6aが挿入されている。金型3はこれによ
つて90℃未満の温度まで冷却され、第7図におけ
る充填装置7へ搬送される。以下この操作を反復
することにより成形物13が連続的にえられる。
14は駆動源である。
After the cleaning of the mold 3 is completed, the mold 3 is transported by an endless belt 8 to a cooling device 6 shown in FIG. 6 and cooled between water cooling plates 6b. A water cooling pipe 6a is inserted into the water cooling plate 6b. The mold 3 is thereby cooled to a temperature below 90 DEG C. and transported to the filling device 7 in FIG. Thereafter, by repeating this operation, molded products 13 can be obtained continuously.
14 is a driving source.

なお金型3は常にいずれかの装置内にあるよう
にエンドレスベルト8上に設けられ、加熱加圧成
形時間によりそのサイクルが決定される。
The mold 3 is placed on an endless belt 8 so that it is always in one of the devices, and its cycle is determined by the heating and pressure molding time.

つぎに実施例をあげて本発明の製造法を説明す
る。
Next, the manufacturing method of the present invention will be explained with reference to Examples.

まずつぎのようにして成形材料の調製を行なつ
た。すなわちH3BO3(粒度40〜100メツシユ)
3287g、B2O3(粒度40〜100メツシユ)740gお
よびZnO(粒度1〜10μ)1973gを石川式擂潰機
で30分間混合して結合剤を調製した。ついで結合
剤に無機質紛末として金雲母紛末(粒度60〜100
メツシユ)6000gおよびMgO(電融マグネシ
ア、粒度60〜100メツシユ)6000g、Al2O3(α
アルミナ、粒度100〜300メツシユ)2000gをさら
に加え、10分間混合して成形材料12を20Kg調製
した。
First, a molding material was prepared as follows. i.e. H 3 BO 3 (particle size 40-100 mesh)
A binder was prepared by mixing 3,287 g of ZnO, 740 g of B 2 O 3 (particle size: 40-100 mesh) and 1,973 g of ZnO (particle size: 1-10 μm) for 30 minutes in an Ishikawa crusher. Next, phlogopite powder (particle size 60 to 100) is added as an inorganic powder to the binder.
mesh) 6000g and MgO (electrofused magnesia, particle size 60-100 mesh) 6000g, Al 2 O 3
2000 g of alumina (particle size 100-300 mesh) was further added and mixed for 10 minutes to prepare 20 kg of molding material 12.

調製した成形材料12を充填装置7のホツパー
に入れ、金型3に約200gの量の成形材料12を
充填した。金型3としては深さ(高さ)50mm、内
径141mmの内容積を有するもので枠3aと底板3
bで構成されたものを用いた。また成形材料12
と接する面はテフロン加工部3cであり、成形物
13の離型を容易にしたものである。つぎにエン
ドレスベルト8により成形材料12を振動装置9
に搬送して金型3を振動させ成形材料12をなら
した。成形材料12を再びエンドレスベルト8に
より、加圧装置1に取り付けられた熱盤装置2間
に搬送したのち、ただちに加圧装置1により加圧
した。その際熱盤装置2の温度は165±5℃に昇
温しておき、加圧力は300Kg/cm2とした。成形材
料12が155℃に到達したのは成形材料12を熱
盤装置2間に搬送してから7分後であり、その後
5分間加熱加圧保持した。成形物13の温度を測
定したところ163℃になつていた。ついで加圧装
置の加圧を解き、金型3より熱盤装置3より熱盤
装置2を離しエンドレスベルト8により離型装置
4に搬送し、エアーシリンダー5cにより金型3
外へ成形物13を取り出した。その後成形物13
は出納容器11内へ納めた。
The prepared molding material 12 was put into the hopper of the filling device 7, and the mold 3 was filled with about 200 g of the molding material 12. The mold 3 has a depth (height) of 50 mm and an inner diameter of 141 mm, and has a frame 3a and a bottom plate 3.
The one composed of b was used. Also, the molding material 12
The surface in contact with is a Teflon-treated portion 3c, which facilitates mold release of the molded product 13. Next, the endless belt 8 moves the molding material 12 to a vibrating device 9.
The molding material 12 was conveyed to vibrate the mold 3 to level the molding material 12. The molding material 12 was again conveyed by the endless belt 8 between the hot platens 2 attached to the pressurizing device 1, and then immediately pressurized by the pressurizing device 1. At that time, the temperature of the heating platen device 2 was raised to 165±5° C., and the pressing force was 300 Kg/cm 2 . The temperature of the molding material 12 reached 155° C. 7 minutes after the molding material 12 was conveyed to the heating platen device 2, and was then held under heat and pressure for 5 minutes. When the temperature of the molded product 13 was measured, it was 163°C. Next, the pressure of the pressurizing device is released, the heating platen device 2 is released from the mold 3 and conveyed to the mold release device 4 by the endless belt 8, and the mold 3 is removed by the air cylinder 5c.
The molded product 13 was taken out. After that, molded product 13
was stored in the storage container 11.

一方成形物13をとりはずした金型3はエンド
レスベルト8により清掃装置5に搬送し、回転ブ
ラシ5aとエアーノズル5cからの圧縮空気によ
り付着物をとり除き、再びエンドレスベルト8に
より冷却装置6の水冷盤6b間で90℃未満の温度
まで冷却した。
On the other hand, the mold 3 from which the molded product 13 has been removed is conveyed to the cleaning device 5 by the endless belt 8, the deposits are removed by compressed air from the rotating brush 5a and the air nozzle 5c, and the endless belt 8 is again used to cool the cooling device 6 with water. It was cooled to a temperature of less than 90° C. between the plates 6b.

以上の工程を繰り返すことにより成形物すなわ
ち無機質系絶縁物を連続的に成形することができ
た。本発明における実施例ではかかる成形物が12
分ごとのサイクルでえられ、厚さ約5.5mm、外径
141mmの形状品を100個作成した。いずれも割れ、
膨れ、カケなどの不良はなかつた。
By repeating the above steps, it was possible to continuously mold a molded product, that is, an inorganic insulator. In the embodiment of the present invention, such a molded product is 12
Approximately 5.5mm thick, outer diameter
100 pieces of 141mm shape were created. All cracked,
There were no defects such as swelling or chipping.

ところで実施例では成形材料中のホウ酸含有率
が16.43%のばあいを示したが、ホウ酸含有率が
8.0%のばあいは成形物100個のうち5〜8個のし
まり不良と3〜4個の耐水性のわるい(純水に24
時間浸漬後形状変化をきたす)成形物が発生し
た。一方ホウ酸含有率が22.5%のばあいは成形物
100個のうち12〜15個に曲線状のシワならびにキ
レツが認められた。この結果からホウ酸含有率が
8.0〜22.5%の範囲をはずれると、成形物にいず
れも不良が発生しはじめ、しまり不良や割れを主
とした不良がいちじるしく多くなる。
By the way, in the example, the case where the boric acid content in the molding material was 16.43% was shown, but if the boric acid content was
In the case of 8.0%, out of 100 molded products, 5 to 8 have poor tightness and 3 to 4 have poor water resistance (24% in pure water).
After being immersed for a period of time, a molded product whose shape changed) was generated. On the other hand, if the boric acid content is 22.5%, the molded product
Out of 100 pieces, 12 to 15 pieces had curved wrinkles and cracks. From this result, the boric acid content is
When the ratio is out of the range of 8.0 to 22.5%, defects begin to occur in the molded products, and defects mainly caused by tightness and cracks increase significantly.

ここで本発明の製造法を従来の製造法と比較す
ると成形物を1個製造するのに要する時間は、本
発明の製造法においては前記のとおり12分間であ
つたが、従来の製造法では熱盤装置2の温度を昇
温する時間および冷却する時間が含まれるため60
分間を要していた。
Comparing the manufacturing method of the present invention with the conventional manufacturing method, the time required to manufacture one molded article was 12 minutes as mentioned above in the manufacturing method of the present invention, but in the conventional manufacturing method. 60 as it includes the time to raise the temperature of the heating platen device 2 and the time to cool it down.
It took minutes.

また従来の製造法では熱盤装置の温度に昇降に
伴う熱エネルギーの損失も大きいため製造経費が
いちじるしく高いものとなり、えられる無機質絶
縁物の価格も高価である。それに比して本発明の
製造法によれば連続成形方法により成形物をうる
ことが可能であるため、成形時間がいちじるしく
短縮され、製造経費が安く、したがつてえられる
無機質系絶縁物も安価に提供でき、かつ無機質絶
縁物はとくに耐熱性にすぐれ、他の特性も従来品
にまさるとも劣らぬものであるため、前記のごと
く種々の用途に適用できる。
Furthermore, in the conventional manufacturing method, the loss of thermal energy associated with raising and lowering the temperature of the heating platen device is large, resulting in extremely high manufacturing costs, and the resulting inorganic insulator is also expensive. In comparison, according to the manufacturing method of the present invention, it is possible to obtain a molded product by a continuous molding method, so the molding time is significantly shortened, the manufacturing cost is low, and the inorganic insulating material obtained is also inexpensive. In addition, the inorganic insulating material has particularly excellent heat resistance and other properties that are comparable to those of conventional products, so it can be applied to a variety of uses as described above.

以上のごとく、本発明の無機質絶縁物の連続製
造法は従来の製造法に比して、実用的効果のきわ
めて大きなものである。
As described above, the continuous production method of inorganic insulators of the present invention has extremely large practical effects compared to conventional production methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続的に成形物をうるための加圧装置
の平面図、第2図は金型内へ成形材料が充填され
搬送される状態の断面図、第3図は加熱加圧成形
状態を示す断面図、第4図は離型状態を示す断面
図、第5図は金型を清掃する状態を示す断面図、
第6図は金型を冷却する状態の断面図、第7図は
成形材料を充填装置から金型内へ充填した状態の
断面図である。 図面の主要符号、1:加圧装置、2:熱盤装
置、3:金型、4:離型装置、6:冷却装置、
7:充填装置、8:エンドレスベルト、10:キ
ヤリアーローラー、12:成形材料、13:成形
物。
Figure 1 is a plan view of a pressurizing device for continuously obtaining molded products, Figure 2 is a cross-sectional view of the state in which the molding material is filled and conveyed into the mold, and Figure 3 is the state of heating and pressure molding. 4 is a sectional view showing the mold release state, FIG. 5 is a sectional view showing the mold cleaning state,
FIG. 6 is a sectional view of the mold being cooled, and FIG. 7 is a sectional view of the mold being filled with molding material from the filling device. Main symbols in the drawings: 1: Pressure device, 2: Heat plate device, 3: Mold, 4: Mold release device, 6: Cooling device,
7: Filling device, 8: Endless belt, 10: Carrier roller, 12: Molding material, 13: Molded product.

Claims (1)

【特許請求の範囲】[Claims] 1 160〜170℃まで加熱可能な熱盤装置を有する
加圧装置と金型を備え、金型を搬送する装置、離
型装置ならびに90℃未満に冷却する装置および成
形材料を金型に充填する装置から構成された設備
と、成形材料として無機質繊維または無機質紛末
とホウ酸および酸化亜鉛からなる組成物を用い、
成形材料中のホウ酸の含有率が8.0〜22.5%の範
囲内の成形材料を90℃未満の温度の金型に充填し
160〜170℃に昇温している熱盤間に挿入後ただち
に50Kg/cm2以上の加圧力で加圧し、成形材料の温
度が155〜165℃になつてから5分間以上加圧保持
したのち、金型から成形物を取り出す工程を反復
することにより無機質系絶縁物を連続的に成形し
てうることを特徴とする無機質系絶縁物の連続製
造法。
1 Equipped with a pressurizing device and a mold that have a heating platen device that can heat up to 160-170℃, a device for conveying the mold, a mold release device, a device for cooling it to below 90℃, and a mold for filling the mold with molding material. Using equipment consisting of a device and a composition consisting of inorganic fiber or inorganic powder, boric acid and zinc oxide as a molding material,
Fill a mold with a boric acid content in the range of 8.0 to 22.5% into a mold at a temperature of less than 90℃.
Immediately after inserting the molding material between hot platens whose temperature has risen to 160-170°C, pressurize it with a pressure of 50 kg/cm 2 or more, and after the temperature of the molding material reaches 155-165°C, hold the pressure for at least 5 minutes. A continuous manufacturing method for an inorganic insulator, characterized in that the inorganic insulator can be continuously molded by repeating the process of taking out a molded product from a mold.
JP165781A 1981-01-08 1981-01-08 Method of continuously producing inorganic series insulator Granted JPS57115703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP165781A JPS57115703A (en) 1981-01-08 1981-01-08 Method of continuously producing inorganic series insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP165781A JPS57115703A (en) 1981-01-08 1981-01-08 Method of continuously producing inorganic series insulator

Publications (2)

Publication Number Publication Date
JPS57115703A JPS57115703A (en) 1982-07-19
JPS6116127B2 true JPS6116127B2 (en) 1986-04-28

Family

ID=11507582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP165781A Granted JPS57115703A (en) 1981-01-08 1981-01-08 Method of continuously producing inorganic series insulator

Country Status (1)

Country Link
JP (1) JPS57115703A (en)

Also Published As

Publication number Publication date
JPS57115703A (en) 1982-07-19

Similar Documents

Publication Publication Date Title
SE449148B (en) PROCEDURE FOR THE MANUFACTURING OF ELECTRICAL SUPPLIES OF CARBON FIBERS
CN110590390A (en) Carbon fiber graphite crucible for metallurgical casting furnace and preparation method thereof
US4140887A (en) Method for microwave heating
US4950362A (en) Heat-insulating shaped fibrous articles and a process for producing them
US2554934A (en) Method of manufacturing structural insulation
CN110449546A (en) A kind of preparation process of riser precoated sand
JPS6116127B2 (en)
US1266478A (en) Method of producing silicon-carbid articles.
US3468989A (en) High density surface for foamed inorganics
US2922255A (en) Mold apparatus for casting glass
EP0330365A2 (en) Pre-expanded plastic beads for controlling thermal shrinkage and pyrolytic rate of plastic foam
US1795200A (en) Manufacture of vitreous material
US3878281A (en) Process for the manufacture of intermediates for the production of molded electric insulating elements
RU2144521C1 (en) Raw mix for making heat-resistant heat-insulating plates and method of manufacturing plates
US1123985A (en) Insulating material.
US5746953A (en) Casting method for forming a resin molding
US538289A (en) -charles percy shrewsbury
JPS6115525B2 (en)
SU1006448A1 (en) Method for preparing phenol formaldehyde foamed plastic
JP2009096674A (en) Method of manufacturing silica glass block
US1678108A (en) Process of hardening the products of condensation of phenols and aldehydes
US3577509A (en) Prevention of slumping in the manufacture of a tar bonded refractory
US4135939A (en) Refractory article and method of making the same
JPS6257041B2 (en)
JPS59232964A (en) Manufacture of mica composite ceramics