JPS61161139A - Silver-deposited glass fiber layer filter - Google Patents

Silver-deposited glass fiber layer filter

Info

Publication number
JPS61161139A
JPS61161139A JP201985A JP201985A JPS61161139A JP S61161139 A JPS61161139 A JP S61161139A JP 201985 A JP201985 A JP 201985A JP 201985 A JP201985 A JP 201985A JP S61161139 A JPS61161139 A JP S61161139A
Authority
JP
Japan
Prior art keywords
silver
glass fiber
fiber layer
layer filter
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP201985A
Other languages
Japanese (ja)
Inventor
Shuichi Shirao
白尾 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP201985A priority Critical patent/JPS61161139A/en
Publication of JPS61161139A publication Critical patent/JPS61161139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To make the apparatus compact and to reduce the volume of solid wastes after radiation by depositing silver and a silver compd. on the surface of a carrier formed with glass fiber to form the title silver-deposited glass fiber layer filter in the iodine removing apparatus. CONSTITUTION:A glass fiber layer filter is provided in a vacuum apparatus, and the vacuum of a specified degree is drawn. Successively, silver is vaporized by a silver vaporizer furnished in the vacuum apparatus. Then silver is vaporized for specified hours to obtain the glass fiber layer filter wherein silver 2 is uniformly deposited on the glass fiber 1. Besides, when the used silver- deposited glass fiber layer filter is stored, the fiber layer having an extremely small void ratio of 0.97 is compressed to adjust the ratio to about 1.0, and the volume of the silver-deposited glass fiber layer filter as the solid wastes can be reduced by about 1/30 times.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ヨワ素除去用吸着材に係り、特にヨウ素除去
装置のコンパクト化及び固体廃棄物の減容化に好適な吸
着材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an adsorbent for removing iodine, and particularly to an adsorbent suitable for making an iodine removal device more compact and reducing the volume of solid waste.

〔発明の背景〕[Background of the invention]

気相中ヨウ素除去には銀添着ゼオライトが使用されてい
る。しかし、この吸着材については銀の利用率が低い、
廃棄物発生量が大きい、装置のコンパクト化が計れない
、充填密度が大きくメインテナンス性が悪い等の問題点
があり、これを解決する必要があった。
Silver-impregnated zeolite is used to remove iodine in the gas phase. However, this adsorbent has a low silver utilization rate.
There were problems such as a large amount of waste generated, the inability to make the device more compact, and a high packing density that made maintenance difficult, so it was necessary to solve these problems.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高効率ヨウ素除去装置に係り、装置の
コンパクト化を計ることと、放射性固体廃棄物の減容化
を計ることのための銀添着ガラス繊維層フィルタを提供
することにある。
An object of the present invention is to provide a silver-impregnated glass fiber layer filter for making a highly efficient iodine removal device more compact and for reducing the volume of radioactive solid waste.

〔発明の概要〕[Summary of the invention]

従来の例えば銀ゼオライト吸着材は、細孔を有する粒状
の形態をしており、細孔内拡数のため吸着速度にも限界
がある。また、充填密度も大きい値となっている。本発
明では、吸着速度が境膜拡散だけに依存していて、充填
密度が小さいガラス繊維を吸着材の担体として適用する
。このことによってヨウ素吸着の高効率化が計られヨウ
素吸着装置のコンパクト化が計れる。また、担体として
ガラスを使用しているため、使用済吸着材を廃棄処分す
る際の、減容化が計れる。
Conventional silver zeolite adsorbents, for example, have a granular form with pores, and there is a limit to the adsorption rate due to the expansion of the number of pores. Moreover, the packing density is also a large value. In the present invention, glass fibers whose adsorption rate depends only on film diffusion and whose packing density is small are used as carriers for the adsorbent. This makes it possible to increase the efficiency of iodine adsorption and make the iodine adsorption device more compact. Furthermore, since glass is used as a carrier, the volume can be reduced when disposing of the used adsorbent.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第1図(a)に、銀添着ガラス繊維層フィルタの概念図
を示す。本フィルタの製作方法の一例として、真空中に
おいて銀原子を蒸発させ、ガラス繊維層フィルタに蒸着
させる方法を以下に示す。先ず真空製置中にガラス繊維
層フィルタを装荷し、所定の真空度に到達させる。引き
続いて、真空装置内に設置しである銀蒸発装置によって
銀を蒸発させる。引き続いて一定時間、銀の蒸発を行い
、均一に銀がガラス繊維層フィルタに蒸着後、銀蒸発全
終了する。蒸発時間は必要な銀蒸着厚さから決められる
FIG. 1(a) shows a conceptual diagram of a silver-impregnated glass fiber layer filter. As an example of a method for manufacturing this filter, a method of evaporating silver atoms in a vacuum and depositing them on a glass fiber layer filter will be described below. First, a glass fiber layer filter is loaded during vacuum production to reach a predetermined degree of vacuum. Subsequently, the silver is evaporated by a silver evaporator installed in a vacuum apparatus. Subsequently, silver is evaporated for a certain period of time, and after silver is uniformly deposited on the glass fiber layer filter, the silver evaporation is completely completed. The evaporation time is determined by the required silver deposition thickness.

銀添着ガラス繊維層フィルタの一例として、ガラス繊維
の直径DtCm〕、ガラス繊維密度ρGCk g/m3
)、ガラス繊維JfIIの充填率εr〔−〕、添M銀ま
たは添着銀化合物の密度pA、 [kg/m3]のもの
全使用する。第1図(b)に、銀添着ガラス繊維の断面
図を示す。ガラス繊維まわりには厚さt[m〕の瀝また
は銀化合物が添着されているとする。上述の仮定のもと
に本発明の銀添着ガラス繊維層フィルタと従来の銀吸着
材(代表として銀ゼオライト)との比較検討の一例を以
下に示す。
As an example of a silver-impregnated glass fiber layer filter, the diameter of glass fiber DtCm], the density of glass fiber ρGCk g/m3
), the filling rate εr [-] of the glass fiber JfII, the density pA of the impregnated M silver or the impregnated silver compound, [kg/m3] are all used. FIG. 1(b) shows a cross-sectional view of the silver-impregnated glass fiber. It is assumed that a metal or silver compound having a thickness of t [m] is attached around the glass fiber. Based on the above assumptions, an example of a comparative study between the silver-impregnated glass fiber layer filter of the present invention and a conventional silver adsorbent (representatively silver zeolite) will be shown below.

計算条件としては以下に示す。The calculation conditions are shown below.

系は気相とし、200C空気中の単体ヨク素を吸着材表
面の添着銀によってヨウ化銀反応で除去するものとする
。以下に使用記号の説明を示す。
The system is in a gas phase, and elemental iodine in 200C air is removed by silver iodide reaction with silver impregnated on the surface of the adsorbent. Below is an explanation of the symbols used.

A、t (m”/m’ ) :銀添着ガラス繊維層フィ
ルタの単位体積当シの表面積 εf [m7m” ] :銀添着ガラス繊維層フィルタ
の空間率(=0.4) Df(ml   :銀添着ガラス繊維層フィルタの繊維
直径(==2X10−’m) AZ l:m”7m” :] :銀ゼオライトの単位体
積当りの表面積(細孔表面積は含まず) (= Q、 71 m2/m’ ) DP〔m〕  :銀ゼオライトの粒径 ΔP6〔kg/rrI2〕、〔mmH70〕:圧力損失
L:〔m〕  :吸着材厚さ ρ Ckg/m3) :空気の密度(= 0.746 
kg/m” 。
A, t (m"/m'): Surface area per unit volume of the silver-impregnated glass fiber layer filter εf [m7m"]: Void ratio of the silver-impregnated glass fiber layer filter (=0.4) Df (ml: Silver Fiber diameter of impregnated glass fiber layer filter (==2X10-'m) AZ l:m"7m" :] :Surface area per unit volume of silver zeolite (does not include pore surface area) (=Q, 71 m2/m ) DP [m]: Particle size of silver zeolite ΔP6 [kg/rrI2], [mmH70]: Pressure loss L: [m]: Adsorbent thickness ρ Ckg/m3): Density of air (= 0.746
kg/m”.

200℃において) u  (:m/sl ;速度(=0.2m/5)rrc
 Ckgm/kgs2) :重力換算係数(9,8kg
m/kgs”)C[−):(1)式の係数 R,、[−]:繊維に対するレイノルズ数p  [kg
/ms〕:空気の粘度(= 2.5 X 104kg/
fns )f[−’11   :(4)式の係数 t a [m3/IT1’ ]  :銀ゼオライトの空
間率(=0.4)ψc[−]   :形状係数(==1
.0)ppcml   :銀ゼオライト粒子の直径1’
、[−]   :充填層に対するレイノルズ数1、比表
面積の評価 ヨク素と銀添着吸着材中の銀との反応を考える場合、反
応は吸着材表面の境膜拡散が重要である。ここでは銀添
着ガラス繊維層フィルタと銀ゼオライトのそれぞれ、境
膜拡散の律速となると考えられる比表面積の比較を行う
at 200°C) u (: m/sl; speed (=0.2 m/5) rrc
Ckgm/kgs2): Gravity conversion factor (9.8kg
m/kgs”) C [-): Coefficient R of equation (1), [-]: Reynolds number p [kg
/ms]: Viscosity of air (= 2.5 x 104kg/
fns ) f[-'11 : Coefficient of equation (4) ta [m3/IT1' ] : Porosity ratio of silver zeolite (=0.4) ψc[-] : Shape factor (==1
.. 0) ppcml: diameter of silver zeolite particles 1'
, [-]: Evaluation of Reynolds number 1 and specific surface area for a packed bed When considering the reaction between iodine and silver in a silver-impregnated adsorbent, film diffusion on the surface of the adsorbent is important for the reaction. Here, we will compare the specific surface areas of the silver-impregnated glass fiber layer filter and silver zeolite, which are considered to be the rate-determining factor for film diffusion.

ガラス繊維層フィルタの比表面積は、 = 6.OX 10’ [mVm3] となる。一方、銀ゼオライトの比表面積Az(”yfn
3:]は、ここで境境膜数に影響を与えないと考えられ
る細孔部の比表面積の寄与は除く。
The specific surface area of the glass fiber layer filter is = 6. OX 10' [mVm3]. On the other hand, the specific surface area of silver zeolite Az ("yfn
3:] excludes the contribution of the specific surface area of the pores, which is considered not to affect the number of boundary membranes.

” 2−4 X 10” [m”/ rn” 〕銀ゼオ
ライトの表面積に比べ、銀添着ガラス繊維層フィルタの
比表面積は2.5倍になる。従って、吸着帯の断面積方
向及び、吸着帯長さ方向の吸着材の大きさを銀ゼオライ
ト’を用いた方式に比較してコンパクト化することがで
きる。また、銀ゼオライトは、細孔全盲する球状粒子で
あシ、添着さ・れている銀の大半は、この細孔内壁にあ
る。−It−ノため、気相中ヨワ素が銀ゼオライトの銀
と接触するためには、気相中から銀ゼオライト表面へ拡
散する境膜内拡数と、銀ゼオライト表面から細孔内壁の
銀へ拡散する細孔内拡数とがあり、拡散時間が大きくな
り吸着帯の長さが長くなる問題がある。
"2-4 x 10"[m"/rn"] Compared to the surface area of silver zeolite, the specific surface area of the silver-impregnated glass fiber layer filter is 2.5 times larger. Therefore, the size of the adsorbent in the cross-sectional area direction of the adsorption zone and in the length direction of the adsorption zone can be made more compact compared to the system using silver zeolite'. Furthermore, silver zeolite is a spherical particle that completely blocks the pores, and most of the silver attached is on the inner walls of the pores. -It- Therefore, in order for iodine in the gas phase to come into contact with the silver in the silver zeolite, there is an expansion in the film that diffuses from the gas phase to the silver zeolite surface, and a diffusion from the silver zeolite surface to the silver on the inner wall of the pores. There is a problem that the number of diffusion inside the pores increases, and the diffusion time becomes longer and the length of the adsorption zone becomes longer.

一方、銀添着ガラス繊維は、境膜内拡数だけであり、拡
散抵抗が銀ゼオライトのそれより小さく高除去効率が期
待され、吸着帯の長さを短くすること可能となる。(第
2図(a) 、  (bl参照)2 圧力損失の評価 銀添着ガラス繊維層の単位厚さ当りの圧力損失は次式で
表わされる。
On the other hand, silver-impregnated glass fibers only expand in the membrane, have lower diffusion resistance than silver zeolite, and are expected to have high removal efficiency, making it possible to shorten the length of the adsorption zone. (See Figures 2(a) and (bl)) 2 Evaluation of Pressure Loss The pressure loss per unit thickness of the silver-impregnated glass fiber layer is expressed by the following formula.

ae=”up(a) μ 試算を行うと :0.12<100 =106 =310 < Rr/m2) /m =310 (mmH,0)7m 一方、銀ゼオライトの単位厚さ当りの圧力損失はKoz
ehy−Carmah ノ式ニヨり表ワサレ、試算する
と、 =2.2)2 =2.64 =350(R3/m2)7m =350 (rnrnH,O/rn 単位厚さ当りの圧力損−朱は、銀ゼオライトに比べて銀
添着ガラス繊維層フィルタが約10%小さく、この圧力
損失の面からも銀ゼオライト’を使う方法に比較してメ
リットがある。
ae=”up(a) μ Trial calculation: 0.12<100 =106 =310 <Rr/m2) /m =310 (mmH,0)7m On the other hand, the pressure loss per unit thickness of silver zeolite is Koz
Ehy-Carmah Ehy-Carmah's formula is calculated as follows: = 2.2) 2 = 2.64 = 350 (R3/m2) 7 m = 350 (rnrnH, O/rn Pressure loss per unit thickness - Vermilion is: The silver-impregnated glass fiber layer filter is about 10% smaller than silver zeolite, and has an advantage over the method using silver zeolite in terms of pressure loss as well.

3、固体廃棄物減容化の評価 使用済銀添着ガラス繊維層フィルタを貯蔵する場合、繊
維層の空間率が0.97と非常に小さいため圧縮加工に
よって空間率を1.0に近くまでにすると、固体廃棄物
としての銀添着ガラス繊維層フィルタの減容化が約1/
30となる。銀ゼオライトは空間率が0.5で圧縮加工
しても約1/2となり、銀添着ガラス繊維層フィルタの
減容化率が大きく廃棄物減容化のメリットがある。
3. Evaluation of solid waste volume reduction When storing used silver-impregnated glass fiber layer filters, the porosity of the fiber layer is very small at 0.97, so compression processing is used to reduce the porosity to close to 1.0. As a result, the volume reduction of the silver-coated glass fiber layer filter as solid waste is approximately 1/1.
It will be 30. Silver zeolite has a void ratio of 0.5, and even when compressed, it becomes about 1/2, so the volume reduction rate of the silver-impregnated glass fiber layer filter is large, and there is an advantage in waste volume reduction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の銀絵着吸着材に比較して、ヨワ
素除去効率が高効率で、装置のコンパクト化で吸着帯濾
過面積が約1/2になり、かつ廃棄物発生at約115
以下に低減化できるメリットがある。
According to the present invention, compared to conventional silver paint adsorbents, iodine removal efficiency is high, the device is made more compact, the adsorption zone filtration area is reduced to about 1/2, and waste generation is reduced to about 1/2. 115
There are the following advantages of reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は銀添着ガラス繊維層の概念図、第1図(
b’lは銀添着ガラス繊維断面図、第2図(a)は銀ゼ
オライトへのヨク素吸着機構の概念図、第2図(b)は
銀添着ガラス繊維層フィルタへのヨワ素吸着機構の概念
図である。 1・・・ガラス繊維、2・・・銀または銀化合物、3・
・・ゼオライト、4・・・境界層、5・・・細孔。
Figure 1(a) is a conceptual diagram of the silver-impregnated glass fiber layer;
b'l is a cross-sectional view of the silver-impregnated glass fiber, Figure 2 (a) is a conceptual diagram of the iodine adsorption mechanism to silver zeolite, and Figure 2 (b) is a conceptual diagram of the iodine adsorption mechanism to the silver-impregnated glass fiber layer filter. It is a conceptual diagram. 1... Glass fiber, 2... Silver or silver compound, 3...
... Zeolite, 4... Boundary layer, 5... Pore.

Claims (1)

【特許請求の範囲】 1、担体にガラス繊維を使用し、銀及び銀化合物をガラ
ス繊維表面に添着させたことを特徴とする銀添着ガラス
繊維層フイルタ。 2、特許請求の範囲第1項において、銀添着ガラス繊維
層フイルタを用いて、気相及び液相中からヨウ素を除去
することを特徴とする銀添着ガラス繊維層フイルタ。
[Scope of Claims] 1. A silver-impregnated glass fiber layer filter, characterized in that glass fiber is used as a carrier, and silver and a silver compound are attached to the surface of the glass fiber. 2. A silver-impregnated glass fiber layer filter according to claim 1, characterized in that the silver-impregnated glass fiber layer filter is used to remove iodine from a gas phase and a liquid phase.
JP201985A 1985-01-11 1985-01-11 Silver-deposited glass fiber layer filter Pending JPS61161139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP201985A JPS61161139A (en) 1985-01-11 1985-01-11 Silver-deposited glass fiber layer filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP201985A JPS61161139A (en) 1985-01-11 1985-01-11 Silver-deposited glass fiber layer filter

Publications (1)

Publication Number Publication Date
JPS61161139A true JPS61161139A (en) 1986-07-21

Family

ID=11517620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP201985A Pending JPS61161139A (en) 1985-01-11 1985-01-11 Silver-deposited glass fiber layer filter

Country Status (1)

Country Link
JP (1) JPS61161139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444897A (en) * 1987-08-03 1989-02-17 Hoffmann La Roche Manufacture of 1-125 content substrate
JP2012223674A (en) * 2011-04-15 2012-11-15 Shinshu Univ Filter and method for manufacturing filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444897A (en) * 1987-08-03 1989-02-17 Hoffmann La Roche Manufacture of 1-125 content substrate
JP2012223674A (en) * 2011-04-15 2012-11-15 Shinshu Univ Filter and method for manufacturing filter

Similar Documents

Publication Publication Date Title
US3108706A (en) Apparatus for improving vacuum insulation
US5365742A (en) Device and process for the removal of hydrogen from a vacuum enclosure at cryogenic temperatures and especially high energy particle accelerators
US4382879A (en) Material for adsorbing iodine and method for preparing thereof
US6682817B1 (en) Composite materials capable of hydrogen sorption comprising palladium and methods for the production thereof
AU2009331920A1 (en) Composite adsorbent bead, process for its production, gas separation process and gas adsorption bed
EP3633685B1 (en) Method and device for reducing hto concentration in hto-containing aqueous solution
JP3511003B2 (en) Method and adsorbent for removing water from gaseous hydrogen halide
US4312647A (en) Iodine adsorbent
CN114797798A (en) Preparation method and application of MOF/corn straw composite material and device
US5391217A (en) Method for eliminating mercury from liquids
JPS61161139A (en) Silver-deposited glass fiber layer filter
JP2003531151A (en) Method for purifying organometallic compounds or heteroatom compounds with hydrogenated getter alloys
US4545964A (en) Process for the preparation of porous products based on cobalt fluoride or lead fluoride
JPS6364901A (en) Purifying apparatus for rare gas
JPS60100664A (en) Material for storing hydrogen
EP0261673B1 (en) Cooling method
JP2001170482A (en) Active carbon, its manufacturing method and device for purifying treatment of water using the same
WO2018101142A1 (en) Filter, gas adsorption device using filter, and vacuum heat insulator
KR20030001437A (en) A process for the purification of organometallic compounds or heteroatomic organic compounds with a catalyst based on iron and manganese supported on zeolites
CN1068907C (en) Non-vaporising vacuum air-getter and method of obtaining the same
JPS58120511A (en) Purifying method for silane
JPH02271901A (en) Production of hydrogen separating medium
JPS5524502A (en) Removing agent for basic gas
TW201924766A (en) Electronic gas in-situ purification
JP3289499B2 (en) Manufacturing method of adsorption material