JPS61159138A - Densitometer - Google Patents

Densitometer

Info

Publication number
JPS61159138A
JPS61159138A JP28064484A JP28064484A JPS61159138A JP S61159138 A JPS61159138 A JP S61159138A JP 28064484 A JP28064484 A JP 28064484A JP 28064484 A JP28064484 A JP 28064484A JP S61159138 A JPS61159138 A JP S61159138A
Authority
JP
Japan
Prior art keywords
light
prism
plate
sample liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28064484A
Other languages
Japanese (ja)
Inventor
Susumu Nakagawa
進 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28064484A priority Critical patent/JPS61159138A/en
Publication of JPS61159138A publication Critical patent/JPS61159138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle

Abstract

PURPOSE:To prevent the quantity of transmitted light from decreasing and having variance and to eliminate measurement errors by providing a floating plate which is movable for adjustment to the light collecting surface of a prism, providing a weight which places a vertical load on the light collecting surface, and spreading uniformly and detecting sample liquid. CONSTITUTION:A light beam transmitted through the sample liquid is diffracted by an angle corresponding to the concentration of the sample liquid and projected from the prism and the angle of the projection light is detected to measure the concentration of the sample liquid. The floating plate 23 is provided inside a light shield cover 21 and a light collecting plate 24 is fitted in its center. The floating plate 23 is movable to and away from the light collecting surface of the prism for adjustment and the weight 29 is provided on its top surface while straddling the light shield plate 24. The reverse surface of the light collecting plate 24 is arranged while superposed upon the light collecting surface of the prism and the sample liquid is interposed between them. Thus, the floating plate 23 is movable for adjustment and the weight 29 is provided on its top surface to apply place a vertical load on the sample liquid uniformly by the cooperation between the both. Consequently, the sample liquid is spread uniformly and thinly between the prism and light collecting plate 24 to uniform the quantity of transmitted light.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は糖度計等に最適な濃度計に関する。[Detailed description of the invention] Industrial applications TECHNICAL FIELD The present invention relates to a concentration meter that is most suitable for a sugar content meter and the like.

従来技術とその問題点 従来より糖濃度を測定する糖度計としてプリズ ′ムを
利用した接眼鏡方式のものが知られている。
PRIOR ART AND THEIR PROBLEMS Conventionally, eyepiece type saccharimeters that utilize a prism have been known as saccharimeters for measuring sugar concentration.

この糖度計は第1図Aに示すようにプリズム1の第1面
を採光面2、第2面を着色した反射面3、第3面を光出
射面4とし、採光面2に検液5を全面塗着し、該検液5
の透過光線をプリズムlに通し検液濃度に応じた角度に
屈折して光出射面4より出射させ、該着色光反射面3を
反射して出射した光Plと、該着色光反射面3で反射せ
ずに出射した光P2とを、ゲージプレート6を通し、着
色光と白色光の境界線Pがゲージプレート6の目盛7を
横切る位置で濃度を読み取るものである(第1図B参照
)。
As shown in FIG. 1A, this saccharimeter has a prism 1 whose first surface is a light-collecting surface 2, whose second surface is a colored reflective surface 3, and whose third surface is a light-emitting surface 4. Apply it to the entire surface and apply the test solution 5.
The transmitted light beam is passed through the prism l, refracted at an angle according to the concentration of the test solution, and emitted from the light emitting surface 4. The light P2 emitted without being reflected is passed through the gauge plate 6, and the density is read at the position where the boundary line P between the colored light and the white light crosses the scale 7 of the gauge plate 6 (see Figure 1B). .

しかし、この糖度計は明暗の境界線を小さな接眼窓から
片目で検視するために非常に見憎い上に、境界線が接眼
姿勢、角度等によってその都度視界に振れを生じ、更に
境界線上に明暗何れにも属さない半端色部が存在してぼ
やけを生じ、正確な境界を把握し憎い等の欠点があり、
誤検出を来し易く、その上使い憎い等の問題を有してい
ることに加え、プリズム採光面に付着させる検液の厚薄
に斑が生じ、透過光量が不均一となったり、検液が厚く
つきすぎ、透過光量を著しく減殺して測定誤差等を生じ
高信頼の濃度検出力で期待し得ない欠点があった。これ
らの欠点は、検液粘度が高い場合においてより顕著とな
る。
However, with this saccharimeter, the boundary line between bright and dark is examined with one eye through a small eyepiece window, which makes it very difficult to see, and the boundary line causes fluctuations in the field of view depending on the eyepiece posture, angle, etc. There are disadvantages such as the presence of odd color areas that do not belong to any of the areas, resulting in blurring, and the difficulty of grasping the exact boundaries.
In addition to being prone to false detections and being difficult to use, the test liquid applied to the prism's light collection surface becomes uneven, making the amount of transmitted light uneven and causing the test liquid to become uneven. It is too thick, and the amount of transmitted light is significantly reduced, resulting in measurement errors and the like, which has the disadvantage that highly reliable concentration detection ability cannot be expected. These drawbacks become more noticeable when the viscosity of the test liquid is high.

発明の目的 本発明は、上記の如き問題点を一掃すべく提供されたも
のであって、検液の粘度が高い場合にもプリズム面に厚
く付着したり、或は厚薄斑ができて光学系に入射する光
量が減少するのを防止し、検液がプリズムの採光面に常
に均一の厚みで薄く層着するようにし、透過光量の減殺
、並びにバラツキを防止し、前記測定誤差等の発生を効
果的に解消した濃度計を提供するものである。
Purpose of the Invention The present invention was provided in order to eliminate the above-mentioned problems, and even when the viscosity of the test liquid is high, it may adhere thickly to the prism surface, or thick and thin spots may form, causing damage to the optical system. This prevents the amount of light incident on the prism from decreasing, and ensures that the test liquid always forms a thin layer with a uniform thickness on the light-collecting surface of the prism, thereby preventing the amount of transmitted light from decreasing and dispersing, and reducing the occurrence of measurement errors, etc. The object of the present invention is to provide a densitometer that effectively solves the problem.

問題点を解決するための手段 以上の問題点を解決するため1本発明では検液の透過光
線をプリズムに通し、検液濃度に応じた角度に屈折して
出射させ、該出射光角度の検知にて検液の濃度測定を行
う濃度計において、上記プリズム採光面に対し調動可能
な遊動板を設け、該遊動板にはプリズム採光面に重なる
採光板を設け、更に上記遊動板には上記プリズム採光面
に垂直荷重を与える重りを設け、検液の種類及び供給量
等に左右されずこれをプリズム採光面において常に均一
に展伸させ検出に供するようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention passes the transmitted light beam of the test liquid through a prism, refracts it at an angle corresponding to the concentration of the test liquid and emits it, and detects the angle of the emitted light. In a densitometer that measures the concentration of a test liquid, a movable plate is provided that can be adjusted relative to the prism light-collecting surface, a light-collecting plate that overlaps the prism light-collecting surface is provided on the movable plate, and the prism is A weight is provided to apply a vertical load to the light-collecting surface of the prism, so that the sample liquid is always uniformly spread on the light-collecting surface of the prism and used for detection, regardless of the type of test liquid and the amount supplied.

即ち、本発明によれば上記プリズム面に対し調動可能に
設けられた遊動板に、上記プリズム面に垂直荷重を与え
る重りを設けであるため、プリズムの採光面と採光板と
の間に形成された検液層に平均して垂直荷重が加わり、
検液層を均等に薄くすることができ、測定精度を高める
ことができる。
That is, according to the present invention, the floating plate that is adjustable with respect to the prism surface is provided with a weight that applies a vertical load to the prism surface, so that the weight that applies a vertical load to the prism surface is formed between the lighting surface of the prism and the lighting plate. An average vertical load is applied to the test liquid layer,
The test liquid layer can be made evenly thinner, and measurement accuracy can be improved.

又検液の層がプリズムの採光面全面に広がるため、少量
の検液量で濃度測定ができる。
Furthermore, since the layer of test liquid spreads over the entire light-collecting surface of the prism, concentration can be measured with a small amount of test liquid.

実施例 以下、本発明を図示の実施例に基いて説明する。第2図
〜第4図は、本発明を適用した濃度計の原理機構と濃度
測定方法を示すものである。
EXAMPLES The present invention will be explained below based on illustrated examples. 2 to 4 show the principle mechanism and concentration measurement method of a concentration meter to which the present invention is applied.

プリズム10は第1面を採光面12、第2面を光吸収面
13とする。尚、第1図ではプリズムlの第2面は着色
反射面としていたが、この実施例では第2面を光吸収面
13とし、この面に到達する検液透過光はできるだけ出
射させないよう、即ち光反射を来さないようなブラック
面とし外乱要因を除去するようにしている。
The prism 10 has a first surface as a light-collecting surface 12 and a second surface as a light-absorbing surface 13. In FIG. 1, the second surface of the prism l is a colored reflective surface, but in this embodiment, the second surface is a light absorption surface 13, and the light transmitted through the test liquid reaching this surface is prevented from being emitted as much as possible. The surface is black so that it does not reflect light to eliminate disturbance factors.

又第3面を光出射面14とし、光吸収面13に到達しな
い検液透過光を濃度検出用として出射する。
Further, the third surface is used as a light emitting surface 14, and the transmitted light of the test liquid that does not reach the light absorbing surface 13 is emitted for concentration detection.

該プリズム10の光出射面14と対峙し光結像用のレン
ズ15を配し、更に該レンズ15の焦面Fにイメージセ
ンサ16を配置する。
A lens 15 for optical imaging is disposed facing the light exit surface 14 of the prism 10, and an image sensor 16 is disposed at the focal plane F of the lens 15.

光出射面14.上記光結像用のレンズ15、イメージセ
ンサ16は外乱要因を除去すべく遮光筒体18内で夫々
対峙させる。
Light exit surface 14. The optical imaging lens 15 and the image sensor 16 are arranged to face each other within the light-shielding cylinder 18 in order to eliminate disturbance factors.

上記イメージセンサ16はホトトランジスタ等の多数の
光変換素子(半導体)17を列配置し、光を電気信号化
する回路ICと共にパッケージしたもので、光電変換素
子を縦列した面を採光窓とする。
The image sensor 16 has a large number of photoconversion elements (semiconductors) 17 such as phototransistors arranged in a row and is packaged with a circuit IC that converts light into an electrical signal, and the surface on which the photoelectric conversion elements are arranged in tandem is used as a lighting window.

上記イメージセンサ16の採用はプリズムIOから出射
する検液透過光が濃度に略比例しその臨界光線の出射角
度が変化する現象をヒントとする。
The adoption of the image sensor 16 is based on the phenomenon that the transmitted light of the test liquid emitted from the prism IO is approximately proportional to the concentration, and the emission angle of its critical light ray changes.

即ち、第3図に示すようにプリズムlOの採光面12に
検液19を塗着し採光板24で覆った場合、採光板24
に入射した光は検液に接するガラス面で乱反射し、あら
ゆる方向の光線となるが検液を通過し、同液の接するプ
リズふ採光面12を透過した光線(プリズム内光線)は
検液19の屈折率とプリズムlOの屈折率によって決ま
る臨界角により、臨界角7以上の角度では存在しない。
That is, when the test liquid 19 is applied to the light-collecting surface 12 of the prism IO and covered with the light-collecting plate 24 as shown in FIG.
The incident light is diffusely reflected on the glass surface in contact with the test liquid, becoming light rays in all directions, but it passes through the test liquid. Due to the critical angle determined by the refractive index of the prism lO and the refractive index of the prism lO, it does not exist at a critical angle of 7 or more.

今臨界角γの光線を便宜上臨界光線Qlと称する。For convenience, the ray of light having the critical angle γ will be referred to as the critical ray Ql.

この臨界光線Q1は更にプリズム10の光出射面14で
屈折され、角度θで出射する。
This critical ray Q1 is further refracted by the light exit surface 14 of the prism 10 and exits at an angle θ.

従ってプリズム10から出射する光線は角度θ以下での
み存在し、角度0以上の、例えば光線X1は存在しない
Therefore, the light rays emitted from the prism 10 exist only at angles less than or equal to θ, and there are no light rays emitted at angles greater than 0, for example, the light rays X1.

そして上記臨界光線Q1は検液の濃度に比例した角度θ
を以って出射され、光結像用のレンズ15に入射され、
これを通し該レンズ15の焦面Fに配した前記イメージ
センサ16に受光させる。
The critical ray Q1 is at an angle θ proportional to the concentration of the test solution.
and enters the lens 15 for optical imaging,
Through this, the light is received by the image sensor 16 arranged at the focal plane F of the lens 15.

第4図においてQlは前記角度θの仰角を以ってプリズ
ム10を出射しレンズ15に入射された臨界光線を示し
、該レンズ15を通しイメージセンサ16で受光される
光線は前記の如く上記臨界光線Qlの出射角度以下に存
在し、該臨界光線Q1が結ぶ像の位置より下は各角度の
光線、例えば光線Q2.Q3が像を結び明るくなる。
In FIG. 4, Ql indicates the critical ray that exits the prism 10 with an elevation angle of the angle θ and enters the lens 15, and the ray that passes through the lens 15 and is received by the image sensor 16 is the critical ray as described above. Below the exit angle of the light ray Ql, and below the position of the image formed by the critical ray Q1, there are rays of each angle, for example, the ray Q2. Q3 forms an image and becomes brighter.

この結果、臨界光線Q1を受光する位置を明争暗の境界
Sとし、S以下の区間を明区間Wl、S以上の区間を暗
区間W2とする。即ち境界Sと上記暗区間W2と明区間
W1は、前記理由から検液濃度に比例し上下し、開明区
間Wl内にある光電変換素子17を照射する。
As a result, the position where the critical light beam Q1 is received is defined as the boundary S between bright and dark, the section below S is defined as a bright section Wl, and the section above S is defined as a dark section W2. That is, the boundary S, the dark zone W2, and the bright zone W1 move up and down in proportion to the concentration of the test solution for the reason described above, and the photoelectric conversion element 17 in the open bright zone Wl is irradiated.

この結果、検液濃度に応じた区間内にある数の各光電変
換素子17が応動し、各々電気信号(電圧)を出力する
As a result, a certain number of photoelectric conversion elements 17 within the interval corresponding to the concentration of the test solution respond, and each outputs an electric signal (voltage).

この電気信号をデータ変換回路AIに与えて濃度値を表
すデジタル又はアナログ信号に変換し、これを表示器A
2に与え、検液19の濃度を明瞭にデジタル又はアナロ
グ表示する。
This electric signal is applied to the data conversion circuit AI to convert it into a digital or analog signal representing the concentration value, and this is displayed on the display A.
2, and the concentration of the test solution 19 is clearly displayed in digital or analog form.

第5図〜10図に示すように、プリズム10゜レンズ1
5、イメージセンサ16、データ変換回路A1.表示器
A2は濃度計容器20内に収容され、プリズム10はそ
の採光面12が濃度計容器20の開放面20aに位置す
るように固定する。
As shown in Figures 5 to 10, the prism 10° lens 1
5, image sensor 16, data conversion circuit A1. The display device A2 is housed in the densitometer container 20, and the prism 10 is fixed so that its light receiving surface 12 is located on the open surface 20a of the densitometer container 20.

21は開放面20aの遮光カバーで、該遮光カバー21
はその一端をヒンジ22で濃度計容器に枢着し、開放面
20aに対して開放と閉会とが可能な構成としである。
21 is a light-shielding cover for the open surface 20a, and the light-shielding cover 21
has one end pivotally connected to the concentration meter container by a hinge 22, and is configured to be able to open and close with respect to the open surface 20a.

遮光カバー21の内側には遊動板23が設けられる。該
遊動板23の中央には採光板24が取付けられ、更に採
光板24の両側の遊動板23上面には中程に段部25a
を有する筒部25が設けられ、該筒部25には遮光カバ
ー21の内面から垂設したガイド柱26が緩挿され、該
ガイド柱26の下端にワッシャをビス28で固定する等
して段部25aに衝合する鍔27を形成し、抜止めとす
る。
A floating plate 23 is provided inside the light shielding cover 21. A lighting plate 24 is attached to the center of the floating plate 23, and a stepped portion 25a is provided in the middle on the upper surface of the floating plate 23 on both sides of the lighting plate 24.
A guide column 26 hanging vertically from the inner surface of the light-shielding cover 21 is loosely inserted into the tube section 25, and a washer is fixed to the lower end of the guide column 26 with a screw 28, etc. A flange 27 that abuts against the portion 25a is formed to prevent it from coming off.

よって遊動板23をガイド柱26とこれを緩挿した筒部
25の隙間の範囲内で左右方向或は捻り方向に遊動可に
すると共に、遮光カバー21の下面と筒部25の上端及
び筒部25の段部25aとワッシャの間で上下方向に遊
動可に吊持する。
Therefore, the movable plate 23 is made movable in the left-right direction or torsional direction within the gap between the guide column 26 and the cylindrical portion 25 into which it is loosely inserted, and the lower surface of the light-shielding cover 21 and the upper end of the cylindrical portion 25 and the cylindrical portion are It is suspended between the step portion 25a of No. 25 and the washer so as to be freely movable in the vertical direction.

即ち、本発明では遊動板23を上記範囲内でプリズムの
採光面12に対して調動可能としである。
That is, in the present invention, the movable plate 23 can be adjusted within the above-mentioned range with respect to the light receiving surface 12 of the prism.

又遊動板23の上面に上記採光板24を跨ぐように重り
29を設ける。
Further, a weight 29 is provided on the upper surface of the floating plate 23 so as to straddle the lighting plate 24.

又、採光板24の下面は、上記プリズムlOの採光面1
2に重ね合せられるように配置され、その間に検液19
を介在させる構成とする。
Further, the lower surface of the lighting plate 24 is the lighting surface 1 of the prism lO.
2, and the test liquid 19 is placed between them.
The configuration is such that it intervenes.

上記の如く遊動板23を調動可能であり、且つその上面
に重り29が設けられ、両者の協働にて検液19に平均
して垂直な荷重を加える。よって、検液19はプリズム
10と採光板24間において均等に薄く展伸され、ひい
ては透過光量の均一化を図る。
As described above, the floating plate 23 can be adjusted, and the weight 29 is provided on the upper surface of the floating plate 23, and the weight 29 works together to apply an average vertical load to the test liquid 19. Therefore, the test liquid 19 is spread evenly and thinly between the prism 10 and the lighting plate 24, thereby making the amount of transmitted light uniform.

又、この実施例では遮光カバー21で囲まれた遊動板2
3上面には採光板一端の光入射面24b ゛と対向して
光源ランプ33 (LED)が設置され、更に該光源ラ
ンプは採光板24に最良の角度で透過光を入射できるよ
うにその向きを調整可に設置している。
In addition, in this embodiment, the floating plate 2 surrounded by the light shielding cover 21
A light source lamp 33 (LED) is installed on the upper surface of the lighting plate 24, facing the light incident surface 24b at one end of the lighting plate, and the light source lamp is oriented so that the transmitted light can enter the lighting plate 24 at the best angle. It is installed in an adjustable manner.

この−例を第8〜10図に基いて説明する。*動板23
上面に、採光板24一端の光入射面24b前方に位置し
て半円弧状のガイド片30a、30aを互いに同心円と
なるように起立させる。
This example will be explained based on FIGS. 8 to 10. *Moving plate 23
On the upper surface, semicircular arc-shaped guide pieces 30a, 30a are arranged to stand in front of the light incident surface 24b at one end of the lighting plate 24 so as to be concentric with each other.

他方、半円弧状の側面を有する回動片31a、31aと
、その中心部に光源ランプ33の挿入穴32を有するラ
ンプ保持駒31bとからランプホルダーを構成し、ラン
プ保持駒31bの両側に上記回動片31a、31aを添
設し、該添設面に一方から突設した柄31c、31cを
他方に穿設した孔31d、31clに挿入し、互いに回
動可に組立る。
On the other hand, a lamp holder is constituted by rotating pieces 31a, 31a having semicircular arc-shaped side surfaces and a lamp holding piece 31b having an insertion hole 32 for a light source lamp 33 in the center thereof, and the above-mentioned lamps are provided on both sides of the lamp holding piece 31b. Rotating pieces 31a, 31a are attached, and handles 31c, 31c protruding from one side of the attached surface are inserted into holes 31d, 31cl bored on the other side, and are assembled so as to be rotatable with respect to each other.

斯くして組立られたランプホルダーは、ガイド片30a
、30aの内側に回動片31a、31aの外側円弧面を
滑合させるように回動可に嵌め込み、穴32には光源ラ
ンプ33を挿入する。
The lamp holder assembled in this way has a guide piece 30a.
, 30a, and the light source lamp 33 is inserted into the hole 32.

而してランプホルダーは回動片31a、31aを介し、
ガイド片30a 、30a間で回動可となされ(第9図
の矢印方向)、或はランプ保持駒3tbを回動片31a
、31a間でと下に回動可となされる(第8図の矢印方
向)、よって光源ランプ33の最良の角度を定めた後、
ランプホルダーの構成部品及びランプホルダーとガイド
片30a、30aを接着する等して固定する。
Thus, the lamp holder is rotated through the rotating pieces 31a, 31a,
The guide pieces 30a can be rotated between the guide pieces 30a (in the direction of the arrow in FIG. 9), or the lamp holding piece 3tb can be rotated between the guide pieces 30a and 30a.
, 31a and downward (in the direction of the arrow in FIG. 8). Therefore, after determining the best angle for the light source lamp 33,
The components of the lamp holder, the lamp holder, and the guide pieces 30a, 30a are fixed by gluing or the like.

又採光板24の上面には半玉角錐形の導光部24aを形
成し、該導光部24aの端面に前記光源ランプ33を正
対させる。この場合、光入射面24b及びランプ33は
プリズム採光面に対し一定の傾斜角で入光するように傾
斜させる。
Further, a half-bead-pyramidal light guiding portion 24a is formed on the upper surface of the lighting plate 24, and the light source lamp 33 is directly opposed to the end surface of the light guiding portion 24a. In this case, the light incident surface 24b and the lamp 33 are tilted so that the light enters at a constant angle with respect to the prism light receiving surface.

上述の如くして、光源ランプ33の光は入射面24bと
から入射して導光部24aに入り、更に導光部24aに
導びかれて検液19に採用の角度で入射される。実施に
応じ上記採光板24は全体を直方体形としてもよい。
As described above, the light from the light source lamp 33 enters the light guide section 24a through the incident surface 24b, is further guided by the light guide section 24a, and enters the test liquid 19 at the adopted angle. Depending on the implementation, the lighting plate 24 may have a rectangular parallelepiped shape as a whole.

前記の如くプリズム採光面は遮光カバー1で覆われ、更
に上記光源ランプ33及び採光板24は遮光カバー1と
一体にその内側に配置されカバー1の閉合によって、上
記プリズム採光面に重なり合う。
As described above, the prism lighting surface is covered with the light-shielding cover 1, and the light source lamp 33 and the lighting plate 24 are integrally arranged inside the light-shielding cover 1, and overlap the prism lighting surface when the cover 1 is closed.

よって自然光を確保し得ない条件下での測定が可能であ
り、又自然光を利用する場合の外乱要因が取り除かれ、
常に一定の条件において安定なる測定を可能とする。
Therefore, it is possible to perform measurements under conditions where natural light cannot be secured, and the disturbance factors that occur when using natural light are removed.
Enables stable measurement under constant conditions.

又、濃度計容器20内でなされた測定結果を濃度計容器
20上面に設けた表示窓34に表示し。
Further, the measurement results made within the densitometer container 20 are displayed on a display window 34 provided on the top surface of the densitometer container 20.

外部にて観察可とする。It can be observed outside.

発明の効果 以上詳述したように本発明は、検液の透過光線をプリズ
ムを通し検液濃度に応じた角度に屈折して出射させ、該
出射光角度の検知にて検液の濃度測定を行う濃度計に関
するものであり、該濃度計において、検液を単にプリズ
ム採光面に塗着したり、或はすりガラスを液面に重ね測
定に供するものとは異って、上記プリズム採光面に対し
調動可能な遊動板を設け、該遊動板にプリズム採光面へ
重なる採光板を設け、更に該遊動板に上記プリズム採光
面に垂直荷重を与える重りを設ける構成としたので、遊
動板と重りの相乗作用により検液に平均した荷重を与え
、プリズム採光面に沿って一様に展伸し均一なるHみの
検液層を形成する。同時に検液層を適正に薄く均し、透
過光量を減衰することなく良好に透過させる。
Effects of the Invention As detailed above, the present invention allows the transmitted light beam of the test liquid to pass through a prism, refract it at an angle corresponding to the concentration of the test liquid, and emit it, and measure the concentration of the test liquid by detecting the angle of the emitted light. This is a densitometer that performs measurements, and unlike those in which the test liquid is simply applied to the prism light-collecting surface or a ground glass is placed on the liquid surface for measurement, the test liquid is applied to the prism light-collecting surface. An adjustable floating plate is provided, a lighting plate that overlaps the prism lighting surface is provided on the floating plate, and a weight is provided on the floating plate to apply a vertical load to the prism lighting surface, so that the synergistic effect of the floating plate and the weight is achieved. This action applies an average load to the test liquid and spreads it uniformly along the prism lighting surface to form a uniform H-like test liquid layer. At the same time, the test liquid layer is appropriately thin and leveled to allow the amount of transmitted light to be transmitted satisfactorily without attenuation.

更には検液粘度の高い場合にも従来にように厚く付着し
たり、或は厚薄斑を生成したりしてを光透適意や光量不
足を生ずる不具合が効果的に解消され、安定且つ高信頼
の濃度測定が可能となった。
Furthermore, even when the viscosity of the test liquid is high, the conventional problem of thick adhesion or thick/thin spots that result in inadequate light transmission or insufficient light intensity is effectively eliminated, making it stable and highly reliable. It became possible to measure the concentration of

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは従来の糖度計の原理をプリズム及び検液透過
光線を以って略示する側面図、同B図は同糖度計の接眼
部における糖度計指示状態を略示する正面図、第2図以
降は本発明に係る濃度計の実施例を示し、第2図は同濃
度計の原理動作機構をプリズム、レンズ、イメージセン
サの配置を以って略示する側面図、第3図は同上のプリ
ズムにおける検液透過光の状態を説明する側面図、第4
図は該プリズムを透過した光線がレンズを通しイメージ
センサに受光される状態を説明する側面図、第5図は同
濤度計の外観を示す斜視図、第6図は同上の遮光カバー
を一部切欠し内部構造を開示する斜視図、第7図は同上
の濃度計における遊動板と遮光カバーの遊動機構部を摘
示する断面図、第8図は同上の濃度計における遮光カバ
ー内部機構を示す断面図、第9図は同上の濃度計におけ
る光源ランプと採光板との配置を示す平面図、第10図
はランプホルダーの分解斜視図である。 10・・・プリズム、12・・・採光面、13・・・光
吸収面、14・・・光出射面、15・・・レンズ、16
・・・イメージセンナ、17・・・光変換素子、19・
・・検液、20・・・濃度計容器、20a・・・開放面
、21・・・遮光カバー、22・・・ヒンジ、23・・
・遊動板、24・・・採光板、25・・・筒、26・・
・ガイド柱、27・・・鍔、29・・・重り、30a、
30a、・・・ランプホルダーのガイド片、31a・・
・回動片、31b・・・ランプ保持駒、33・・・光源
ランプ。
Figure 1A is a side view schematically illustrating the principle of a conventional saccharimeter using a prism and a light beam transmitted through a test solution, and Figure 1B is a front view schematically illustrating the indication state of the saccharimeter at the eyepiece of the same saccharimeter. , Figure 2 and subsequent figures show embodiments of the densitometer according to the present invention, and Figure 2 is a side view schematically showing the principle operating mechanism of the densitometer with the arrangement of the prism, lens, and image sensor. The figure is a side view explaining the state of the test liquid transmitted light in the same prism as above.
The figure is a side view illustrating how the light beam transmitted through the prism is received by the image sensor through the lens, FIG. FIG. 7 is a partially cutaway perspective view showing the internal structure; FIG. 7 is a cross-sectional view showing the floating mechanism of the floating plate and light shielding cover in the above densitometer; and FIG. 8 is a sectional view showing the internal mechanism of the light shielding cover in the same densitometer. A sectional view, FIG. 9 is a plan view showing the arrangement of a light source lamp and a daylight plate in the above densitometer, and FIG. 10 is an exploded perspective view of the lamp holder. DESCRIPTION OF SYMBOLS 10... Prism, 12... Light-collecting surface, 13... Light-absorbing surface, 14... Light-emitting surface, 15... Lens, 16
...image sensor, 17...light conversion element, 19.
... Test liquid, 20... Concentration meter container, 20a... Open surface, 21... Light shielding cover, 22... Hinge, 23...
・Floating plate, 24... Lighting plate, 25... Tube, 26...
・Guide pillar, 27... Tsuba, 29... Weight, 30a,
30a... Lamp holder guide piece, 31a...
- Rotating piece, 31b...Lamp holding piece, 33...Light source lamp.

Claims (1)

【特許請求の範囲】[Claims] 検液の透過光線をプリズムを通し検液濃度に応じた角度
に屈折して出射させ、該出射光角度の検知にて検液の濃
度測定を行う濃度計において、上記プリズム採光面に対
し調動可能な遊動板を設け、該遊動板にはプリズム採光
面に重なる採光板を設け、更に該遊動板には上記プリズ
ム採光面に垂直荷重を与える重りを設けたことを特徴と
する濃度計。
A densitometer that measures the concentration of the test solution by passing the transmitted light beam of the test solution through a prism and refracting it at an angle corresponding to the test solution concentration, and detecting the angle of the emitted light.The prism can be adjusted with respect to the lighting surface. 1. A densitometer comprising: a floating plate, a light-lighting plate overlapping a prism light-lighting surface, and a weight for applying a vertical load to the prism light-lighting surface.
JP28064484A 1984-12-30 1984-12-30 Densitometer Pending JPS61159138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28064484A JPS61159138A (en) 1984-12-30 1984-12-30 Densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28064484A JPS61159138A (en) 1984-12-30 1984-12-30 Densitometer

Publications (1)

Publication Number Publication Date
JPS61159138A true JPS61159138A (en) 1986-07-18

Family

ID=17627922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28064484A Pending JPS61159138A (en) 1984-12-30 1984-12-30 Densitometer

Country Status (1)

Country Link
JP (1) JPS61159138A (en)

Similar Documents

Publication Publication Date Title
US4803470A (en) Substance detector device
US4518259A (en) Light guide reflectometer
US4948260A (en) Method and apparatus for examining hairiness of yarn
CA1193467A (en) Surface coating characterisation method and apparatus
US2436262A (en) Apparatus for measuring turbidity photoelectrically
US3628872A (en) Spectrophotometric test apparatus and method employing retroflective means
JPS61159137A (en) Densitometer
US4058737A (en) Method and apparatus for detecting extraneous solid substances contained in liquid
US1974522A (en) Counting op microscopic bodies-
JPH0213250B2 (en)
GB2147697A (en) Level measurement method and apparatus
US7619723B2 (en) Refractometer
US3610756A (en) Apparatus for determining the color of cut diamonds
US4641965A (en) Immersion refractometer with angle prism
JPS61215947A (en) Micro-plate for micro-titer
JPS61159138A (en) Densitometer
US2206214A (en) Testing apparatus
JPH0933435A (en) Device for measuring optical characteristic value of transparent material
JPH0444204B2 (en)
USH1655H (en) Backscatter haze measurement using a distributed light source
US2387581A (en) Refractometer for turbid liquids and pulpous substances
CN208313812U (en) A kind of water quality on-line monitoring instrument
KR200150091Y1 (en) Sample attaching unit
US3663109A (en) Viewing apparatus for use in a photometer
CN113959950B (en) Detection device for detecting liquid refractive index based on optofluidic chip