JPS61159009A - Controller for boiler feedwater - Google Patents

Controller for boiler feedwater

Info

Publication number
JPS61159009A
JPS61159009A JP13385A JP13385A JPS61159009A JP S61159009 A JPS61159009 A JP S61159009A JP 13385 A JP13385 A JP 13385A JP 13385 A JP13385 A JP 13385A JP S61159009 A JPS61159009 A JP S61159009A
Authority
JP
Japan
Prior art keywords
flow rate
water supply
pump
boiler
recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13385A
Other languages
Japanese (ja)
Inventor
花岡 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13385A priority Critical patent/JPS61159009A/en
Publication of JPS61159009A publication Critical patent/JPS61159009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は火力発電所のボイラ給水制御装置に係わシ、特
にi o’o s容量の給水制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a boiler feed water control device for a thermal power plant, and particularly to a water feed water control device with an i o'o s capacity.

〔発明の背景〕[Background of the invention]

火力発電所のボイラ給水は、従来は5O1s容量の給水
ポンプ2台と予備の給水ポンプ1台により行われている
。火力発電所では電力系統の攪乱時等に負荷しゃ断が行
われるが、この時は2台のうちの1台の給水ポンプを停
止し、残シの1台の給水ポンプでボイラ給水流量をまか
なって発電用の諸設備への電力を確保し、負荷の再併入
に備えている。この際に、ボイラ給水流量を確実に確保
する為に、給水ポンプ駆動タービンの加減弁をあらかじ
め定め九設定値に位置決めするという方法が用いられて
いる(%願昭53−21042参照)。
BACKGROUND OF THE INVENTION Conventionally, water supply to a boiler in a thermal power plant has been carried out using two water supply pumps with a capacity of 5O1s and one standby water pump. At thermal power plants, load is cut off when there is a disturbance in the power system, but at this time one of the two water supply pumps is stopped, and the remaining water pump covers the boiler water supply flow rate. We have secured power to various power generation facilities and are preparing for the re-incorporation of loads. At this time, in order to reliably ensure the boiler feed water flow rate, a method is used in which the regulating valve of the feed water pump driving turbine is determined in advance and positioned at a set value (see % Application No. 53-21042).

これは、負荷しゃ断時には各種の状態量は大幅に変化す
るから、通常のフィードバック制御系で追随できない間
、フィードア・オワードによって確実な制御を行うよう
にするものである。このような従来の場合には、ボイラ
必要給水流量が給水ポンプの必要最小流量より大きく再
循環弁は閉じたままで特に制御する必要はない。ところ
で、火力発電所設備コスト低減の要求から、100%容
量の給水ポンプ1台と予備の給水ポンプ1台という構成
が考えられておシ、この場合には、負荷しゃ断が発生し
九時にその1台の給水ポンプでボイラ給水流量を確保す
ることになるが、100%容量の給水ポンプの必要最小
流量は5〇−容量の給水ポンプのそれの2倍となる為に
、必要なボイラ給水流量(これはポンプ容量には関係な
く同じ)よりも大きくなる。従って負荷しゃ断時には給
水ポンプの弁開度の制御だけではなく、再循環弁も急速
に所定値となるように制御して給水ポンプの最小流量を
確保する必要があるが、このような制御は行われていな
かった。
This is because various state quantities change significantly when the load is cut off, so while a normal feedback control system cannot keep up with the situation, reliable control is performed using the feeder and backward. In such a conventional case, the required boiler feed water flow rate is greater than the required minimum flow rate of the feed water pump, and the recirculation valve remains closed and does not need to be particularly controlled. By the way, in order to reduce the cost of thermal power plant equipment, a configuration with one 100% capacity water supply pump and one standby water supply pump has been considered. The boiler water supply flow rate will be secured with one water supply pump, but the required minimum flow rate for a 100% capacity water supply pump is twice that of a 50-capacity water supply pump, so the necessary boiler water supply flow rate ( This is the same regardless of pump capacity). Therefore, when the load is cut off, it is necessary not only to control the valve opening of the water supply pump, but also to control the recirculation valve so that it quickly reaches a predetermined value to ensure the minimum flow rate of the water supply pump. It wasn't.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、100−容量の給水ポンプを用いた火
力発電所であっても、負荷しゃ断時にボイラ所要給水流
量と給水ポンプの最小流量とを確実に確保できるように
したボイラ給水制御装置を提供するにある。
An object of the present invention is to provide a boiler feed water control device that can reliably secure the required boiler feed water flow rate and the minimum flow rate of the feed water pump when the load is cut off, even in a thermal power plant using a 100-capacity feed water pump. It is on offer.

〔発明の概要〕[Summary of the invention]

本発明は、負荷しゃ断時に必要な給水ポンプの必要最小
流量及び再循環流量を負荷しゃ断直前の負荷の大きさに
よって定める手段を設け、負荷しゃ断時の過渡時にはこ
の手段の出力によって給水ポンプの駆動及び再循環弁の
開度を制御するようにしたことを特徴とするものである
The present invention provides a means for determining the required minimum flow rate of the water supply pump and the recirculation flow rate required at the time of load cutoff according to the magnitude of the load immediately before the load cutoff, and the output of this means is used to drive the water supply pump and the recirculation flow rate at the time of load cutoff. This is characterized in that the opening degree of the recirculation valve is controlled.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例によって詳細に説明する。 The present invention will be explained in detail below using examples.

第1図は本発明の一実施例を示すもので、100チ容量
の給水ポンプ1は給水ポンプ駆動タービン2によって駆
動され、このタービン2の駆動は加減弁3を操作する事
により調整される。一方ポンプ給水は、給水量が多い時
はボイラへのみ給水され、この時は再循環弁4は閉じて
いるが、ボイラ所要給水量が少なくなって、給水ポンプ
1の必要最小流量以下になると再循環弁4t−開けてポ
ンプの必要最小流量を確保する。このための制御は、通
常時には以下のようにして行われているうまず給水ポン
プ入口流量5から再循環流量6を減算−101で差引い
てボイラへの実給水流量を求め、これとボイラ給水デマ
ンド9の偏差が減算器102で算出されて制御演算器1
11へ入力され、その出力がスイッチ12の接点a(通
常時は3側が接続されている)を介してアクチュエータ
13に印加され、加減弁3が減算器102の出力がOと
なる(実給水流量がデマンド9と一致する)ように制御
される。一方、ポンプ回転数7或いは、ポンプ吐出圧力
8に応じたポンプ必要最小流量がその設定器14で与え
られ、これからポンプ給水流量5t−差引いた値が減算
器103により求められる。
FIG. 1 shows an embodiment of the present invention, in which a water pump 1 with a capacity of 100 cm is driven by a water pump driving turbine 2, and the drive of this turbine 2 is adjusted by operating a control valve 3. On the other hand, pump water is supplied only to the boiler when the amount of water supplied is large, and the recirculation valve 4 is closed at this time, but when the required amount of water supplied to the boiler decreases and becomes less than the required minimum flow rate of the water pump 1, it is recirculated. Open the circulation valve 4t to ensure the required minimum flow rate of the pump. Control for this is usually performed as follows: subtract the recirculation flow rate 6 from the Umazu feed water pump inlet flow rate 5 by -101 to obtain the actual water supply flow rate to the boiler, and calculate the actual water supply flow rate to the boiler by combining this with the boiler water supply demand. The deviation of 9 is calculated by the subtracter 102 and then sent to the control calculator 1
11, its output is applied to the actuator 13 via contact a of the switch 12 (normally, the 3 side is connected), and the output of the subtractor 102 becomes O (actual water supply flow rate). is controlled so that (matches demand 9). On the other hand, the minimum required pump flow rate corresponding to the pump rotation speed 7 or the pump discharge pressure 8 is given by the setter 14, and a value obtained by subtracting the pump water supply flow rate 5t from this is determined by the subtractor 103.

もしこれが正ならそれは再循環弁4に流さねばならない
流量に相当するから、この量を制御演算器112、スイ
ッチ15のa接点(通常時a側に接続されている)を介
して再循環弁4のアクチェエータ16に印加し、再循環
弁4の開度が所要の値となるように操作される。給水流
量が多い通常運転時は再循環弁4は全閉している。
If this is positive, it corresponds to the flow rate that must flow to the recirculation valve 4, so this amount is sent to the recirculation valve 4 via the control calculator 112 and the a contact of the switch 15 (which is normally connected to the a side). is applied to the actuator 16, and the opening degree of the recirculation valve 4 is operated to a required value. During normal operation when the water supply flow rate is large, the recirculation valve 4 is fully closed.

第2図はこのような給水システムの特性を示したもので
ロシ、曲線βは給水圧力、rは主蒸気圧力の特性である
。上述した給水流量が多い通常運転時の例として給水圧
力βで言えば100%流量に対する動作点A、が上けら
れる。この点A、の状態で運転中に負荷しゃ断が発生す
ると、ボイラの必要給水流量はFuryで表わす給水量
となる。
FIG. 2 shows the characteristics of such a water supply system, where the curve β is the characteristic of the water supply pressure and r is the characteristic of the main steam pressure. As an example of the above-mentioned normal operation in which the water supply flow rate is large, in terms of the water supply pressure β, the operating point A for 100% flow rate is raised. If a load cutoff occurs during operation in this state of point A, the required water supply flow rate of the boiler becomes the water supply amount expressed by Fury.

この時、給水ポンプ吐出圧力8(第1図)は給水流量減
による抵抗の減小に見合う点A、に、ボイラ主蒸気側の
圧力上昇分を加えた点B1となる必要が1ある。つt#
)給水ポンプは点B、に相当する駆動力金持たせれば良
い。従来の5Oqk給水ポンプ2台構成の場合には、負
荷しゃ断と同時に1台を停止し残シの1台のポンプで給
水を行なっているが、第2図に)いて点B、は50%給
水ポンプの必要最小流量の曲線α、上の点B、よりは流
量が大きく、ポンプの通常運転範囲に入っているので再
循環弁4t−開ける必要性がなかった。しかし10〇−
給水ポンプの場合にはポンプの必要最小流fは曲線αで
表わされ、ポンプ吐出圧力がB。
At this time, the feed water pump discharge pressure 8 (FIG. 1) needs to be a point B1, which is the sum of the pressure increase on the boiler main steam side to the point A, which corresponds to the reduction in resistance due to the reduction in the feed water flow rate. #
) The water supply pump should have a driving force corresponding to point B. In the case of a conventional configuration with two 5Oqk water supply pumps, one is stopped at the same time as the load is cut off, and water is supplied by the remaining pump, but at point B (in Figure 2), 50% water supply Since the flow rate was higher than point B on the minimum required flow rate curve α of the pump and was within the normal operating range of the pump, there was no need to open the recirculation valve 4t. But 100-
In the case of a water supply pump, the required minimum flow f of the pump is represented by a curve α, and the pump discharge pressure is B.

に相当する圧力たけ必要な場合は必要最小流量は点B0
に相当するだけ必要となる。そして無駄のない運転は点
B、での運転であるから給水ポンプ駆動タービン2は点
B0に相当する駆動力を要するとともに、再循環弁4を
開けてB、BIに相当する流量を再循環させるのが理想
的である。ま大通常時の運転点が点C,の場合に負荷し
ゃ断が生じると前記説明と全く同様に、給水ポンプ1及
駆動タービン2は点り、の駆動力を要するとともに、再
循環弁4t−開けてり。D、に相当する流量を再til
lさせる事になる。このように負荷しゃ断発生時には、
その直前の負荷に応じて給水ポンプ1の駆動力も再循環
弁4の開度もその目標値が一意的に定まるから、第1図
の実施例に於ては負荷しゃ断直前の負荷17に対応して
加減弁3の開度を定める関数発生器18及び再循環弁4
の開度を定める関数発生器19を設けておき、負荷しゃ
断時にスイッチ12及び15t−夫々b側に移す。そう
すると給水ポンプの運転点はポンプの必要最小流量(曲
線α)線上のBoや00点に移り、必要な再循環流量B
(l B t 、 D@ D s等が得られる。なお関
数発生器19の特性例は@3図に示されている。
If a pressure equivalent to
is required. Since efficient operation is at point B, the feedwater pump driving turbine 2 requires a driving force corresponding to point B0, and the recirculation valve 4 is opened to recirculate the flow rate corresponding to B and BI. is ideal. When the normal operation point is point C, when a load cutoff occurs, the water supply pump 1 and the drive turbine 2 turn on, requiring a driving force of 400, and the recirculation valve 4t opens, just as in the above explanation. Teri. Retil the flow rate corresponding to D.
It will make you l. In this way, when load interruption occurs,
Since the target values of the driving force of the water supply pump 1 and the opening degree of the recirculation valve 4 are uniquely determined according to the load just before that, in the embodiment shown in FIG. a function generator 18 that determines the opening degree of the control valve 3 and a recirculation valve 4;
A function generator 19 is provided to determine the opening degree of the switches 12 and 15t, and the switches 12 and 15t are moved to the b side when the load is cut off. Then, the operating point of the feed water pump moves to Bo or 00 point on the pump's required minimum flow rate (curve α) line, and the required recirculation flow rate B
(L B t , D@D s, etc. are obtained. An example of the characteristics of the function generator 19 is shown in Figure @3.

以上のようにして負荷しゃ断時の非常に大巾な状態量変
化に対処するためにフィードフォワード制御上行なうが
、一定時間たち系が安定し九ら、スイッチ12.15を
夫々a側にもどして通常の給水制御(フィードバック制
御)に戻すのが一般的である。また、必要な加減弁3の
開度及び再循環弁4の開度を設定する関数発生器18及
び19は、負荷しゃ断前の負荷の代シに、それに等価な
負荷しゃ断前の給水流量5或いは給水ボ/プ◎転数7、
或いは給水ポンプ吐出圧力8とする事も出来る。
As described above, feedforward control is performed in order to cope with the extremely wide change in state quantity when the load is cut off, but after the system has stabilized for a certain period of time, switches 12 and 15 are returned to side a. It is common to return to normal water supply control (feedback control). Further, the function generators 18 and 19 that set the necessary opening degree of the regulating valve 3 and the opening degree of the recirculation valve 4 are used to set the equivalent water supply flow rate 5 or Water supply bo/pu ◎Rotation number 7,
Alternatively, the water supply pump discharge pressure can also be set to 8.

第4図は本発明の別の実施例を示すもので、通常の制御
系は第1図と同じであるが、負荷しゃ断時でスイッチ1
2.15がともにb側に接続され大将には次のように動
作する。即ちしゃ断直前の負荷17に対応して必要ポン
プ給水流量(第2図曲線α上)を関数発生器20で求め
、給水ポンプ制御は関数発生器21で対応する加減弁3
の開度を求めて行う。一方再循環弁40制御は、必要ポ
ンプ給水流量からボイラ所要給水量22を減算器23で
差引いて必要再循環流量を求め、更にこれに対応する再
循環弁4の開度を関数発生器24により求めて行う。な
お関数発生器24は、必要再循環流量とポンプ回転数7
あるいはポンプ吐出圧力8の2つのパラメータの関数と
して精度を上げることも出来る。
Fig. 4 shows another embodiment of the present invention, in which the normal control system is the same as Fig. 1, but when the load is cut off, the switch
2.15 are both connected to the b side, and the general operates as follows. That is, the required pump water supply flow rate (on the curve α in FIG. 2) is determined by the function generator 20 corresponding to the load 17 immediately before the cutoff, and the water supply pump is controlled by the function generator 21 using the corresponding regulating valve 3.
This is done by finding the degree of opening. On the other hand, the recirculation valve 40 is controlled by subtracting the boiler required water supply amount 22 from the required pump water supply flow rate using the subtractor 23 to obtain the required recirculation flow rate, and then determining the opening degree of the recirculation valve 4 corresponding to this using the function generator 24. Seek and do. Note that the function generator 24 calculates the required recirculation flow rate and pump rotation speed 7.
Alternatively, the accuracy can be increased as a function of two parameters: pump discharge pressure 8.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかなように、本発明によれば、1
00m容量の給水ポンプを用−たプラントに於ても、所
内単独運転時等の負荷しゃ断時にも効率よく、かつ確実
にボイラ袷水流量及びポンプの必要流量を確保できると
いう効果かめる。
As is clear from the above embodiments, according to the present invention, 1
Even in a plant using a water pump with a capacity of 0.00m, the effect is that the boiler water flow rate and the required flow rate of the pump can be efficiently and reliably secured even during load interruption such as during isolated operation within the plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は給水シス
テムの特性を示す図、第3図は負荷に応じた最適な再循
環弁の開度を設定する関数発生器の特性例を示す図、第
4図は本発明の別の実施例を示す図である。 1・・・給水ポンプ、2・・・給水ポンプ駆動タービン
、3・・・タービン加減弁、4・・・再循環弁、13・
・・加減弁アクチェエータ、16・・・再循環アクチェ
エータ、17・・・負荷信号、18・・・負荷/加減弁
開度関数発生器、19・・・負荷/再循環弁開度関数発
生器、20・・・負荷/必要最小給水ポンプ流量関数発
生器、21・・・給水ポンプ流量/加減弁開度関数発生
器、22・・・負荷しゃ断時ボイラ所要給水流量、23
・・・減算器、24・・・必要再循環流量/再循環弁開
度関数発生器。
Figure 1 is a diagram showing an embodiment of the present invention, Figure 2 is a diagram showing the characteristics of a water supply system, and Figure 3 is a diagram showing the characteristics of a function generator that sets the optimal opening degree of the recirculation valve according to the load. FIG. 4 is a diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Water supply pump, 2... Water supply pump drive turbine, 3... Turbine adjustment valve, 4... Recirculation valve, 13.
... Adjustment valve actuator, 16 ... Recirculation actuator, 17 ... Load signal, 18 ... Load / adjustment valve opening function generator, 19 ... Load / Recirculation valve opening function generator, 20...Load/minimum required water supply pump flow rate function generator, 21...Feed water pump flow rate/regulating valve opening function generator, 22...Boiler required water supply flow rate at load cutoff, 23
... Subtractor, 24 ... Required recirculation flow rate/recirculation valve opening function generator.

Claims (1)

【特許請求の範囲】 1、再循環経路を有しかつ負荷しや断時のボイラ要求給
水流量より負荷しや断時のその必要最小流量が大きいよ
うな給水ポンプを備えた火力発電プラントのボイラ給水
制御装置に於て、負荷しや断発生時の上記発電プラント
の状態量に対応して上記ボイラ要求給水流量及び上記給
水ポンプの必要最小流量を確保するための再循環弁の開
度及び給水ポンプの駆動力を設定する設定手段を設け、
負荷しや断発生時には上記設定手段の出力によつて給水
ポンプの駆動力及び再循環弁の開度を制御するように構
成したことを特徴とするボイラ給水制御装置。 2、前記状態量を負荷しや断発生直前の負荷量、給水ポ
ンプによる給水流量、給水ポンプの回転数、もしくは給
水ポンプの吐出圧力としたことを特徴とする特許請求の
範囲第1項記載のボイラ給水制御装置。 3、前記設定手段は前記状態量に応じて前記給水ポンプ
の必要量小流量を設定する関数発生器と、該関数発生器
の出力から前記ボイラ要求給水流量の設定値を差引くこ
とによつて再循環流量を決定する再循環流量設定器とを
有したことを特徴とする特許請求の範囲第1項記載のボ
イラ給水制御装置。
[Scope of Claims] 1. A boiler for a thermal power plant equipped with a feed water pump that has a recirculation path and whose required minimum flow rate during load interruption is greater than the boiler's required feed water flow rate during load interruption. In the water supply control device, the opening degree of the recirculation valve and the water supply in order to ensure the boiler required water supply flow rate and the required minimum flow rate of the water supply pump in response to the state variables of the power generation plant at the time of load interruption. A setting means is provided to set the driving force of the pump,
A boiler feed water control device, characterized in that, when a load interruption occurs, the driving force of the feed water pump and the opening degree of the recirculation valve are controlled by the output of the setting means. 2. The state quantity set forth in claim 1 is characterized in that the state quantity is the load amount immediately before the load disconnection occurs, the water supply flow rate by the water supply pump, the rotation speed of the water supply pump, or the discharge pressure of the water supply pump. Boiler water supply control device. 3. The setting means includes a function generator that sets the required small flow rate of the feed water pump according to the state quantity, and a function generator that subtracts the set value of the boiler required feed water flow rate from the output of the function generator. 2. The boiler feedwater control device according to claim 1, further comprising a recirculation flow rate setting device for determining a recirculation flow rate.
JP13385A 1985-01-07 1985-01-07 Controller for boiler feedwater Pending JPS61159009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13385A JPS61159009A (en) 1985-01-07 1985-01-07 Controller for boiler feedwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13385A JPS61159009A (en) 1985-01-07 1985-01-07 Controller for boiler feedwater

Publications (1)

Publication Number Publication Date
JPS61159009A true JPS61159009A (en) 1986-07-18

Family

ID=11465531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13385A Pending JPS61159009A (en) 1985-01-07 1985-01-07 Controller for boiler feedwater

Country Status (1)

Country Link
JP (1) JPS61159009A (en)

Similar Documents

Publication Publication Date Title
US6070405A (en) Method for controlling the rotational speed of a turbine during load shedding
JPS61159009A (en) Controller for boiler feedwater
JP2698141B2 (en) Water supply control device for FCB of drum boiler
JP3183937B2 (en) Water supply control device
JPS6239655B2 (en)
JP3781929B2 (en) Turbine controller
JP2870039B2 (en) Water turbine speed control method
JPH0450602B2 (en)
JP2731331B2 (en) Feedwater pump recirculation flow control device
JP2758279B2 (en) Power generation control device
JPS61231308A (en) Method of controlling feed pump for nuclear reactor
JP2645129B2 (en) Condensate recirculation flow control device
JP3780590B2 (en) Flow control valve controller
JPS63231105A (en) Boiler feedwater control system
JPS6317303A (en) Boiler feedwater flow controller
JP2004044944A (en) Device for controlling recirculation flow rate of feed-water pump
JPS5818506A (en) Method of controlling operation of boiler turbine under variable pressure
JPS60194205A (en) Method of controlling quantity of recirculating flow
JPS61246502A (en) Feedwater controller
JPS60174404A (en) Controller for feedwater to nuclear reactor
JPS607168B2 (en) Turbine driven water pump recirculation flow control device
JPS63223489A (en) Condensate control system
JPH04353281A (en) Recirculation control device of a plural number of feed-water pumps
JPS6086307A (en) Feedwater controller
JPS60185002A (en) Method of controlling drum level of boiler