JPS6115856B2 - - Google Patents

Info

Publication number
JPS6115856B2
JPS6115856B2 JP7516278A JP7516278A JPS6115856B2 JP S6115856 B2 JPS6115856 B2 JP S6115856B2 JP 7516278 A JP7516278 A JP 7516278A JP 7516278 A JP7516278 A JP 7516278A JP S6115856 B2 JPS6115856 B2 JP S6115856B2
Authority
JP
Japan
Prior art keywords
acetone
monochloroacetone
chlorine
reaction
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7516278A
Other languages
Japanese (ja)
Other versions
JPS552647A (en
Inventor
Akio Egawa
Tadayoshi Mitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP7516278A priority Critical patent/JPS552647A/en
Publication of JPS552647A publication Critical patent/JPS552647A/en
Publication of JPS6115856B2 publication Critical patent/JPS6115856B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、アセトンの塩素化によつてモノク
ロルアセトンを製造する方法、特に多クロル化合
物含有量の少ない高純度モノクロルアセトンを工
業的に有利に製造する方法に関する。 モノクロルアセトンは染料・顔料・農薬・殺虫
剤などの合成原料として有用な化合物である。こ
の化合物は古くからアセトン中に塩素ガスを導入
することで得られることが知られていたが、突発
的な反応による制御困難、副反応(多クロル化や
縮合)の進行、特に1・1−ジクロルアセトンや
メシチルオキシドなど目的物との分離精製の困難
な不純物が副生しやすいことなどの欠点などから
高純度のモノクロルアセトンを安全に能率よくつ
くることは困難であつた。気相塩素化法も試みら
れたが反応制御などに難点があつた。 特公昭50−37650号公報に記載された発明は液
相塩素化の反応条件を限定し、かつ特定の分離操
作と組合せて上記先行技術の欠点を一応克服して
高純度モノクロルアセトンを製造する方法を提供
した。しかし、そのためにはアセトンの反応率を
極度に低くおさえ、かつ、反応混合物を中和処
理、液々相分離したのち、有機層を蒸溜するとい
う、はん雑な方法をとらねばならなかつた。塩
素/アセトンの低モル比、制限された滞溜時間に
よる低反応率化は高次塩素化物の副生をおさえる
のには有効であつたが、生産効率の低下をまねい
た。また、アセトンの塩素化により副生する塩化
水素が系内に存在しているので、反応液を中和処
理せずに蒸溜分離すると、酸触媒縮合反応が起
る。該発明ではこれを防ぐために反応生成物中に
溶存する塩化水素を直ちに中和処理することを必
要とした。これにより突発的な反応やアセトンの
縮合を避けることができたが、分離精製工程はか
なり複雑なものになり、かつ副生塩化水素も有価
物としては回収できない。 塩化パラジウム、塩化銅触媒の存在下にプロピ
レンを酸化してアセトンを製造する際に、クロル
アセトン混合物が副生し、この中にはモノクロル
アセトンも含まれる。しかし、きわめて沸点の近
接した1・1−ジクロルアセトンが共存するた
め、通常の方法で分離困難なことはアセトンの塩
素化による場合と同様である。このような混合物
からのモノクロルアセトンの分離についてもいく
つかの技術が提案されている(特開昭49−
124012、同50−37714、同52−125105各号公報参
照)。水の存在下の蒸溜法はモノクロルアセトン
と1・1−ジクロルアセトンの沸点差0.3℃を約
2℃に開くので精密な蒸溜により一応分離可能に
なるが大きな還流比、高い蒸溜塔を必要とする。
このように1・1−ジクロルアセトンはモノクロ
ルアセトンと極わめて分離しにくいのでアセトン
の塩素化によりモノクロルアセトンを製造する際
にも製品品質上有害であり、かつ無用な多塩素化
物の副生は極力おさえなければならない。ケトン
(特に2−ブタノンについて好適とされる)を気
相で塩素と共に反応室に導き、気相の塩素化反応
が起つたら直ちに反応生成物を冷却液化し、この
冷却生成物を精溜塔に導いて副生塩化水素を溜去
してモノクロルケトンを高収率で得る方法が知ら
れている(米国特許第2120392号)。この方法は反
応を短時間で行ない、その後直ちに分離を行なう
点で先に挙げた特公昭50−37650記載の発明と共
通点をもつが、反応が気相で行われる点、反応後
直ちに冷却された液からのモノクロルケトンと副
生塩化水素との分離が中和・分液でなく精溜塔に
よつて行なわれる点が異なる。この方法は気相で
行なわれる反応を適切な温度、滞溜時間に制御し
なければならないはずであるが、設定値や制御の
具体的な方法については記載がなく、アセトンの
モノクロル化の実施可能性、反応率などについて
は不明である。反応は原則として等モルのケトン
と塩素を気相で導入することで行なわれるが、一
方が過剰でもよく、未反応分は精溜塔において蒸
発し、塔頂コンデンサで冷却液化されたケトンは
貯槽に滞溜する。この技術は副生塩化水素を蒸溜
で回収することを教示しているが、塩化水素回収
の精溜塔に仕込まれるものは気相反応の生成物で
あり、この方法によりモノクロルケトンの製法は
従来技術のすべてと同様に反応装置と分離精製装
置の両方が存在している。 本発明者は、このように種々の困難のため十分
満足すべき方法のなかつた高純度モノクロルアセ
トンの製法につき検討をおこなつた結果、液状の
アセトンへの塩素の吸収、クロル化反応と、生成
したモノクロルアセトン、副生塩化水素、未反応
アセトンの分離を蒸溜塔内で同時におこなうこと
により、きわめて簡略化された設備、操作で高純
度のモノクロルアセトンを効率よく得る方法を見
出した。即ち、本発明はアセトンと塩素との反応
によりモノクロルアセトンを製造する方法におい
て、塔の上部からアセトンを還流させている蒸溜
塔内に塩素を連続的に導入して塩素を過剰量の液
状アセトン流と接触させることで塩素の吸収とク
ロル化反応とをおこない、副生する塩化水素を塔
頂から連続的に除去し、生成するモノクロルアセ
トンを未反応アセトンと蒸溜分離しながら、塩素
及び塩化水素が実質的に存在しない蒸溜塔の下部
に導くことを特徴とするモノクロルアセトンの製
造法である。 この発明では前に記したモノクロルアセトン製
造に関する製造技術のすべてと異なり、反応と分
離精製とは単一の蒸溜装置内で並行して同時にお
こなわれる。蒸溜装置は充填塔、棚段塔などの蒸
溜塔本体の他、リボイラーなどの加熱器、塔頂凝
縮器、原料仕込還流、目的物や副生物の取出など
のための配管など公知のものにより構成されてい
る。 蒸溜装置を用いる本発明の方法を連続法で実施
する態様につき説明する。蒸溜塔はアセトンとモ
ノクロルアセトンとを蒸溜分離する能力のあるも
のを用いる。アセトンは通常塔頂付近より連続的
に仕込みリボイラーで加熱する。塔頂から溜出し
たアセトンは凝縮器で液化され、塔の上部へ全還
流される。塩素は通常蒸溜塔の中段に連続的に導
入され、塔内を上昇するとき塔頂からの還流液及
び仕込液として流下してくる液状アセトンと接触
し吸収され、クロル化反応を起す。アセトンの仕
込量が塩素と当量であつても塔頂で還流してくる
アセトンがあるので塩素と接触するアセトンは大
過剰量となつている。これは塩素の吸収、モノク
ロル化反応にとり有利な条件である。 クロル化反応で副生した塩化水素はきわめて揮
発性が大きいので、直ちに液から追い出され、塔
内を気相で上昇する。反応熱は過剰に存在するア
セトンの蒸発熱として除去されるので、比熱の小
さい気相反応はもとより、通常の液相反応に比べ
ても温度制御のための除熱が容易な点で有利であ
る。塔底リボイラーでの加熱と反応熱により気化
したアセトンは塩化水素と共に塔頂から溜出し、
凝縮器でアセトンだけが液化して還流され、塩化
水素はガス状で連続的に除去される。 生成したモノクロルアセトンは、アセトンより
もはるかに揮発性が小さいので、塔内で容易に蒸
溜分離される。即ち、気相と接触しながら塔内を
流下する液の流れは塔頂ではほとんどアセトンの
みであり、反応部を下るにつれて次第に、そして
塩素導入部より下になると急にモノクロアセトン
濃度が上つてゆく。揮発性の大きい塩化水素と過
剰のアセトンとの反応で消費される塩素は塩素導
入部より下になると急に少なくなるので、モノク
ロルアセトンが濃縮される塔の下部ではこれらは
実質的に存在しない状態になる。即ち、塩素が存
在してクロル化反応の起る部分はアセトンが水過
剰に存在する塔の上部に限られ、そこではモノク
ロルアセトンは低濃度におさえられるので、モノ
クロルアセトンが更に塩素化されて1・1−又は
1・3−ジクロルアセトンなどの多クロル化物を
副生する機会が小さくなる。 また、塔の下部における塩化水素の不存在はモ
ノクロルアセトンの酸触媒縮合による損失を防止
する。塔の上部では反応によつて生ずる塩化水素
の存在は不可避であるが、蒸溜状態が保たれてい
るので、塩化水素は液相中にはほとんど溶存せ
ず、アセトンやモノクロルアセトンの酸触媒縮合
を起す機会は小さい。 塔底ではアセトンも実質的になくなり、モノク
ロルアセトンを主とする液がリボイラーにより加
熱されるので、リボイラー又は塔の下部からモノ
クロルアセトンをぬき取ることにより、多クロル
化物や酸触媒縮合物随伴量の少ない高純度モノク
ロルアセトンが容易に得られる。 塩素の導入位置と加熱部のある塔底との間には
少なくとも溶存塩素や塩化水素を追い出すだけの
蒸溜部が要るが、これにはさほど多くの蒸溜段を
必要としない。即ち、塩素導入部の下の精溜部が
わずかであつても多クロル化物の少ないモノクロ
ルアセトンを製造する本発明の目的は一応達せら
れる。しかし、上で説明した態様のように塔底で
アセトンが実質的にない状態にしてモノクロルア
セトンを抜き取る方が更に好ましい。そのために
は塩素導入部より下に未反応アセトンとモノクロ
ルアセトンとを蒸溜分離するに十分な精溜部をも
つようにする。このようにすれば、塩素導入部よ
り下へ流下する液中の未反応アセトンも気相に回
収され、結局は塔頂から還流されるので、その分
だけ仕込アセトンを減らすことができる。塔底に
おいてアセトンが実質的に切れる蒸溜能力をもて
ば塩素に対して当モルのアセトン仕込で足りるの
で、塩素導入位置は通常これを基準に定められ
る。一方、塩素導入位置より上には導入された塩
素をアセトンが吸収し、オフガス中に逃さないこ
とをめどにして所要の段数がきめられる。 この発明は連続法の他に半回分法によつても実
施することができる。この場合はまずアセトンを
蒸発缶に仕込んで加熱し、蒸溜塔頂から全還流す
る。塔頂から還流してくるアセトン流が塩素に対
して過剰になるような割合で中段以下から塩素を
連続的に導入して反応させる。 塩素の吸収、クロル化反応、副生塩化水素の塔
頂非凝縮ガスとしての除去が連続的におこなわれ
ることは連続法の場合と同様である。生成するモ
ノクロルアセトンは、未反応アセトンと蒸溜分離
しながら蒸溜塔の下部へ導かれ、蒸発缶に蓄積し
てゆく。塩素導入部より少し下では塩素と塩化水
素がほとんどなくなるので、半回分操作により連
続法より長時間モノクロルアセトンが蒸発缶中で
加熱されても、多クロル化や酸触媒縮合の機会は
小さい。蒸発缶内に所望のモノクロルアセトンが
たまつたら塩素の導入をやめて反応を終了する。
塩素導入終了時にも塔の上部は過剰量のアセトン
が還流している状態を保つている必要がある。引
き続き回分蒸溜をおこなえば、未反応アセトン溜
分とジクロルアセトンの少ない高純度モノクロル
アセトンが得られる。 このように本発明は蒸溜塔内に直接塩素を導入
し、塔頂からの還流(連続法の場合は還流及び仕
込み)による当モルより過剰の液状アセトン流と
接触させることで吸収反応をおこなわせる。アセ
トンが気化する蒸溜条件下であるにもかゝわらず
塩素の吸収はおこなわれ反応蒸溜方式をとること
が可能となつた。本発明は常圧下、即ち塔頂大気
圧で普通に実施できる。必要があれば加圧又は減
圧にすることもできる。減圧にすると反応蒸溜温
度が下るが、例えば30℃程度にまで下つても無触
媒で反応させることができる。圧力が高すぎると
温度上昇と塩化水素溶解度増加の影響で酸触媒縮
合などの副反応が進みやすくなるおそれがあるの
で、この点に支障のない値、例えば4atm以下で
実施される。 多クロル化反応をおさえ、モノクロルアセトン
を純度よく製造するためにはアセトン/モノクロ
ルアセトン比が大きい状態でクロル化をおこなう
のが有利であるが、従来技術は液相反応、気相反
応を問わず、短時間の反応後直ちに中和又は冷却
凝縮により反応を停止させ、低反応率と引換えに
高選択率を得ていた。本発明は蒸溜によるアセト
ンの塔頂還流、塩化水素の除去、モノクロルアセ
トンの反応域から塔の下部への導き出しなどを、
吸収、反応と同時に行うことにより全体としては
極めて高いアセトン反応率ながらクロル化反応の
起る場所ではアセトン/モノクロルアセトン比を
高く維持し、モノクロルアセトンを選択的に製造
するとに成功したものである。多クロル化や酸触
媒縮合の防止など反応面の効果の他にも本発明は
多くの利点をもつ。即ち本発明は反応と分離が同
一蒸溜塔内で行なわれるので従来のモノクロルア
セトンの製造法に比べて装置的にも操作的にも簡
単である。除熱その他反応制御の為の問題点もな
く副生塩化水素は有用物として回収できる。これ
らのすべてを備える効果は蒸溜塔内への塩素の直
接導入、アセトンの塔頂還流、モノクロルアセト
ンと未反応アセトンとの塔内蒸溜分離、塩化水素
の気相への除去などを要件として構成された本発
明に特有のものである。 実施例 1 5mmφ×10mmLのラシヒリングをランダム充填
した径35mm、高さ500mmのガラス管の反応蒸溜ゾ
ーンとその下にある塔径35mm、段間隔50mm、実段
数20段の蒸溜ゾーンで構成される塔を用い、常圧
でアセトンを全還流させながら反応蒸溜ゾーンの
下部から塩素を1.4/hrの割合で導入し、塔頂か
らアセトンを3.7g/hrの速度で仕込んだ。10時間
運転後蒸溜塔下部の気相からモノクロルアセトン
96.2%、1・1−ジクロルアセトン2.1%、アセ
トン0.5%を含む製品を取出すことができた。 実施例 2 5mmφ×10mmLのラシヒリングをランダム充填
した径35mm、高さ500mmのガラス管の反応蒸溜ゾ
ーンと、内容積1のガラス製三ツ口フラスコ蒸
発缶により構成される装置に、アセトン300gを
仕込み、加熱してアセトンを全還流させながら、
反応蒸溜ゾーンの下部から塩素を1.4/hrの割合
で導入した。経時的に蒸発缶からサンプリング
し、ガスクロマトグラフイーで分析した。アセト
ン変化率とモノクロルアセトン選択率(モノクロ
ルアセトン/モノクロルアセトン+ジクロルアセ
トンの比)は第1表に示す通りで、本発明の方法
によれば全体としてのアセトン変化率が高くなつ
てもモノクロルアセトン選択率が悪化してゆかな
いことがわかつた。
The present invention relates to a method for producing monochloroacetone by chlorination of acetone, and particularly to a method for industrially advantageously producing high-purity monochloroacetone with a low content of polychlorinated compounds. Monochloroacetone is a compound useful as a synthetic raw material for dyes, pigments, pesticides, insecticides, etc. It has been known for a long time that this compound can be obtained by introducing chlorine gas into acetone, but it is difficult to control due to sudden reactions, progress of side reactions (polychlorination and condensation), especially 1. It has been difficult to safely and efficiently produce high-purity monochloroacetone due to drawbacks such as the tendency to generate by-products such as impurities that are difficult to separate and purify from the target product, such as dichloroacetone and mesityl oxide. A gas phase chlorination method was also attempted, but there were difficulties in controlling the reaction. The invention described in Japanese Patent Publication No. 50-37650 is a method for producing high-purity monochloroacetone by limiting the reaction conditions of liquid phase chlorination and in combination with specific separation operations to overcome the drawbacks of the prior art described above. provided. However, in order to do this, it was necessary to keep the reaction rate of acetone extremely low, and to use a complicated method of neutralizing the reaction mixture, separating the liquid-liquid phase, and then distilling the organic layer. A low reaction rate due to a low chlorine/acetone molar ratio and limited residence time was effective in suppressing by-products of higher chlorides, but it led to a decrease in production efficiency. Furthermore, since hydrogen chloride, which is a by-product from the chlorination of acetone, is present in the system, if the reaction solution is distilled and separated without being neutralized, an acid-catalyzed condensation reaction will occur. In order to prevent this, the invention requires immediate neutralization of hydrogen chloride dissolved in the reaction product. This made it possible to avoid sudden reactions and condensation of acetone, but the separation and purification process became quite complicated, and the by-product hydrogen chloride could not be recovered as a valuable product. When propylene is oxidized to produce acetone in the presence of palladium chloride and copper chloride catalysts, a chloroacetone mixture is produced as a by-product, and this also includes monochloroacetone. However, since 1,1-dichloroacetone, which has very close boiling points, coexists, it is difficult to separate it by normal methods, as is the case with chlorination of acetone. Several techniques have been proposed for the separation of monochloroacetone from such mixtures (Japanese Patent Application Laid-Open No. 1989-1999).
124012, 50-37714, and 52-125105). Distillation in the presence of water increases the boiling point difference of 0.3°C between monochloroacetone and 1,1-dichloroacetone to about 2°C, so it is possible to separate them by precise distillation, but it requires a large reflux ratio and a high distillation tower. do.
In this way, 1,1-dichloroacetone is extremely difficult to separate from monochloroacetone, so when monochloroacetone is produced by chlorinating acetone, it is harmful to product quality and unnecessary polychlorinated by-products are produced. Life must be suppressed as much as possible. The ketone (particularly preferred for 2-butanone) is introduced into the reaction chamber together with chlorine in the gas phase, and as soon as the gas phase chlorination reaction takes place, the reaction product is cooled and liquefied, and the cooled product is sent to the rectification column. A method is known in which by-product hydrogen chloride is distilled off to obtain monochloroketone in high yield (US Pat. No. 2,120,392). This method is similar to the invention described in Japanese Patent Publication No. 1983-37650 mentioned above in that the reaction is carried out in a short time and separation is carried out immediately thereafter, but the reaction is carried out in the gas phase and is cooled immediately after the reaction. The difference is that monochloroketone and by-product hydrogen chloride are separated from the liquid by a rectification column rather than by neutralization and liquid separation. In this method, the reaction that takes place in the gas phase must be controlled at an appropriate temperature and residence time, but there is no description of set values or specific methods of control, and it is not possible to carry out monochlorination of acetone. The characteristics, response rate, etc. are unknown. In principle, the reaction is carried out by introducing equimolar amounts of ketone and chlorine in the gas phase, but one may be in excess.The unreacted portion is evaporated in the rectification column, and the ketone cooled and liquefied in the top condenser is transferred to the storage tank. accumulates in This technology teaches that by-product hydrogen chloride is recovered by distillation, but what is fed into the rectification column for hydrogen chloride recovery is the product of a gas phase reaction, and by this method monochloroketone production method As with all technologies, there are both reactors and separation and purification equipment. As a result of studying the method for producing high-purity monochloroacetone, for which there was no fully satisfactory method due to various difficulties, the present inventor discovered a method for producing high-purity monochloroacetone that involved absorption of chlorine into liquid acetone, chlorination reaction, and production. By simultaneously separating the monochloroacetone, by-product hydrogen chloride, and unreacted acetone in a distillation column, we have discovered a method for efficiently obtaining high-purity monochloroacetone using extremely simple equipment and operations. That is, the present invention is a method for producing monochloroacetone by reacting acetone with chlorine, in which chlorine is continuously introduced into a distillation column in which acetone is refluxed from the upper part of the column, and chlorine is removed from an excess amount of liquid acetone stream. The chlorine is absorbed and the chlorination reaction is carried out by contacting with chlorine, hydrogen chloride as a by-product is continuously removed from the top of the column, and the monochloroacetone produced is distilled and separated from unreacted acetone, while chlorine and hydrogen chloride are removed. This is a method for producing monochloroacetone, which is characterized in that monochloroacetone is introduced into the lower part of a distillation column where substantially no monochloroacetone exists. In this invention, unlike all of the production techniques related to monochloroacetone production described above, the reaction and separation and purification are performed simultaneously in a single distillation apparatus in parallel. The distillation equipment consists of well-known components such as the main body of the distillation column, such as a packed column or tray column, as well as a heater such as a reboiler, a tower top condenser, piping for feeding and refluxing raw materials, and removing target products and by-products. has been done. An embodiment in which the method of the present invention using a distillation apparatus is carried out in a continuous manner will be described. A distillation column capable of distilling and separating acetone and monochloroacetone is used. Acetone is normally charged continuously from near the top of the tower and heated in a reboiler. Acetone distilled from the top of the column is liquefied in a condenser and completely refluxed to the top of the column. Usually, chlorine is continuously introduced into the middle stage of a distillation column, and as it rises through the column, it comes into contact with and is absorbed by the reflux liquid from the top of the column and liquid acetone flowing down as a feed liquid, causing a chlorination reaction. Even if the amount of acetone charged is equivalent to the amount of chlorine, there is acetone that refluxes at the top of the column, so the amount of acetone that comes into contact with the chlorine is in large excess. This is an advantageous condition for chlorine absorption and monochlorination reaction. Hydrogen chloride, a by-product of the chlorination reaction, is extremely volatile, so it is immediately expelled from the liquid and rises in the column in the gas phase. The heat of reaction is removed as the heat of vaporization of the excess acetone, so it is advantageous not only in gas phase reactions with low specific heat, but also in the ease of heat removal for temperature control compared to normal liquid phase reactions. . Acetone vaporized by heating and reaction heat in the bottom reboiler is distilled out from the top of the tower along with hydrogen chloride.
In the condenser, only acetone is liquefied and refluxed, while hydrogen chloride is continuously removed in gaseous form. The monochloroacetone produced is much less volatile than acetone, so it can be easily separated by distillation within the column. In other words, the flow of liquid that flows down the tower while coming into contact with the gas phase is almost exclusively acetone at the top of the tower, and the concentration of monochloroacetone gradually increases as it goes down the reaction section, and then suddenly below the chlorine introduction section. . Chlorine consumed in the reaction between highly volatile hydrogen chloride and excess acetone suddenly decreases below the chlorine introduction section, so there is virtually no chlorine present at the bottom of the tower where monochloroacetone is concentrated. become. That is, the area where chlorine exists and the chlorination reaction occurs is limited to the upper part of the tower where acetone is present in excess water, and monochloroacetone is kept at a low concentration there, so that monochloroacetone is further chlorinated and becomes 1 - The chance of producing polychlorides such as 1- or 1,3-dichloroacetone as a by-product is reduced. Also, the absence of hydrogen chloride in the lower part of the column prevents loss of monochloroacetone due to acid-catalyzed condensation. The presence of hydrogen chloride generated by the reaction in the upper part of the column is unavoidable, but since the distilled state is maintained, hydrogen chloride is hardly dissolved in the liquid phase, and it is not possible to carry out the acid-catalyzed condensation of acetone and monochloroacetone. The chances of it happening are small. At the bottom of the tower, acetone is virtually gone, and the liquid mainly consisting of monochloroacetone is heated by the reboiler, so by removing monochloroacetone from the reboiler or the bottom of the tower, the amount of polychlorides and acid-catalyzed condensates can be reduced. A small amount of high purity monochloroacetone can be easily obtained. A distillation section sufficient to at least drive out dissolved chlorine and hydrogen chloride is required between the chlorine introduction point and the bottom of the column where the heating section is located, but this does not require a large number of distillation stages. That is, even if the rectification section below the chlorine introduction section is small, the object of the present invention of producing monochloroacetone with less polychloride can be achieved. However, it is more preferable to extract monochloroacetone in a state where there is substantially no acetone at the bottom of the column as in the embodiment described above. To this end, a rectification section sufficient to distill and separate unreacted acetone and monochloroacetone is provided below the chlorine introduction section. In this way, unreacted acetone in the liquid flowing down from the chlorine introduction section is also recovered in the gas phase and eventually refluxed from the top of the column, so that the amount of acetone charged can be reduced by that amount. If the distillation capacity is such that acetone can be substantially cut off at the bottom of the column, it is sufficient to charge the equivalent molar amount of acetone to chlorine, so the position of chlorine introduction is usually determined based on this. On the other hand, the required number of stages above the chlorine introduction position is determined with the aim of ensuring that acetone absorbs the introduced chlorine and does not release it into the off-gas. This invention can be practiced not only by a continuous method but also by a semi-batch method. In this case, acetone is first charged into an evaporator, heated, and then completely refluxed from the top of the distillation column. Chlorine is continuously introduced from the middle stage and below at such a rate that the acetone stream refluxing from the top of the column is in excess of chlorine, and the reaction is caused to occur. As in the continuous method, absorption of chlorine, chlorination reaction, and removal of by-product hydrogen chloride as non-condensable gas at the top of the column are carried out continuously. The produced monochloroacetone is separated by distillation from unreacted acetone, led to the lower part of the distillation column, and accumulated in the evaporator. Since almost no chlorine and hydrogen chloride are present slightly below the chlorine introduction section, there is little chance of polychlorination or acid-catalyzed condensation even if monochloroacetone is heated in the evaporator in a semi-batch operation for a longer time than in a continuous process. When the desired amount of monochloroacetone has accumulated in the evaporator, the introduction of chlorine is stopped to complete the reaction.
Even at the end of chlorine introduction, it is necessary to maintain a state in which an excess amount of acetone is refluxing in the upper part of the column. If batch distillation is subsequently performed, high purity monochloroacetone with less unreacted acetone fraction and dichloroacetone can be obtained. In this way, the present invention introduces chlorine directly into the distillation column, and causes an absorption reaction by bringing it into contact with a liquid acetone stream in excess of the molar amount produced by refluxing from the top of the column (refluxing and charging in the case of a continuous method). . Even though the distillation conditions were such that acetone vaporized, chlorine was still absorbed, making it possible to use a reactive distillation method. The invention can normally be carried out under normal pressure, ie overhead atmospheric pressure. If necessary, the pressure can be increased or decreased. When the pressure is reduced, the reaction distillation temperature is lowered, but the reaction can be carried out without a catalyst even if the temperature is lowered to, for example, about 30°C. If the pressure is too high, there is a risk that side reactions such as acid-catalyzed condensation will proceed more easily due to the influence of temperature rise and increase in hydrogen chloride solubility. Therefore, the reaction is carried out at a value that does not cause any problems, for example, 4 atm or less. In order to suppress the polychlorination reaction and produce monochloroacetone with high purity, it is advantageous to carry out chlorination in a state where the acetone/monochloroacetone ratio is large, but conventional technology does not allow for liquid-phase or gas-phase reactions. After a short reaction time, the reaction was immediately stopped by neutralization or cooling condensation, and a high selectivity was obtained at the cost of a low reaction rate. The present invention provides overhead reflux of acetone by distillation, removal of hydrogen chloride, and derivation of monochloroacetone from the reaction zone to the lower part of the column.
By carrying out absorption and reaction simultaneously, the overall acetone reaction rate was extremely high, but the acetone/monochloroacetone ratio was maintained at a high level in the areas where the chlorination reaction occurred, and monochloroacetone was successfully produced selectively. In addition to reaction-related effects such as prevention of polychlorination and acid-catalyzed condensation, the present invention has many advantages. That is, in the present invention, since the reaction and separation are carried out in the same distillation column, the present invention is simpler in terms of equipment and operation than the conventional method for producing monochloroacetone. By-product hydrogen chloride can be recovered as a useful product without any problems in heat removal or other reaction control. All of these effects are achieved by introducing chlorine directly into the distillation column, refluxing acetone at the top of the column, separating monochloroacetone and unreacted acetone by distillation within the column, and removing hydrogen chloride into the gas phase. This is unique to the present invention. Example 1 A column consisting of a reactive distillation zone made of glass tubes with a diameter of 35 mm and a height of 500 mm randomly filled with Raschig rings of 5 mmφ x 10 mm L, and a distillation zone below the reactive distillation zone with a column diameter of 35 mm, a plate interval of 50 mm, and an actual number of plates of 20. Using a vacuum cleaner, chlorine was introduced from the bottom of the reaction distillation zone at a rate of 1.4/hr while acetone was completely refluxed at normal pressure, and acetone was charged from the top of the column at a rate of 3.7 g/hr. After 10 hours of operation, monochloroacetone is extracted from the gas phase at the bottom of the distillation tower.
A product containing 96.2% 1,1-dichloroacetone, 2.1% acetone, and 0.5% acetone could be extracted. Example 2 300 g of acetone was charged into a device consisting of a reactive distillation zone made up of a glass tube with a diameter of 35 mm and a height of 500 mm randomly filled with Raschig rings of 5 mmφ x 10 mm L, and a glass three-necked flask evaporator with an internal volume of 1, and heated. While refluxing the acetone,
Chlorine was introduced from the bottom of the reactive distillation zone at a rate of 1.4/hr. Samples were taken from the evaporator over time and analyzed using gas chromatography. The acetone conversion rate and monochloroacetone selectivity (ratio of monochloroacetone/monochloroacetone + dichloroacetone) are shown in Table 1. According to the method of the present invention, even if the overall acetone conversion rate is high, monochloroacetone It was found that the selection rate did not deteriorate.

【表】 比較例 四ツ口1セパラブルフラスコに撹拌器、温度
計、塩素導入管、コンデンサーをつけた反応器
に、アセトン500gを加え、全還流下、塩素を
28.5/hrの速度で5.5時間吹きこんだ後、反応液
をガスクロマトグラフイーで分析した結果、アセ
トン変化率60%においてモノクロルアセトン選択
率87%であつた。
[Table] Comparative example 500g of acetone was added to a reactor equipped with a four-necked separable flask equipped with a stirrer, a thermometer, a chlorine inlet tube, and a condenser, and chlorine was added under total reflux.
After blowing at a rate of 28.5/hr for 5.5 hours, the reaction solution was analyzed by gas chromatography, and the monochloroacetone selectivity was 87% at an acetone conversion rate of 60%.

Claims (1)

【特許請求の範囲】[Claims] 1 アセトンと塩素との反応によりモノクロルア
セトンと製造する方法において、塔の上部からア
セトンを全還流させている蒸留塔の中段部に塩素
を連続的に導入して塩素を過剰量のアセトン流と
接触させることでクロル化反応を行い副生する塩
化水素を塔頂から連続的に除去し、生成するモノ
クロルアセトンを未反応アセトンと蒸留分離しな
がら、塩素及び塩化水素が実質的に存在しない蒸
留塔の下部に導くことを特徴とするモノクロルア
セトンノの製造法。
1 In the method of producing monochloroacetone by reacting acetone with chlorine, chlorine is continuously introduced into the middle part of the distillation column where acetone is completely refluxed from the top of the column, and the chlorine is brought into contact with an excess amount of acetone stream. The chlorination reaction is carried out by continuously removing the by-product hydrogen chloride from the top of the column, and the monochloroacetone produced is distilled and separated from unreacted acetone. A method for producing monochloroacetono, which is characterized by introducing it to the lower part.
JP7516278A 1978-06-20 1978-06-20 Preparation of monochloroacetone Granted JPS552647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7516278A JPS552647A (en) 1978-06-20 1978-06-20 Preparation of monochloroacetone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7516278A JPS552647A (en) 1978-06-20 1978-06-20 Preparation of monochloroacetone

Publications (2)

Publication Number Publication Date
JPS552647A JPS552647A (en) 1980-01-10
JPS6115856B2 true JPS6115856B2 (en) 1986-04-26

Family

ID=13568223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7516278A Granted JPS552647A (en) 1978-06-20 1978-06-20 Preparation of monochloroacetone

Country Status (1)

Country Link
JP (1) JPS552647A (en)

Also Published As

Publication number Publication date
JPS552647A (en) 1980-01-10

Similar Documents

Publication Publication Date Title
US8304589B2 (en) Process of making a chlorinated hydrocarbon
US5486627A (en) Method for producing epoxides
US4066706A (en) Preparation of ethylbenzene hydroperoxide
TW200936538A (en) Methods of making chlorinated hydrocarbons
US4672142A (en) Process for making 1,2-dichloroethane
US4035242A (en) Distillative purification of alkane sulfonic acids
JPH09176065A (en) Continuous production of benzyl alcohol
EP0044409B1 (en) Process for purifying methyl methacrylate
EP0064486B1 (en) Method and apparatus for the hydrolysis of alpha-chlorinated toluene compounds
US2869989A (en) Method for the recovery of hydrogen peroxide
US4747914A (en) Process for the purification of 1,2-dichloroethane
US4156632A (en) Process for the separation of water from gas mixtures formed in the manufacture of vinyl acetate
JPS62221639A (en) Manufacture of 1,2-dichloroethane
US3458406A (en) Removal of methyl and ethyl acetate from vinyl acetate
US4934519A (en) Process for working up crude liquid vinyl acetate
JPH0235729B2 (en)
US3972951A (en) Process for the formation of 2,6-diphenyl-phenol
US4362604A (en) Process for the preparation of pyrocatechol and hydroquinone
CZ9902008A3 (en) Treatment process of raw liquid vinyl acetate
JPH0147454B2 (en)
JPS6115856B2 (en)
EP0074162B1 (en) Process for producing p-cresol
NO744466L (en)
US4440960A (en) Continuous preparation of 3-alkyl-buten-1-als
US3318955A (en) Production of formaldehyde