JPS6115836A - Antitumor agent - Google Patents

Antitumor agent

Info

Publication number
JPS6115836A
JPS6115836A JP13532284A JP13532284A JPS6115836A JP S6115836 A JPS6115836 A JP S6115836A JP 13532284 A JP13532284 A JP 13532284A JP 13532284 A JP13532284 A JP 13532284A JP S6115836 A JPS6115836 A JP S6115836A
Authority
JP
Japan
Prior art keywords
branched
polysaccharide
water
soluble
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13532284A
Other languages
Japanese (ja)
Other versions
JPH053452B2 (en
Inventor
Hiroshi Matsuzaki
松崎 啓
Iwao Yamamoto
巖 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP13532284A priority Critical patent/JPS6115836A/en
Publication of JPS6115836A publication Critical patent/JPS6115836A/en
Publication of JPH053452B2 publication Critical patent/JPH053452B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:An antitumor agent containing a specific water-soluble polysaccharide having physiological activity as an active constituent. CONSTITUTION:An antitumor agent containing a water-soluble branched polysaccharide having branched beta-D-glucose bonded to a backbone consisting substantially of beta-1,4-glucan and >=20 average number of branched bonds based on 100 anhydroglucose units in the backbone as an active constituent. The above- mentioned water-soluble branched polysaccharide is obtained by activating cellulose acetate having free hydroxyl groups [cellulose acetate having 1.7-2.4 degree of substitution (DS)], reacting the resultant activated cellulose acetate with ortho ester of acetyl glucose, and deacetylating the reaction product. Cellulose diacetate is obtained by aging and saponifying cellulose triacetate, but the above- mentioned step under mild conditions provides the polysaccharide having a relatively high polymerization degree.

Description

【発明の詳細な説明】 本発明は、生理活性を有する水溶性多糖を有効成分きす
る5抗腫瘍剤に関するものである。詳しくは遊離水酸基
を有する酢酸セルロースを活性化処理した後、アセチル
グルコースのオルトエステルと反応させ、反応生成物を
脱アセチル化して得るβ−(1→6)グルコース分岐を
有するセルロースを、有効成分とする抗腫瘍剤に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antitumor agent containing a physiologically active water-soluble polysaccharide as an active ingredient. Specifically, after activating cellulose acetate having free hydroxyl groups, it is reacted with an orthoester of acetyl glucose, and the reaction product is deacetylated. Cellulose having β-(1→6) glucose branches is used as the active ingredient. The present invention relates to an antitumor agent.

分岐の長さのごく短い分岐多糖には、生理活性を有する
ものがあることが認められている。例えば、レンチナン
は抗腫瘍性のある分岐多糖であり、クレスチンの多糖部
分も分岐多糖である。
It has been recognized that some branched polysaccharides with very short branch lengths have physiological activity. For example, lentinan is a branched polysaccharide with antitumor properties, and the polysaccharide portion of Krestin is also a branched polysaccharide.

分岐多糖合成の試みもいくつか報告されている。Several attempts at branched polysaccharide synthesis have also been reported.

Kochetko’Vらは、酢酸セルロースをトリアセ
チルグルコースのオルトエステルと反応させてえた反応
生成物を鹸化し、重合度30−35程度の分岐多糖を得
ている。(0arbohydr、Res、 ”−9,1
(1971))、この方法はβ−(1→6)グルコース
分岐の生成を目的としたものであったが、生成物は主と
してβ−(1→2)グルコース分岐など、2級アルコー
ルに分岐を有するものであった。また反応中の分岐の切
断が著しく生成物の分子量は7000以下程度であった
Kochetko'V et al. saponified a reaction product obtained by reacting cellulose acetate with an orthoester of triacetylglucose to obtain a branched polysaccharide with a degree of polymerization of about 30-35. (0arbohydr, Res, ”-9,1
(1971)), this method was aimed at producing β-(1→6) glucose branches, but the products mainly contain branches to secondary alcohols, such as β-(1→2) glucose branches. It was something that I had. Furthermore, the molecular weight of the product was approximately 7,000 or less due to significant branching during the reaction.

Pf annenmUl fl 11!+rrらは、直
鎖多糖類のO−フェニルカルバモイル誘導体と、テトラ
アセチルグルコースプロミド又はトリアセチルグルコー
スのオルトエステルとを反応させ、次いでフェニルカル
バモイル基とアセチル基を鹸化により除去し、β−(1
→6)グルコース又は・−(1→6)グルコース分岐を
有する分岐多糖を得ている。
Pf annemUl fl 11! +rr et al. reacted an O-phenylcarbamoyl derivative of a linear polysaccharide with an orthoester of tetraacetylglucose bromide or triacetylglucose, then removed the phenylcarbamoyl group and acetyl group by saponification to obtain β-(1
→6) A branched polysaccharide having branched glucose or -(1→6) glucose is obtained.

(0arbohydr、Res、 43151 (19
75)、4763(1976))56139(1977
))。
(0arbohydr, Res, 43151 (19
75), 4763 (1976)) 56139 (1977
)).

この方法の場合、中間体であるO−フェニルカルバモイ
ル誘導体の合成が大変面倒である。また、反応中主鎖の
切断が起り、生成物が低重き度のものである場合は水溶
性多糖が得られるが、低重合度化が余り起こらなかった
場合は、水膨潤性の多糖を得ている。上記Kochet
koVやPhannenmul Ier  の研究にお
いても、得られた分岐多糖の生理活性については何も報
告されていない。従って、分岐多糖の重合度及び分岐度
が、その生理活性に及ぼす影響についても報告されてい
ない。
In this method, the synthesis of the intermediate O-phenylcarbamoyl derivative is very troublesome. In addition, if the main chain is cleaved during the reaction and the product has a low weight, a water-soluble polysaccharide will be obtained, but if the degree of polymerization does not significantly decrease, a water-swellable polysaccharide will be obtained. ing. Kochet above
Even in the studies of kov and Phannenmul Ier, nothing has been reported regarding the physiological activity of the obtained branched polysaccharide. Therefore, the effects of the degree of polymerization and degree of branching of branched polysaccharides on their physiological activity have not been reported.

本発明者らは、高重合度でしかも水溶性である分岐多糖
が生理活性が高く、且つ副作用が低いのではないかき考
え鋭意研究した。
The present inventors have conducted extensive research on the idea that branched polysaccharides, which have a high degree of polymerization and are water-soluble, have high physiological activity and low side effects.

その結果、直鎖多糖又は直鎖多糖のアセチルエステルを
適当な方法で活性化した後、グルコシル化反応を行わし
めることにより、直鎖多糖の分子量低下を伴わずに、水
溶性分岐多糖が得られることを認め、特願昭58−20
821.8さして出願した。
As a result, by activating a linear polysaccharide or an acetyl ester of a linear polysaccharide by an appropriate method and then performing a glucosylation reaction, a water-soluble branched polysaccharide can be obtained without a decrease in the molecular weight of the linear polysaccharide. Recognizing this, a special application was filed in 1982-20.
821.8 and filed the application.

本発明者らは、遊離水酸基を有する酢酸セルロースを出
発原料とし、上記方法を用いて分岐セルロースを合成し
たところ、分岐度(主鎖無水グルコースユニット100
あたりの平均分岐結合個数)が20以上でありGPOで
測定した分子量が20万以上である水溶性分岐多糖を得
、このものが高い抗腫瘍性を有するものであることをみ
とめた。
The present inventors synthesized branched cellulose using the above method using cellulose acetate having free hydroxyl groups as a starting material, and found that the degree of branching (main chain anhydroglucose unit 100
They obtained a water-soluble branched polysaccharide with an average number of branched bonds of 20 or more and a molecular weight of 200,000 or more as measured by GPO, and found that this polysaccharide has high antitumor properties.

得られた水溶性分岐多糖は、水溶液の形で、あるいは、
散剤、錠剤などの形で経口投与することができる。例え
ば錠剤とするには微結晶セルロース、乳糖などの賦形剤
と混合して打錠成型すれば良い。
The obtained water-soluble branched polysaccharide is in the form of an aqueous solution or
It can be administered orally in the form of powders, tablets, etc. For example, to make tablets, it may be mixed with excipients such as microcrystalline cellulose and lactose, and then formed into tablets.

即ち、本発明は、実質的にβ−1,4−グルカンからな
る主鎖に、β−D−グルコースが分岐結合している水溶
性分岐多糖であって、主鎖中の無水グルコース単位10
0あたりの平均分岐結合数が20以上である水溶性分岐
多糖を有効成分とする抗腫瘍剤に関するものである。
That is, the present invention provides a water-soluble branched polysaccharide in which β-D-glucose is branched and bonded to a main chain consisting essentially of β-1,4-glucan, the main chain comprising 10 anhydroglucose units.
The present invention relates to an antitumor agent containing as an active ingredient a water-soluble branched polysaccharide having an average number of branched bonds per zero of 20 or more.

本発明に用いる水溶性分岐多糖は、遊離水酸基を有する
酢酸セルロースを活性化処理した後、アセチルグルコー
スのオルトエステルと反応させ、反応生成物を脱アセチ
ル化して得る。
The water-soluble branched polysaccharide used in the present invention is obtained by activating cellulose acetate having free hydroxyl groups, reacting it with orthoester of acetyl glucose, and deacetylating the reaction product.

上記の遊離水酸基を有する酢酸セルロースは、DSが1
7〜24の範囲にある所謂2酢酸セルロースである。こ
のような2酢酸セルロースを、実施例に示すような方法
でグルコシル化すると、グルコースの縮合反応は、主鎖
無水グルコース残基中6位の水酸基に対して優先的に起
こる。グルコースの縮合反応の程度、即ち生成分岐多糖
の分岐度はそれが高くなるにつれ2位又は3位の水酸基
に対しても起こる。従って分岐度の高い場合一つの無水
グルコース残基中6位(!:2位、6位と3位のような
複数のグルコースが結合した部分も生成する。この6位
の分岐が優先的であることが抗腫瘍性と関連があると考
えられる。
The above cellulose acetate having a free hydroxyl group has a DS of 1
It is a so-called cellulose diacetate having a molecular weight ranging from 7 to 24. When such cellulose diacetate is glucosylated by the method shown in the Examples, the condensation reaction of glucose occurs preferentially at the 6-position hydroxyl group in the main chain anhydroglucose residue. As the degree of condensation reaction of glucose, ie, the degree of branching of the branched polysaccharide produced, increases, it also occurs to the hydroxyl group at the 2- or 3-position. Therefore, if the degree of branching is high, the 6th position (!: 2nd, 6th and 3rd positions, etc.) of a single anhydroglucose residue, where multiple glucoses are bonded, is also formed. Branching at this 6th position is preferential. This is thought to be related to antitumor properties.

2酢酸セルロースは、3酢酸セルロースヲ熟成鹸化して
えられるが、通常工業的に行われる条件テハ、この段階
でセルロース主鎖の切断が起こり低重合度化する。一方
、熟成鹸化を温和な条件で行うと、比較的重合度の高い
2酢酸セルロースが得られる。
Cellulose diacetate is obtained by aging and saponifying cellulose triacetate, but under the conditions normally used in industry, the main chain of cellulose is cleaved at this stage, resulting in a low degree of polymerization. On the other hand, when aging saponification is performed under mild conditions, cellulose diacetate with a relatively high degree of polymerization can be obtained.

比較的重合度の高い2酢酸セルロースを用いると、比較
的重合度の高い水溶性分岐多糖を得ることができるがG
POで測定した分子量が20万以上、50万以下の場合
特に高い抗腫瘍性を示すようである。即ち分子量が20
万以下では腫瘍抑止率55%以下であったが分子量20
万以下では、75係以上の抑止率を示した。同分子量5
0万以上のものは実験で得られておらず、抗腫瘍性に関
する直接の知見は得られていないが、分子量が大きくな
ると、水に対する溶解性が低くなる傾向があるので、分
子量50万以下の多糖が実用的に好6一 ましいもの古考えられる。
By using cellulose diacetate, which has a relatively high degree of polymerization, it is possible to obtain a water-soluble branched polysaccharide with a relatively high degree of polymerization.
It seems that particularly high antitumor properties are exhibited when the molecular weight measured by PO is 200,000 or more and 500,000 or less. That is, the molecular weight is 20
The tumor inhibition rate was less than 55% when the molecular weight was 20,000 or less.
In the case of 10,000 or less, the deterrence rate was 75 or higher. Same molecular weight 5
00,000 or more has not been obtained in experiments, and no direct knowledge regarding antitumor properties has been obtained. However, as the molecular weight increases, the solubility in water tends to decrease. Polysaccharides are considered to be the most preferred for practical purposes.

水溶性分岐多糖の合成に使用したグリコジル化試薬は以
下の方法で合成する。
The glycosylation reagent used to synthesize the water-soluble branched polysaccharide is synthesized by the following method.

即ちD (+ )グルコースを無水酢酸を用い、過塩素
酸を触媒としてパーアセチル化し、次に1位の炭素を臭
素及びリンを用いてブロム化して、2.3,4.6 −
テトラ−O−アセチル−a−D−グルコビラノースプロ
ミドを合成する。このものを酢酸エチル中無水エタノー
ルとともに還流加熱して3,4.6−トリー〇−アセチ
ル−(1,2−0−エチルオルトアセチル) −1Z−
Dグルコビラノースを得、これをグルコシル化試薬とす
る。
That is, D (+) glucose is peracetylated using acetic anhydride and perchloric acid as a catalyst, and then the carbon at the 1st position is brominated using bromine and phosphorus to obtain 2.3,4.6-
Tetra-O-acetyl-a-D-glucobylanose bromide is synthesized. This material was heated under reflux with anhydrous ethanol in ethyl acetate to give 3,4.6-tri〇-acetyl-(1,2-0-ethylorthoacetyl) -1Z-
D-glucobylanose is obtained and used as a glucosylation reagent.

上記の反応を式で示すと次のようである。The above reaction is expressed as follows.

クルコシル化反応及びこれにつヌ゛<脱アセチル化の天
側は実施例に記載するが反応を式で示すと以下のようで
ある。
The curcosylation reaction and its deacetylation process will be described in the Examples, but the reaction can be expressed by the following formula.

上記の式は分岐結合が1→6結合である場合を例示した
もので、実際の反応では、1→6よりも少数ではあるが
1→2,1→3結合も起こっていることは実施例に示す
通りである。
The above formula is an example of a case where the branching bond is 1→6 bonds, and it is clear from the examples that in actual reactions, 1→2 and 1→3 bonds also occur, although fewer than 1→6 bonds. As shown.

以下に実施例をあげて本発明を説明するが本発明はこれ
により1仮定されるものではない。
The present invention will be described below with reference to examples, but the present invention is not based on these examples.

実施例1 市販の3酢酸セルロース(置換度290)粉末4fを塩
化メチレンに41重量係溶液となるよう溶解し、酢酸/
水−2,6/ 1. (以下比で示した場合は容量比)
混合溶液を〃目え、系内の水分濃度を20.3容量チと
した後、50°Cで48時間保って加水分解させた。次
いで酢酸/水−1/1溶液を力口え、系内の水分濃度を
25.0容量係に上昇させ、引続き50°Cで72時間
、さらに系内水分濃度を258容量係に上昇、50°C
で48時間加水分解反応を続行した。(合計160時間
)反応溶液から塩化メチレンを留去した後、水中に投じ
て生成した2酢酸セルロースを沈澱させた。得られた2
酢酸セルロースの置換度は2.30であった。
Example 1 4f of commercially available cellulose triacetate (substitution degree 290) powder was dissolved in methylene chloride to give a solution with a weight ratio of 41, and acetic acid/
Water-2,6/1. (When expressed as a ratio below, it is a capacity ratio)
The mixed solution was measured and the water concentration in the system was adjusted to 20.3 volumes, and then kept at 50°C for 48 hours for hydrolysis. Next, acetic acid/water-1/1 solution was added forcefully to raise the water concentration in the system to 25.0 volume, and then the water concentration in the system was raised to 258 volume. °C
The hydrolysis reaction was continued for 48 hours. After methylene chloride was distilled off from the reaction solution (160 hours in total), it was poured into water to precipitate the produced cellulose diacetate. Obtained 2
The degree of substitution of cellulose acetate was 2.30.

この2酢酸セルロースを以下のように活性化処理した。This cellulose diacetate was activated as follows.

まず水/エタノールー1/1混合媒体中に室温下48時
間浸漬し、次いで水/エタノール一1/3中に24時間
、さらにエタノール中に3時間浸漬した後エーテルでエ
タノールが完全に除去されるまで洗滌し乾燥した。
First, it was immersed in a 1/1 water/ethanol mixed medium at room temperature for 48 hours, then in 1/3 water/ethanol for 24 hours, and then in ethanol for 3 hours, and then immersed in ether until the ethanol was completely removed. Washed and dried.

活性化した2酢酸セルロースを以下の方法でグルコシル
化した。活性化した2酢酸セルロース1.2Fと2.3
.4−)ソー0−アセチル−1,2−0−エチルオルト
アセチル−α−D−グルコピラ/−y、2.211をク
ロルヘンセン(b、p、132°C)2Srrl中に悪
法させた。常圧下に加熱して1〜2mlのクロルベンゼ
ンを留去することにより、系内の痕跡量の水及びアルコ
ールを完全に除いた。
The activated cellulose diacetate was glucosylated by the following method. Activated cellulose diacetate 1.2F and 2.3
.. 4-) So0-acetyl-1,2-0-ethylorthoacetyl-α-D-glucopyra/-y, 2.211, was dissolved in chlorhensen (b, p, 132°C) 2Srrl. By heating under normal pressure and distilling off 1 to 2 ml of chlorobenzene, trace amounts of water and alcohol in the system were completely removed.

次いで反応触媒である2、4−ルチジンバークロレート
10mNを加え、80分間還流〃l熱して反応させた。
Next, 10 mN of 2,4-lutidine verchlorate as a reaction catalyst was added, and the mixture was heated under reflux for 80 minutes to cause a reaction.

反応終了後、反応液をメタノール中に注ぎ生成物を沈澱
させ、沈澱をエーテルで洗滌し乾燥した。
After the reaction was completed, the reaction solution was poured into methanol to precipitate the product, and the precipitate was washed with ether and dried.

上記生成物を用いて、グルコシル化反応ヲモう一度くり
返して行い、同様にメタノール中に沈澱させ、洗浄乾燥
した。得られたものは、アセチル化分岐セルロースであ
る。このものをGPO(固定相;架橋ポリスチレン、移
動相;テトラヒドロフラン)を用いて、分子量を測定し
たところ35万であった。アセチル化分岐セルロース0
.IIIに0.5N NaOH水溶液5mlを加え17
時間静置して脱アセチル化した。このとき系は均一溶液
となっている。これに0.1N HOl  水溶液を加
えて中和し、さらに微酸性とし、水で希釈し、セロノ・
ンチーープを用いて透析を行い、不純物を除いてアセト
ンで沈澱させ、エーテルで洗滌し、減圧乾燥した。得ら
れたものはβ−1,4−グルカンからなるなる主鎖に、
β−D−グルコースが分岐結合している水溶性多糖であ
る。(100%水播性)得られた水溶性分岐多糖の腫瘍
抑制効果をしらべた。肉腫ザルコーマ180をIRO−
JOL 系メスマウスの腋下皮下に〈106セル/マウ
ス〉移植し移植24時間後より分岐多糖を滅菌生理食塩
水に溶解した溶液を、マウス体重1 kg当り分岐多糖
0.5■の割合になるよう、1日おきに腹腔内に投与し
ながら25日間飼育した後、肉腫を摘出して重量を測定
した。
The glycosylation reaction was repeated once using the above product, which was similarly precipitated in methanol, washed and dried. What is obtained is acetylated branched cellulose. The molecular weight of this product was measured using GPO (stationary phase: crosslinked polystyrene, mobile phase: tetrahydrofuran) and found to be 350,000. Acetylated branched cellulose 0
.. Add 5 ml of 0.5N NaOH aqueous solution to III and
The mixture was allowed to stand for an hour to allow deacetylation. At this time, the system is a homogeneous solution. Add 0.1N HOl aqueous solution to neutralize this, make it slightly acidic, dilute with water,
Dialysis was carried out using Cheap, and impurities were removed, followed by precipitation with acetone, washing with ether, and drying under reduced pressure. The obtained product has a main chain consisting of β-1,4-glucan,
It is a water-soluble polysaccharide in which β-D-glucose is branched. (100% water dissemination) The tumor suppressing effect of the obtained water-soluble branched polysaccharide was investigated. Sarcoma Sarcoma 180 IRO-
Transplant 〈106 cells/mouse〉 into the subcutaneous axilla of a JOL female mouse, and 24 hours after implantation, add a solution of branched polysaccharide dissolved in sterile physiological saline at a ratio of 0.5μ branched polysaccharide per 1 kg of mouse body weight. After being reared for 25 days with intraperitoneal administration every other day, the sarcoma was removed and its weight was measured.

腫瘍抑止率は次式により与えられる。The tumor inhibition rate is given by the following formula.

但し C:分岐多糖を投与しないマウス(10匹)の肉
腫重量 T:分岐多糖を投与したマウス(10匹)の肉腫重量 本実施例の分岐多糖の抑止率は89.5 %であった。
However, C: weight of sarcoma in mice (10 mice) to which branched polysaccharide was not administered T: weight of sarcoma in mice (10 mice) to which branched polysaccharide was administered The inhibition rate of branched polysaccharide in this example was 89.5%.

以下、得られた分岐多糖は以下のようにメチル分析に付
した。試料を箱守法で3度くりかえし処理して完全メチ
ル化し、ひきつづきトリフルオロ酢酸水溶液と加熱して
加水分解した後、水系化ホウ素ナトリウムで還元し、対
応する部分メチル化アルジトールアセテートに変換した
。このものをガスクロマトグラフィー及びマススペクト
ルの両者で定着、固定した。定址した部分メチル化単糖
は以下の通りである。
The obtained branched polysaccharide was then subjected to methyl analysis as follows. The sample was treated with the Hakomori method three times to achieve complete methylation, followed by hydrolysis by heating with an aqueous solution of trifluoroacetic acid, and then reduction with aqueous sodium boronate to convert it into the corresponding partially methylated alditol acetate. This product was fixed and fixed by both gas chromatography and mass spectroscopy. The fixed partially methylated monosaccharides are as follows.

1.4.5−)ジ−0−アセチル−2,3,6−)ジ−
0−メチルーD−グルシトール(2,3,6−TMと略
す。以下これに準ず) 1.4,5.6 −テトラ−0−アセチル−2,3−ジ
ー0−メチル−D−グルシトール(2,3−DM) 1.3,4.5 −テトラ−0−アセチル−2,6−ジ
ー0−メチル−D−グルシトール(2,6−DM) 1.2,4.5 −テトラ−0−アセチル−3,6−ジ
ー0−メチル−D−グルシトール(3,6−DM) 1.3,4,5.6−ペンタ−0−アセチル−2−0−
メチル−D−グルシトール(2−IVIM)1.2,4
,5.6−ペンタ−0−アセチル−3−〇−メチルーD
−グルシトール(3−MM)このうち主鎖中グルコース
残基の6位、2位。
1.4.5-)di-0-acetyl-2,3,6-)di-
0-Methyl-D-glucitol (abbreviated as 2,3,6-TM, hereinafter the same) 1.4,5.6-tetra-0-acetyl-2,3-di-0-methyl-D-glucitol (2,3,6-TM) ,3-DM) 1.3,4.5-tetra-0-acetyl-2,6-di-0-methyl-D-glucitol (2,6-DM) 1.2,4.5-tetra-0- Acetyl-3,6-di-0-methyl-D-glucitol (3,6-DM) 1.3,4,5.6-penta-0-acetyl-2-0-
Methyl-D-glucitol (2-IVIM) 1.2,4
,5.6-penta-0-acetyl-3-〇-methyl-D
- Glucitol (3-MM) Among these, the 6th and 2nd positions of glucose residues in the main chain.

3位での分岐をもったユニットの相対比を示す(2,3
−DM):’(3,6−DM):(2,6−DM)の楡
比は77.5 : 14.1 : 8.4であった。
The relative proportion of units with branching at position 3 is shown (2, 3
-DM):'(3,6-DM):(2,6-DM) ratio was 77.5:14.1:8.4.

即ち、1個の分岐を有するユニットの70%以上が6位
に分岐を有するものであった。
That is, more than 70% of the units having one branch had a branch at the 6th position.

また、2個の分岐を南するユニットに対応する(2−M
M)、(3−MM)はごく少量であり(6−MM)即ち
2位および3位への分岐を示す1,2,3,4゜5−ペ
ンタ−O−アセチル−6−〇−メチルーD−グルシトー
ルは検出されなかった。
Also, it corresponds to the unit south of the two branches (2-M
M), (3-MM) is present in a very small amount (6-MM), i.e., 1,2,3,4°5-penta-O-acetyl-6-〇-methyl- showing branching to the 2- and 3-positions. D-glucitol was not detected.

また、分岐多糖の全分岐度は次式で算出でき、その結果
は31.3%であった。
Further, the total degree of branching of the branched polysaccharide can be calculated using the following formula, and the result was 31.3%.

閘アセチル化分析から求めた分岐度は26.5%であり
、メチル化分析から求めた値とよ<一致した。
The degree of branching determined from the acetylation analysis was 26.5%, which was in close agreement with the value determined from the methylation analysis.

また、本実施例の水溶性分岐多糖のジメチルスルホキシ
ド溶液の”0−NMRスペクトルを測定したところβ−
01を示すシグナルが102〜103 ppm  に認
められ、一方a−(1→6)結合(デキストランに認め
られる100.2ppm  付近のシグナル)に相当す
るものは認められなかったことから、グルコース分岐結
合はβ型であると判断される。
In addition, when measuring the 0-NMR spectrum of the dimethyl sulfoxide solution of the water-soluble branched polysaccharide of this example, β-
A signal indicating 01 was observed at 102 to 103 ppm, while a signal corresponding to the a-(1→6) bond (signal around 100.2 ppm observed in dextran) was not observed, indicating that the branched glucose bond was It is determined to be type β.

実施例2 実施例1に用いたと同じ3酢雇セルロースを、同様の方
法を用いるが、加水分解反応時間を実施例1よりも延長
して行い、置換度1,69の2酢酸セルロースを得た。
Example 2 Cellulose diacetate, which was the same as that used in Example 1, was hydrolyzed using the same method but with a longer hydrolysis reaction time than in Example 1 to obtain cellulose diacetate with a degree of substitution of 1.69. .

この2酢酸セルロースを実施例1と同様の方法で活性化
処理した。活性化処理後の2酢酸セルロース1.779
に対し、3,4.6−トリー〇−アセチルー112−0
−エチルオルトアセチル−a−D−グルコビラノース2
.859を実施例1の方法に準じ反応させたグルコシル
化反応は2回くり返して行い、アセチル化分岐セルロー
スを得た。
This cellulose diacetate was activated in the same manner as in Example 1. Cellulose diacetate after activation treatment 1.779
3,4.6-tri〇-acetyl-112-0
-Ethyl orthoacetyl-a-D-glucobylanose 2
.. The glucosylation reaction in which 859 was reacted according to the method of Example 1 was repeated twice to obtain acetylated branched cellulose.

得らnだアセチル化分岐セルロースのGPOによる測定
分子量は29万であった。
The molecular weight of the obtained n-acetylated branched cellulose measured by GPO was 290,000.

このアセチル化分岐セルロースを実施例1と同様に鹸化
、中11.透析、濃縮、アセトンによる沈澱、エーテル
洗滌を順次行い減圧乾燥し、水溶性分岐多糖を得た。(
水溶性部分90%)得られた分岐多糖を実施例1と同様
にして腫瘍抑止率を測定したところ抑止率77.8%で
あった。
This acetylated branched cellulose was saponified in the same manner as in Example 1. Dialysis, concentration, precipitation with acetone, and washing with ether were performed in sequence, followed by drying under reduced pressure to obtain a water-soluble branched polysaccharide. (
When the tumor inhibition rate of the obtained branched polysaccharide (water-soluble portion: 90%) was measured in the same manner as in Example 1, the inhibition rate was 77.8%.

上記分岐糖は実施例1と同様にしてメチル化法により分
岐度を定量した。その結果全分岐度は46.7%であっ
た。
The degree of branching of the above-mentioned branched sugar was determined by the methylation method in the same manner as in Example 1. As a result, the total degree of branching was 46.7%.

アセチル化分岐多糖のアセチル化度から求めた分岐度は
13%であって、上記より低い値であったがこれはグル
コシル化反応中に脱アセチル化が起ったためと考えられ
る。
The degree of branching determined from the degree of acetylation of the acetylated branched polysaccharide was 13%, which was lower than the above value, but this is thought to be due to deacetylation occurring during the glucosylation reaction.

また、主鎖分岐ユニットの6位、2位、3位における分
岐の相対比は64.5 : 22.7 : 12.8で
あった。
Furthermore, the relative ratio of branches at the 6th, 2nd, and 3rd positions of the main chain branching unit was 64.5:22.7:12.8.

実施例3 アセチル置換度2.09、GPOで測定した分子量25
万の2酢酸セルロースを出発原料として、実施例1,2
と同様にグルコシル化を行い、アセチル化分岐多糖を得
た。このもののGPOで測定した分子蓋に29万であり
全分岐度は47%であった。
Example 3 Degree of acetyl substitution 2.09, molecular weight measured by GPO 25
Examples 1 and 2 using cellulose acetate as a starting material
Glucosylation was performed in the same manner as above to obtain an acetylated branched polysaccharide. The molecular cap of this product measured by GPO was 290,000, and the total degree of branching was 47%.

上記アセチル化分岐多糖を脱アセチル化して水溶性分岐
多糖唐(100%水溶性)を得た。実施例1.2と同様
にして腫瘍抑止率を測定したところ94.2%の値が得
られた。
The above acetylated branched polysaccharide was deacetylated to obtain a water-soluble branched polysaccharide (100% water-soluble). When the tumor inhibition rate was measured in the same manner as in Example 1.2, a value of 94.2% was obtained.

比較例1 3酢酸セルロースの加水分解を実施例1よりも高温で行
い、実施例1に用いたよりも低分子量の2酢酸セルロー
ス(置換度2.06)を出発原料とし、実施例1と同様
にグルコシル化し、分岐度30%、GPCによる分子、
t12.5万のアセチル化分岐多糖を得た。このものを
脱アセチル化し、得られた水溶性多糖(100%水溶性
)の腫瘍抑止率を測定したところ53.7%の1直を得
た。
Comparative Example 1 Cellulose 3 acetate was hydrolyzed at a higher temperature than in Example 1, cellulose 2 acetate having a lower molecular weight than that used in Example 1 (degree of substitution 2.06) was used as a starting material, and the same procedure as in Example 1 was carried out. Glucosylated, branching degree 30%, molecule by GPC,
An acetylated branched polysaccharide of t125,000 was obtained. When this product was deacetylated and the tumor inhibition rate of the resulting water-soluble polysaccharide (100% water-soluble) was measured, it was found to be 53.7%.

Claims (1)

【特許請求の範囲】 1、実質的にβ−1,4−グルカンからなる主鎖に、β
−D−グルコースが分岐結合している水溶性分岐多糖で
あって、主鎖中の無水グルコースユニット100あたり
の平均分岐結合数が20以上である水溶性分岐多糖を有
効成分とする抗腫瘍剤 2、水溶性分岐多糖が、GPCで測定した分子量が20
万以上、50万以下である特許請求範囲第1項記載の抗
腫瘍剤 3、水溶性分岐多糖が全分岐結合中の1→6結合が60
%以上を有するものである特許請求範囲第1項記載の抗
腫瘍剤
[Scope of Claims] 1. In the main chain consisting essentially of β-1,4-glucan, β
- Antitumor agent 2 whose active ingredient is a water-soluble branched polysaccharide in which D-glucose is branched and the average number of branched bonds is 20 or more per 100 anhydroglucose units in the main chain. , the water-soluble branched polysaccharide has a molecular weight of 20 as measured by GPC.
In the antitumor agent 3 according to claim 1, the water-soluble branched polysaccharide has a total molecular weight of 60,000 to 500,000, and the total number of 1→6 bonds among the total branched bonds is 60.
% or more, the antitumor agent according to claim 1
JP13532284A 1984-07-02 1984-07-02 Antitumor agent Granted JPS6115836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13532284A JPS6115836A (en) 1984-07-02 1984-07-02 Antitumor agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13532284A JPS6115836A (en) 1984-07-02 1984-07-02 Antitumor agent

Publications (2)

Publication Number Publication Date
JPS6115836A true JPS6115836A (en) 1986-01-23
JPH053452B2 JPH053452B2 (en) 1993-01-14

Family

ID=15149044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13532284A Granted JPS6115836A (en) 1984-07-02 1984-07-02 Antitumor agent

Country Status (1)

Country Link
JP (1) JPS6115836A (en)

Also Published As

Publication number Publication date
JPH053452B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
Qi et al. Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrata
Liang et al. Sulfated modification and anticoagulant activity of pumpkin (Cucurbita pepo, Lady Godiva) polysaccharide
Dong et al. A β-D-glucan isolated from the fruiting bodies of Hericium erinaceus and its aqueous conformation
Woodward et al. Water-soluble (1→ 3),(1→ 4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure
Shi et al. Characterization of a novel purified polysaccharide from the flesh of Cipangopaludina chinensis
Jansson et al. Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation
WO2014099724A1 (en) Preparation of poly alpha-1,3-glucan ethers
Paulsen et al. Structural studies of the polysaccharide from Aloe plicatilis Miller
RU1831487C (en) Process of production of o-acylated glucos-aminoglycanes
Uryu Artificial polysaccharides and their biological activities
Zhang et al. Regioselective sulfation of β-glucan from Ganoderma lucidum and structure-anticoagulant activity relationship of sulfated derivatives
Casu et al. Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose
CA1265792A (en) Oligosaccharides, synthesis process and biological uses thereof
Niu et al. Preparation and sulfation of an α-glucan from Actinidia chinensis roots and their potential activities
Matsuzaki et al. Synthesis of water‐soluble branched polysaccharides and their antitumor activity, 1. Branched polysaccharides from cellulose acetate
Misaki et al. Structure of succinoglucan and exocellular acidic polysaccharide of Alcaligenes faecalis var myxogenes
JP2003507539A (en) Modified reduced maltose-type oligosaccharides
JPS6115836A (en) Antitumor agent
Coutts et al. Polysaccharides Peptides and Proteins: Pharmaceutical Monographs
Alfes et al. THE WATER-SOLUBLE POLYSACCHARIDES OF DERMATOPHYTES: II. A GLUCAN FROM MICROSPORUM QUINCKEANUM
Yoshida et al. Synthesis and in vitro inhibitory effect of L-glycosyl-branched curdlan sulfates on AIDS virus infection
Matsuzaki et al. Synthesis of water‐soluble polysaccharides and their antitumor activity, 2. Branched polysaccharides from curdlan and curdlan acetate
Hassid et al. The Molecular Constitution of Enzymatically Synthesized Starch
Adams Constitution of a polyuronide hemicellulose from wheat leaf
US4973581A (en) Glucan derivatives having tumoricidal activity