JPS61158339A - Dry-type developer and electrostatic latent image developing method using same - Google Patents

Dry-type developer and electrostatic latent image developing method using same

Info

Publication number
JPS61158339A
JPS61158339A JP59281255A JP28125584A JPS61158339A JP S61158339 A JPS61158339 A JP S61158339A JP 59281255 A JP59281255 A JP 59281255A JP 28125584 A JP28125584 A JP 28125584A JP S61158339 A JPS61158339 A JP S61158339A
Authority
JP
Japan
Prior art keywords
carrier
toner
resin
resin powder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59281255A
Other languages
Japanese (ja)
Inventor
Kenjiyu Oka
岡 建樹
Shinji Takiguchi
瀧口 伸二
Takeo Maeda
前田 丈夫
Hiromichi Suzuki
博道 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Minolta Co Ltd
Original Assignee
FDK Corp
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp, Minolta Co Ltd filed Critical FDK Corp
Priority to JP59281255A priority Critical patent/JPS61158339A/en
Publication of JPS61158339A publication Critical patent/JPS61158339A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1131Coating methods; Structure of coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • G03G9/1135Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Abstract

PURPOSE:To obtain a carrier prevented from the rise of electric charge, the reduction of picture density and the generation of spent toner even if the carrier is stirred together with the toner for a long period while increasing the resistance of the carrier by containing the carrier consisting of carrier grains having recessed parts filled with resin on their surfaces. CONSTITUTION:For instance, ferrite or iron can be used as the carrier grains. The carrier grains 1 having recessed parts 3 on their surfaces are sufficiently mixed and stirred together with resin powder 2 having particle size to be entered into the recessed parts at a fixed rate to adhere the resin powder 2 to the surfaces of the carrier grains and their recessed parts. Almost all the resin powder is embedded into the recessed parts of the carrier grains by mixing the carrier grains 1 and the resin powder sufficiently and the resin powder is not almost adhered to the surfaces of the carrier surfaces. Under said status, the carrier grains are heated to melt the resin powder. Polystyrene resin or polyester resin is used as the resin powder as an example, but the kind of the resin is not limited to the example.

Description

【発明の詳細な説明】 −産業上の利用分野 本発明は乾式現像剤および該現像剤を使用した静電潜像
現像方法に関する。
DETAILED DESCRIPTION OF THE INVENTION - Industrial Application Field The present invention relates to a dry developer and a method for developing an electrostatic latent image using the developer.

従来技術 従来、静電潜像を現像する現像剤としては、ガラスピー
ズ等のキャリア粒子と絶縁性トナー粒子を用いたカスケ
ード現像用現像剤および鉄粉等の磁性キャリア粒子と絶
縁性トナー粒子を用いた磁気刷子現像用現像剤等の二成
分系現像剤が実用に供されている。
Conventional technology Conventionally, developers for developing electrostatic latent images include cascade development developers using carrier particles such as glass peas and insulating toner particles, and developers using magnetic carrier particles such as iron powder and insulating toner particles. Two-component developers, such as developers for magnetic brush development, are in practical use.

これらの現像剤を用いた静電潜像現像方法における問題
点は、現像を長期間行なうと、現像剤中のトナー(スペ
ントトナー)がキャリア粒子の表面に融着し、キャリア
の能力が低下して、現像画像の濃度低下やカブリを発生
して、画像が不鮮明になることである。
The problem with electrostatic latent image development methods using these developers is that when development is carried out for a long period of time, the toner (spent toner) in the developer fuses to the surface of the carrier particles, reducing the ability of the carrier. As a result, the density of the developed image decreases and fog occurs, making the image unclear.

この現象を解決するため、キャリアの粒径を小さくシ(
例えば、5〜30μ幻、粒子相互の強い接触を避けるこ
とが提案されている。しかしながら、この方法では、低
抵抗キャリアでは、現像スリーブからキャリアへの電荷
注入現象が生じて、キャリアが感光体へ付着する傾向が
あり、逆に高抵抗キャリアでは、電荷のリーク作用が少
なくなるため、トナーと長時間攪拌したとき、特に低湿
環境下において、帯電量が上昇し、画像濃度低下、スペ
ントトナー発生等の問題を生ずる。この高抵抗化による
問題を解決するため、キャリア用粒子として磁性体微粉
末と樹脂とを分散、粉砕、分級したバインダー型キャリ
アを使用することが提案されている。このキャリアはそ
の表面に樹脂部分と磁性体部分とが混在することに起因
して電荷量分布が不均一になり、従ってトナーと接触し
た場合、部分的に電荷のリークが起こり、帯電量の上昇
が押さえられる。
In order to solve this phenomenon, the particle size of the carrier can be reduced (
For example, it has been proposed to avoid strong contact between particles, e.g. However, in this method, with a low resistance carrier, a phenomenon of charge injection from the developing sleeve to the carrier occurs, and the carrier tends to adhere to the photoreceptor, whereas with a high resistance carrier, on the other hand, the charge leakage effect is reduced. When agitated with toner for a long time, especially in a low humidity environment, the amount of charge increases, causing problems such as a decrease in image density and generation of spent toner. In order to solve the problem caused by this high resistance, it has been proposed to use a binder type carrier in which fine magnetic powder and resin are dispersed, pulverized, and classified as carrier particles. This carrier has an uneven charge distribution due to the mixture of resin parts and magnetic parts on its surface. Therefore, when it comes into contact with toner, charge leaks locally and increases the charge amount. is suppressed.

しかしながら、このバインダ型キャリアは磁性粉を樹脂
中に分散してなるため、樹脂量を多くすると磁気特性が
弱くなりすぎ、磁性粉の割合を多くすると脆くなるとい
う欠点がある。いずれにしても、キャリアの強度を実用
的な値に維持するためには、相当量の樹脂を必要とし、
その結果、磁気特性に少なからず影響を与える。
However, since this binder-type carrier is made by dispersing magnetic powder in a resin, it has the disadvantage that if the amount of resin is increased, the magnetic properties become too weak, and if the proportion of magnetic powder is increased, it becomes brittle. In any case, in order to maintain the strength of the carrier at a practical value, a considerable amount of resin is required.
As a result, the magnetic properties are considerably affected.

また、特開昭57−204560号公報には、酸化鉄系
キャリアでは抵抗値が経時的に上昇し、合成樹脂被覆キ
ャリアでは抵抗値が経時的に減少するという特性を利用
し、両者を適当な割合に配合して、経時的に抵抗値の変
化が少ないキャリアを含む現像剤を得る技術が提案され
ている。しかしながら、この方法では、樹脂は単に酸化
鉄表面に部分的に融着しているのみであって、キャリア
相互またはキャリアとトナーとの摩擦によって剥離し易
く、必ずしも満足すべきものではない。また酸化鉄を併
用するため、スペントトナーのキャリア粒子表面への融
着を必ずしも満足に解決するものではない。
Furthermore, Japanese Patent Application Laid-Open No. 57-204560 discloses that the resistance value of an iron oxide carrier increases over time, and the resistance value of a synthetic resin-coated carrier decreases over time. A technique has been proposed to obtain a developer containing a carrier whose resistance value changes little over time by blending the carriers in appropriate proportions. However, in this method, the resin is only partially fused to the surface of the iron oxide, and it is easy to peel off due to friction between the carriers or between the carrier and the toner, and is not necessarily satisfactory. Furthermore, since iron oxide is used in combination, the problem of fusion of spent toner to the surface of carrier particles cannot always be satisfactorily solved.

発明が解決しようとする問題点 本発明は前述の問題点を解決するため、キャリアを高抵
抗化しながら、なおかつトナーと長時間攪拌しても帯電
量が上昇せず、画像濃度の低下、スペントトナーの発生
を生じないキャリアを提供することを目的とする。
Problems to be Solved by the Invention In order to solve the above-mentioned problems, the present invention aims to make the carrier high in resistance, yet the amount of charge does not increase even when mixed with the toner for a long time, resulting in a decrease in image density and a problem with spent toner. The purpose is to provide a carrier that does not cause the occurrence of

問題点を解決するための手段 本発明は表面に凹部を有するキャリア用粒子の該凹部に
樹脂が埋入されてなるキャリアを含む乾式現像剤および
該現像剤を使用した静電潜像現像方法を提供する。
Means for Solving the Problems The present invention provides a dry developer containing a carrier in which a resin is embedded in the recesses of carrier particles having recesses on the surface, and a method for developing an electrostatic latent image using the developer. provide.

表面に凹部を有するキャリア用粒子としては、フェライ
ト、鉄等の微粒子が例示される。
Examples of carrier particles having concave portions on the surface include fine particles of ferrite, iron, and the like.

従来のフェライト等は表面に実質上、凹部を有さないも
のが使用されていた。本発明では凹部を有するキャリア
用粒子を用いる。フェライト等の表面に凹部を形成させ
るには、原料金属酸化物の仮焼成による準スピネル化粉
末を水槽で粉砕し、次いで焼結することにより一次粒子
の結晶を成長させ、これによって−次粒子間接合面に凹
部を形成させる等の方法を用いればよい。これらの四部
を定量化することは困難であるが、キャリア用粒子の一
次粒子粒径を基準とする結晶成長度で表すことができる
。即ち、無作為に選択したキャリア用粒子を走査型電子
顕微鏡(500倍)を用い、適当に異なる場所を3回選
択して、写真撮影し、lOμ肩以上の一次粒子より構成
されるキャリア用粒子数の個数%を求め、これからキャ
リア用粒子中の凹部を評価することができる。本発明に
用いるキャリア用粒子の大きさは20〜70μm1特に
20〜50μ劫く好ましい。
Conventional ferrites and the like have been used that have virtually no recesses on their surfaces. In the present invention, carrier particles having concave portions are used. In order to form recesses on the surface of ferrite, etc., the quasi-spinelized powder obtained by pre-calcination of the raw metal oxide is crushed in a water bath, and then sintered to grow crystals of primary particles. A method such as forming a recess on the mating surface may be used. Although it is difficult to quantify these four parts, they can be expressed by the degree of crystal growth based on the primary particle diameter of the carrier particles. That is, randomly selected carrier particles were photographed using a scanning electron microscope (500x magnification) at appropriately different locations three times, and carrier particles composed of primary particles of 10μ or more were photographed. The number % of the number of particles can be determined, and the concave portions in the carrier particles can be evaluated from this. The carrier particles used in the present invention preferably have a size of 20 to 70 μm, particularly 20 to 50 μm.

本発明に使用するキャリア用粒子は、例えばフェライト
[(NjO)o、5(ZnO)o、7(F eto*)
o、ss]、鉄等が使用できる。
The carrier particles used in the present invention include, for example, ferrite [(NjO)o, 5(ZnO)o, 7(F eto*)
o, ss], iron, etc. can be used.

表面に凹部を有するキャリア用粒子の該凹部には、樹脂
を埋没させる。樹脂の埋没の仕方の一例を第1図から第
4図に示す。
A resin is embedded in the recesses of carrier particles having recesses on their surfaces. An example of how the resin is embedded is shown in FIGS. 1 to 4.

第1図は凹部(3)を有するキャリア用粒子(1)とこ
の凹部に入り得る粒径の樹脂粉末(2)を示している。
FIG. 1 shows carrier particles (1) having a recess (3) and resin powder (2) having a particle size that can fit into the recess.

両者を一定の割合で充分に混合攪拌し、第2図に示すご
とく、樹脂粉末(2)をキャリア用粒子の表面およびそ
の凹部に付着させる。両者の混合を充分に行うと、第3
図に示すごとく樹脂粉末の殆どはキャリア用粒子の凹部
に埋入し、その表面には殆ど付着しないものが得られる
。この様な状態になった後、キャリア用粒子を加熱して
樹脂粉末を溶融させる(第4図)。その結果、キャリア
用粒子の四部に溶融した樹脂が埋没したキャリアが得ら
れる。またキャリア用粒子と添加した樹脂粉末が摩擦帯
電する時は、樹脂粉末はクーロン力によって比較的強く
、キャリア用粒子の凹部に付着するため、特に溶融工程
を必要としない。従って、第3図に示すごとき態様のキ
ャリアを得ることができる。 ゛ 本発明に使用し得る樹脂としては、ポリスチレン、スヂ
レンアクリル樹脂、アクリル樹脂、エボキソ樹脂、フッ
素樹脂、ポリエステル樹脂等が例示されるが、これに限
定されるものではない。例えば第4図に示すごとく、樹
脂粉末を凹部で溶融する場合には、熱可塑性樹脂を使用
する必要があるが、第3図のごとく摩擦帯電により凹部
に樹脂粉末を保持した形のものでは必ずしも熱可塑性樹
脂を使用する必要はない。樹脂の使用型はキャリア用粒
子100重量部に対し、0.1−1.0重量部、より好
ましくは0.4〜1.よ0重量部である。
Both are thoroughly mixed and stirred at a constant ratio, and the resin powder (2) is adhered to the surface of the carrier particles and the concave portions thereof, as shown in FIG. When the two are sufficiently mixed, the third
As shown in the figure, most of the resin powder is embedded in the recesses of the carrier particles, with almost no adhesion to the surface thereof. After reaching this state, the carrier particles are heated to melt the resin powder (FIG. 4). As a result, a carrier is obtained in which the molten resin is embedded in four parts of the carrier particles. Further, when the carrier particles and the added resin powder are triboelectrically charged, the resin powder is relatively strong due to Coulomb force and adheres to the concave portions of the carrier particles, so that no particular melting step is required. Therefore, it is possible to obtain a carrier as shown in FIG.゛Resins that can be used in the present invention include, but are not limited to, polystyrene, styrene acrylic resin, acrylic resin, epoxy resin, fluororesin, and polyester resin. For example, as shown in Figure 4, when melting resin powder in a recess, it is necessary to use a thermoplastic resin. There is no need to use thermoplastics. The type of resin used is 0.1-1.0 parts by weight, more preferably 0.4-1.0 parts by weight, per 100 parts by weight of the carrier particles. It is 0 parts by weight.

この様にして得られたキャリアの平均粒径は20〜70
μm1より好ましくは20〜50μ次である。また電気
抵抗値は107Ω・cm以上、より好ましくは109Ω
・01以上(500V/cmの電界下で測定された値)
である。
The average particle size of the carrier obtained in this way is 20 to 70
It is more preferably 20 to 50 μm than 1 μm. In addition, the electrical resistance value is 107Ω・cm or more, more preferably 109Ω
・01 or more (value measured under an electric field of 500V/cm)
It is.

これらのキャリアは従来静電潜像現像方法において一般
に使用されるトナーと併用することができる。また第3
成分として酸化チタン、シリカ等、現像剤に潤滑性を持
たせる成分を添加してもよい。
These carriers can be used in conjunction with toners commonly used in conventional electrostatic latent image development methods. Also the third
A component that imparts lubricity to the developer, such as titanium oxide or silica, may be added.

この様にして得られた現像剤は従来公知の静電潜像現像
方法において使用することができる。
The developer thus obtained can be used in conventionally known electrostatic latent image developing methods.

本発明の乾式現像剤を使用して静電潜像を現像する装置
の概要を第5図に示す。
FIG. 5 shows an outline of an apparatus for developing an electrostatic latent image using the dry developer of the present invention.

第5図に示すごとく、導電性非磁性材から円筒状に形成
した現像スリーブ(7)内に、外周部にS、N極を順次
着磁した磁気ローラ(8)を同軸に収納し、この現像ス
リーブ(7)をトナー補給槽(16)の開口部に感光体
ドラム(6)の表面と近接する様に設置したもので、現
像剤は磁気ローラ(8)の矢印(a)方向の回転又は/
及び現像スリーブ(7)の矢印(b)方向の回転に基づ
いて、現像スリーブ(7)の外周面上を矢印(b)方向
に搬送される。
As shown in Fig. 5, a magnetic roller (8) with S and N poles sequentially magnetized on the outer periphery is housed coaxially within a developing sleeve (7) formed in a cylindrical shape from a conductive non-magnetic material. A developing sleeve (7) is installed in the opening of the toner supply tank (16) so as to be close to the surface of the photoreceptor drum (6), and the developer is supplied by the rotation of the magnetic roller (8) in the direction of arrow (a). or/
Based on the rotation of the developing sleeve (7) in the direction of the arrow (b), the developing sleeve (7) is conveyed in the direction of the arrow (b) on the outer peripheral surface of the developing sleeve (7).

穂高規制板(18)はトナー補給槽(16)の傾斜した
上面部の内面に一体に形成したもので、現像剤搬送方向
の現像領域(A)の上流側に設置されている。また、ト
ナー補給槽(16)は第1仕切り板(9)と第2仕切り
板(11)とによって現像部とトナー収容部(17)と
に仕切られている。第2仕切り板(11)はトナー補給
槽(16)の底部に取付けられ、先端部は現像スリーブ
(7)の外周面に近接している。第1仕切り板(9)は
トナー補給槽(16)の天井部に取付けられ、下端部は
第2仕切り板(11)の方向に折り曲げられ、この折り
曲げ片(9a)と第2仕切り板(11)とでトナー供給
用スリット(lO)が形成されている。スリット(lO
)は前記磁気ローラ(8)の磁界の及ぶ領域内に現像ス
リーブの軸方向に延在している。
The height regulating plate (18) is integrally formed on the inner surface of the inclined upper surface of the toner replenishing tank (16), and is installed on the upstream side of the developing area (A) in the developer transport direction. Further, the toner supply tank (16) is partitioned into a developing section and a toner storage section (17) by a first partition plate (9) and a second partition plate (11). The second partition plate (11) is attached to the bottom of the toner replenishing tank (16), and the tip thereof is close to the outer peripheral surface of the developing sleeve (7). The first partition plate (9) is attached to the ceiling of the toner supply tank (16), and its lower end is bent toward the second partition plate (11). ) forms a toner supply slit (lO). Slit (lO
) extends in the axial direction of the developing sleeve within the area covered by the magnetic field of the magnetic roller (8).

さらに、穂高規制板(18)と第1仕切り板(9)との
間には予め磁性キャリアあるいは磁性キャリアとトナー
との混合物が装填されるための空室(12)が現像スリ
ーブ(7)の外周面に向ってのみ開口する様に形成され
ている。この空室(12)内に位置するフィン(13)
は第1仕切り板(9)に多数枚のものを現像スリーブ(
7)の軸方向に傾斜させて取付けたもので、磁性現像剤
を空室(12)内で現像スリーブ(7)の軸方向に撹拌
する機能を有する。また、トナー補給槽(I6)の下端
であって、現像領域(A)の下方には、磁性を有する現
像剤こぼれ防止板(14)、(15)が設置されており
、現像領域(A)からこぼれ落ちたトナーは、この現像
剤こぼれ防止板(14)、(15)によって磁気的に吸
着される。
Further, between the height regulating plate (18) and the first partition plate (9), there is a vacant space (12) in which a magnetic carrier or a mixture of magnetic carrier and toner is loaded in advance in the developing sleeve (7). It is formed to open only toward the outer peripheral surface. Fin (13) located within this empty space (12)
Place a large number of sheets on the first partition plate (9) and place them in the developing sleeve (
7), and has the function of stirring the magnetic developer in the empty chamber (12) in the axial direction of the developing sleeve (7). Further, magnetic developer spill prevention plates (14) and (15) are installed at the lower end of the toner supply tank (I6) and below the development area (A). Toner spilled from the toner is magnetically attracted by the developer spill prevention plates (14) and (15).

一方、前記トナー補給槽(16)のトナー収容部(17
)の底部にはトナー供給羽根(19)、トナーエンプテ
ィ検出板(21)が設置されている。トナー供給羽根(
19)は支軸(20)を支点として矢印(d)方向に一
定速度で回転駆動可能であり、この回転にてトナーを前
記スリット(10)側に搬送する。トナーエンプティ検
出板(21)は支軸(22)を支点として回転自在であ
り、矢印(d)方向に回転するトナー供給羽根(19)
の当接にていったん上動し、当接が解除された後は自重
で下動する。
On the other hand, the toner storage section (17) of the toner supply tank (16)
) are provided with a toner supply blade (19) and a toner empty detection plate (21). Toner supply blade (
19) can be driven to rotate at a constant speed in the direction of arrow (d) with the support shaft (20) as a fulcrum, and this rotation conveys the toner toward the slit (10). The toner empty detection plate (21) is rotatable about the support shaft (22), and the toner supply blade (19) rotates in the direction of arrow (d).
It moves upward once it comes into contact with the object, and then moves downward under its own weight after the contact is released.

この下動時間は収容されているトナー量に応じて変わる
。即ち、トナー量が少なくなれば抵抗が減少して下動時
間が短くなる。そこで、この下動時間を適宜スイリチン
グ手段で測定することによりトナー量を検出し、エンプ
ティになれば外部に表示する様に構成されている。
This downward movement time varies depending on the amount of toner contained. That is, as the amount of toner decreases, the resistance decreases and the downward movement time becomes shorter. Therefore, the toner amount is detected by appropriately measuring this downward movement time with a switching means, and when the toner becomes empty, it is configured to be displayed externally.

また、トナー補給槽(16)の上部にはトナー補充用の
カートリッジ(24)が着脱自在に装着されている。カ
ートリッジ(24)内に予め収容されているトナーは、
カートリッジ蓋(25)をトナー補給槽1(23)と一
体に引き出すことにより、収容部(17)内に補充され
る。
Further, a cartridge (24) for replenishing toner is detachably attached to the upper part of the toner supply tank (16). The toner stored in the cartridge (24) in advance is
By pulling out the cartridge lid (25) together with the toner supply tank 1 (23), the storage section (17) is replenished.

次に、以上の構成からなる乾式現像装置の作動について
説明する。
Next, the operation of the dry developing device having the above structure will be explained.

まず、最初に空室(12)内に磁性キャリアとトナーと
の混合物からなるスタータが装填され、本装置が予備作
動された後に、トナー収容部(17)内にトナーが装填
される。この際、空室(I2)内には、前記スタータに
換えて磁性キャリアのみを装填しても良い。そして、こ
の状態で本装置によって静電潜像の現像が可能となる。
First, a starter made of a mixture of magnetic carrier and toner is loaded into the empty chamber (12), and after the device is pre-operated, toner is loaded into the toner storage section (17). At this time, only a magnetic carrier may be loaded into the empty chamber (I2) instead of the starter. In this state, the electrostatic latent image can be developed by this apparatus.

ここで、トナーは磁気ローラ(8)の矢印(a)方向へ
の回転に基づいて現像スリーブ(7)の外周面上を矢印
(b)方向に搬送され、空室(12)を通過する際に磁
性キャリアと混合撹拌され、トナーと磁性キャリアとは
各々摩擦帯電される。そして、この混合撹拌の結果、現
像剤の各成分であるトナーと磁性キャリアとは、この時
点で絶えず一定の混合比で一体化され、現像領域(A)
においては現像剤からなる磁気刷子が形成される。ここ
で形成される磁気刷子は感光体ドラム(6)の表面を摺
擦し、その表面上の静電潜像を現像して顕像化する。
Here, the toner is conveyed in the direction of arrow (b) on the outer peripheral surface of the developing sleeve (7) based on the rotation of the magnetic roller (8) in the direction of arrow (a), and as it passes through the empty chamber (12). The toner is mixed and stirred with a magnetic carrier, and the toner and magnetic carrier are each triboelectrically charged. As a result of this mixing and agitation, the toner and magnetic carrier, which are each component of the developer, are constantly integrated at a constant mixing ratio at this point, and the developing area (A)
A magnetic brush of developer material is formed in the step. The magnetic brush formed here rubs the surface of the photoreceptor drum (6) and develops the electrostatic latent image on the surface into a visible image.

現像に供された後、現像スリーブ(7)の外周面に残留
する現像剤は再度空室(I2)へと至り、そこで新たな
トナーが供給されて混合攪拌された後、再度現像に供さ
れる。
After being subjected to development, the developer remaining on the outer peripheral surface of the developing sleeve (7) reaches the empty chamber (I2) again, where new toner is supplied, mixed and stirred, and then subjected to development again. Ru.

トナーの供給は次の様にして行われる。The toner is supplied as follows.

トナー収容部(I7)内に収容されているトナーはトナ
ー供給羽根(19)の矢印(d)方向への回転にてスリ
ット(10)側に搬送され、かつ磁気ローラ(8)の矢
印(a)方向の回転に基づく脈動作用で第2仕切り板(
11)の第5図中、右側面に沿って上昇し、スリット(
10)を通じて空室(12)内に供給される。供給量は
空室(12)内においてトナーが減少した分量に対応す
る。
The toner stored in the toner storage portion (I7) is conveyed to the slit (10) side by the rotation of the toner supply vane (19) in the direction of the arrow (d), and is conveyed to the slit (10) side by the rotation of the toner supply blade (19) in the direction of the arrow (a) of the magnetic roller (8). ) The second partition plate (
11) in Figure 5, it rises along the right side and the slit (
10) into the cavity (12). The supply amount corresponds to the amount of toner reduced in the empty chamber (12).

なお、現像バイアスとしては、通常の手法に基づいて直
流電圧を現像スリーブ(7)に印加するが、これに交流
電圧を重畳させても良く、また、現像スリーブを接地す
る様にしても良い。
Note that as the developing bias, a DC voltage is applied to the developing sleeve (7) based on a normal method, but an AC voltage may be superimposed on this, or the developing sleeve may be grounded.

以下、実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 素原料として予めlOμl以下に整粒した各金属酸化物
を各々、Fee’s 47: MgO28;ZnO20
; MnO,l; CuO4モル%を用意し、ヘンシェ
ルミキサーあるいはリボ゛ンブレンダー等で混合後、ト
ンネル枦あるいはキルンにて900℃で3時間仮焼成を
行う。仮焼成により準スピネル化反応した粉末を水と混
合し、ボールミル、振動ミルまたはアトライターにて8
時間粉砕し、微細化する。この水溶液にバインダー(P
 V A :ポリビニルアルコール)および分散剤を数
重量%添加し、スラリー状溶液とした後、流動造粒乾燥
器またはスプレードライヤー等の噴霧乾燥、あるいはニ
ーダ−等により適当な粒子径の球状あるいは不定型粒子
に造粒する。造粒されたペレットを1320℃の焼成′
Ip(ガスまたは電気炉)にて4時間焼成し、焼結反応
を促進させ、適度な一次粒子より構成されるフェライト
粉末を作成した。これを振動篩あるいはジャイロシフタ
ーにて篩別し、風力分級により所望の粒度にし、キャリ
ア用粒子を作成した。
Example 1 Each metal oxide, which had been sized in advance to 10μl or less, was prepared as a raw material into Fee's 47: MgO28; ZnO20.
; MnO, l; 4 mol % of CuO is prepared, mixed using a Henschel mixer or ribbon blender, and then pre-calcined at 900°C for 3 hours in a tunnel or kiln. The powder that has undergone a quasi-spinel reaction through pre-calcination is mixed with water, and then milled in a ball mill, vibration mill or attritor for 8 hours.
Grind and finely grind for hours. A binder (P) is added to this aqueous solution.
V A :polyvinyl alcohol) and a dispersant are added in a few percent by weight to form a slurry solution, which is then spray-dried using a fluidized granulation dryer or spray dryer, or into a spherical or irregular shape with an appropriate particle size using a kneader or the like. Granulate into particles. The granulated pellets are fired at 1320°C.
It was fired for 4 hours in an Ip (gas or electric furnace) to promote the sintering reaction, and a ferrite powder composed of appropriate primary particles was created. This was sieved using a vibrating sieve or a gyro sifter, and the desired particle size was obtained by air classification to produce carrier particles.

通常、上記製法で作成されたキャリア用粒子は一次粒子
(ユニットグレン)より構成されろ多結晶体である。
Usually, carrier particles produced by the above-mentioned method are polycrystalline particles composed of primary particles (unit grains).

一次粒子は粉砕工程で微粒化された微粒子が焼結によ固
相反応を起こし、結晶成長することにより生成される。
The primary particles are generated by sintering of microparticles that have been atomized in the pulverization process, causing a solid phase reaction, and crystal growth.

−次粒子の大きさは初期原料の性状、添加物、仮焼成、
焼成あるいは粉砕等の諸条件で制御することができる。
-The size of the secondary particles depends on the properties of the initial raw material, additives, calcining,
It can be controlled by various conditions such as firing or pulverization.

焼結時の一次粒子の結晶成長により一次粒子間接合面に
凹部を生ずる。この凹部の生成割合は前述した作成過程
の諸条件で制御される。これは構成する一次粒子の形態
に依存することは明らかである。現像剤に供するフェラ
イトキャリアとして重要なことはキャリア用粒子の表面
性であるが、個々のキャリア用粒子の凹凸を定量化する
ことは困難である。従って、キャリア用粒子を構成する
−次粒子の粒径を基準とする結晶成長度で表現すること
とした。無作為に選択したキャリア用粒子を走査型電子
顕微鏡にて倍率500倍のSEM(走査型電子顕微鏡写
真)像にて適当に異なる場所を3回選択して写真撮影し
、10μ肩以上の一次粒子より構成されるキャリア用粒
子の個数%を計算し、これを結晶成長度とした。
Due to crystal growth of primary particles during sintering, recesses are created at the bonding surfaces between primary particles. The rate at which the recesses are formed is controlled by the conditions of the formation process described above. It is clear that this depends on the form of the constituent primary particles. What is important for a ferrite carrier to be used in a developer is the surface properties of the carrier particles, but it is difficult to quantify the irregularities of individual carrier particles. Therefore, it was decided to express the degree of crystal growth based on the particle size of the secondary particles constituting the carrier particles. Randomly selected carrier particles were photographed using a scanning electron microscope at 500x magnification in SEM (scanning electron micrograph) images at three different locations, and primary particles of 10 μm or larger were photographed. The number percent of carrier particles constituted by the above was calculated, and this was taken as the crystal growth degree.

作成されたマグネシウム亜鉛系フェライトキャリア用粒
子の諸特性は以下の通りであった:平均粒子径: 34
μ麗 見掛密度:  2.259/cc 飽和磁化:  50.2emu/g (l 0KOe)
電気抵抗値:  9X10”Ω・am (5QOV/C
肩)結晶成長度= 33% 上で得られたキャリア用粒子20に9にポリフッ化ビニ
リデン樹脂粉末(平均粒径0.2μx)0.08に9を
20Qのポリ容器に入れ、30rpmの回転速度で24
時間回転攪拌した。得られたキャリアをSEM(走査型
電子顕微鏡)で観察すると、第3図に示すごとく、フェ
ライトの凹部に樹脂粉末が坤没され、表面には殆ど樹脂
粉末が付着していなかった。このキャリアを180℃で
60分間熱処理し、第4図に示すごとき樹脂がフェライ
ト凹部で熱融着したキャリアを得た。
The characteristics of the prepared magnesium zinc-based ferrite carrier particles were as follows: Average particle size: 34
μ-apparent density: 2.259/cc Saturation magnetization: 50.2emu/g (l 0KOe)
Electrical resistance value: 9X10”Ω・am (5QOV/C
Shoulder) Crystal growth degree = 33% Place the carrier particles 20, 9 and polyvinylidene fluoride resin powder (average particle size 0.2 μx) 0.08 and 9 obtained above in a 20Q polyethylene container, and rotate at a rotation speed of 30 rpm. at 24
Rotate and stir for hours. When the obtained carrier was observed with an SEM (scanning electron microscope), as shown in FIG. 3, the resin powder was buried in the recesses of the ferrite, and almost no resin powder was attached to the surface. This carrier was heat-treated at 180° C. for 60 minutes to obtain a carrier in which the resin was thermally fused in the ferrite recesses as shown in FIG.

上記キャリア 200重量部とトナー 100重量部を
混合し、第5図に示す現像装置の空室(12)内に充填
した。トナーはさらにトナー補給!(16)に入れ、空
室(12)内のトナー含量を33重量%に維持するよう
操作した。
200 parts by weight of the carrier and 100 parts by weight of toner were mixed and filled into the empty chamber (12) of the developing device shown in FIG. More toner replenishment! (16) and operated to maintain the toner content in the empty chamber (12) at 33% by weight.

トナーとして、スチレンアクリル共重合体(グツドイヤ
ー社製: PLIORITE  AC)100重量部、
磁性微粉末(チタン工業(株)製: MAGETITE
  RB−BL)80重量部、カーボンブラック(三菱
化成(株)製: MA# 100)4重量部、荷電制御
用染料(TRH:保土谷化学(株)製負帯電性染料)2
重量部を溶融混合した後に冷却粉砕、分級して得られた
平均粒径12μ肩、抵抗値1014Ω・cmの磁性トナ
ーを用いた。
As a toner, 100 parts by weight of styrene-acrylic copolymer (manufactured by Gutdeyer: PLIORITE AC);
Magnetic fine powder (manufactured by Titan Kogyo Co., Ltd.: MAGETITE)
RB-BL) 80 parts by weight, carbon black (manufactured by Mitsubishi Kasei Corporation: MA# 100) 4 parts by weight, charge control dye (TRH: negatively chargeable dye manufactured by Hodogaya Chemical Co., Ltd.) 2
A magnetic toner having an average particle size of 12 μm and a resistance value of 1014 Ω·cm obtained by melt-mixing parts by weight, cooling, pulverizing, and classifying was used.

以下の条件で現像を行ったときの画像濃度(■D:紙に
転写された画像濃度)を測定し、その結果を表−1およ
び表−2に示す。表−1は23℃、1845%のときの
初期画像濃度と500枚連続コピー後の画像濃度、およ
び表−2は20℃、60%RHのときと10℃、15%
RHのときの初期画像濃度を示す。
The image density (D: image density transferred to paper) was measured when development was performed under the following conditions, and the results are shown in Tables 1 and 2. Table 1 shows the initial image density at 23°C and 1845% and the image density after 500 sheets of continuous copying.
The initial image density at RH is shown.

比較のため、実施例1のフェライトに樹脂粉末処理をし
ていないキャリアを用い、上と同様に現像して得られる
画像濃度を同じく表−1および表−2に示す。
For comparison, the ferrite of Example 1 was developed in the same manner as above using a carrier that was not treated with resin powder, and the resulting image densities are also shown in Tables 1 and 2.

[現像条件] 現像スリーブ: 直径24.5x肩 回転数79 rpm 磁気ローラ  : 極数 8 磁束密度750ガウス 回転数 90 Orpm 現像ギャップ(di)    : 0.45mm穂高規
制ギャップ(d2)  :  0.35ov第2仕切り
板ギャップ(a):  1.5mmスリット幅(b):
  1.7xm スリット高さくc):  1.Om肩 プロセス速度 :  112mx/5ec(感光体ドラ
ム周速) 静電潜像最高電位: +500V 現像バイアス  :直流+200v 交流 I K Hz(350V rms)トナー供給羽
根 二回転数60 rpIl1表−1 表−2 実施例2 素原料として予め10μ肩以下に整粒した各金属酸化物
を各々モル%比で、FetOs48;ZnO33; N
iO14; CuO5,0に配合し、これにCooを0
.2重量%添加して、実施例1と同様の方法にて混合後
、仮焼成炉にて900℃で2時間仮焼成する。生成され
た粉体をボールミル、振動ミル、あるいはアトライター
にて5時間湿式粉砕し、粉体を微細化する。この水溶液
にバインダー(PVA)および若干の分散剤を添加し、
スラリー状溶液とした後、スプレードライヤーにて噴霧
乾燥し、造粒する。これを1250℃の焼成温度でガス
炉または電気炉にて4時間焼成し、−次粒子より構成さ
れるフェライト粉末を作成した。
[Development conditions] Developing sleeve: Diameter 24.5 x shoulder rotation speed 79 rpm Magnetic roller: Number of poles 8 Magnetic flux density 750 Gauss rotation speed 90 Orpm Developing gap (di): 0.45 mm Brush height regulation gap (d2): 0.35 ovth 2 partition plate gap (a): 1.5mm slit width (b):
1.7xm Slit height c): 1. Om shoulder process speed: 112mx/5ec (photosensitive drum peripheral speed) Electrostatic latent image maximum potential: +500V Developing bias: DC +200v AC IK Hz (350V rms) Toner supply blade 2 rotations 60 rpIl1 Table-1 Table-2 Example 2 Each metal oxide, which had been sized in advance to a particle size of 10 μm or less, was used as a raw material in a molar % ratio of FetOs48; ZnO33; N
iO14; blended with CuO5,0, and added Coo to this with 0
.. After adding 2% by weight and mixing in the same manner as in Example 1, it is pre-fired at 900° C. for 2 hours in a pre-sintering furnace. The generated powder is wet-pulverized for 5 hours using a ball mill, a vibration mill, or an attritor to make the powder fine. Add a binder (PVA) and some dispersant to this aqueous solution,
After forming a slurry solution, it is spray-dried using a spray dryer and granulated. This was fired in a gas furnace or an electric furnace at a firing temperature of 1250°C for 4 hours to create a ferrite powder composed of -order particles.

整粒後、作成されたニッケル亜鉛系フェライトキャリア
用粒子の諸特性は以下の通りであった:平均粒子径: 
56μ肩 見掛密度:  2.739/CC 飽和磁化:  52.8emu/g (10KOe)電
気抵抗値:  8XlO’Ω・cm (500V /a
x)結晶成長度: 55% 上で得られたキャリア用粒子20に9に、ポリフッ化ビ
ニリデン樹脂粉末(平均粒径0.2μm1)0.16&
9を2012のポリ容器に入れ、30rpmの回転速度
で24時間回転攪拌した。得られたキャリアは、第3図
に示すごとく、フェライトの凹部に樹脂粉末が埋没され
た形態であった。このキャリアを用いる以外は実施例1
と同様にして現像したところ、連続コピーにおいてら、
また低湿時においても画像濃度の低下は殆ど観察されな
かった。
After sizing, the properties of the prepared nickel-zinc ferrite carrier particles were as follows: Average particle size:
56μ Shoulder apparent density: 2.739/CC Saturation magnetization: 52.8emu/g (10KOe) Electrical resistance value: 8XlO'Ω・cm (500V/a
x) Crystal growth degree: 55% Polyvinylidene fluoride resin powder (average particle size 0.2 μm1) 0.16 &
9 was placed in a 2012 plastic container and rotated and stirred at a rotation speed of 30 rpm for 24 hours. As shown in FIG. 3, the obtained carrier had a form in which the resin powder was embedded in the recesses of the ferrite. Example 1 except for using this carrier
When developed in the same manner as above, after continuous copying,
Further, almost no decrease in image density was observed even at low humidity.

発明の効果 本発明で用いるキャリアは表面凹部にのみ部分的に樹脂
が付着しており、従来のバインダー型キャリアのように
磁気特性の著しい低下、またはキャリアの脆化がない。
Effects of the Invention The carrier used in the present invention has resin partially attached only to the surface recesses, and unlike conventional binder type carriers, there is no significant deterioration in magnetic properties or embrittlement of the carrier.

併せて、低湿環境下においてもトナーの帯電量の異常上
昇は発生せず、それに起因する画像濃度の低下も生じな
い。また、キャリアの不均一帯電の徨度を制御するため
には、キャリア用粒子表面の凹部の分布(数、大きさ等
)、および/または樹脂粉末の添加量を変えればよく、
バインダー型キャリアにみられる大幅な磁気特性の変化
は生じない。
In addition, even in a low-humidity environment, an abnormal increase in the amount of charge of the toner does not occur, and a decrease in image density due to this does not occur. In addition, in order to control the degree of uneven charging of the carrier, it is sufficient to change the distribution (number, size, etc.) of the recesses on the surface of the carrier particles and/or the amount of resin powder added.
Significant changes in magnetic properties seen in binder-type carriers do not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はキャリア用粒子と樹脂粉末の模式図、第2図は
キャリア用粒子の凹部および表面に樹脂粉末が付着した
図、第3図はキャリア用粒子の凹部に樹脂粉末が埋入し
たキャリアを示す図、第4図は属人樹脂が融着したキャ
リアを示す図、および第5図は本発明方法を実施するた
めの現像装置の一態様を示す模式図である。 (1)キャリア用粒子 (2)樹脂粉末(3)凹 部 
    (4)融着樹脂(6)感光体ドラム  (7)
現像スリーブ(8)磁気ローラー(10)トナー供給用
スリット(12)空 室     (16)トナー補給
槽(17) )ナー収容部  (19) )ナー供給羽
根(A)現像領域 特許出願人 ミノルタカメラ株式会社 第1m 11211         第3図 第41!
Figure 1 is a schematic diagram of carrier particles and resin powder, Figure 2 is a diagram of resin powder adhering to the recesses and surface of carrier particles, and Figure 3 is a carrier particle with resin powder embedded in the recesses of carrier particles. FIG. 4 is a diagram showing a carrier to which the resin is fused, and FIG. 5 is a schematic diagram showing an embodiment of a developing device for carrying out the method of the present invention. (1) Particles for carrier (2) Resin powder (3) Concave part
(4) Fusion resin (6) Photosensitive drum (7)
Developing sleeve (8) Magnetic roller (10) Toner supply slit (12) Empty chamber (16) Toner supply tank (17) ) Toner storage section (19) ) Toner supply vane (A) Developing area Patent applicant Minolta Camera Co., Ltd. Company 1m 11211 Figure 3 41!

Claims (1)

【特許請求の範囲】 1、表面に凹部を有するキャリア用粒子の該凹部に樹脂
が埋没されてなるキャリアを含む乾式現像剤。 2、表面に凹部を有するキャリア用粒子の該凹部に樹脂
が埋没されてなるキャリアを含む乾式現像剤を用いた静
電潜像現像方法。
[Scope of Claims] 1. A dry developer containing a carrier formed by carrier particles having recesses on the surface and a resin embedded in the recesses. 2. An electrostatic latent image developing method using a dry developer containing a carrier formed by carrier particles having recesses on the surface and a resin embedded in the recesses.
JP59281255A 1984-12-28 1984-12-28 Dry-type developer and electrostatic latent image developing method using same Pending JPS61158339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59281255A JPS61158339A (en) 1984-12-28 1984-12-28 Dry-type developer and electrostatic latent image developing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59281255A JPS61158339A (en) 1984-12-28 1984-12-28 Dry-type developer and electrostatic latent image developing method using same

Publications (1)

Publication Number Publication Date
JPS61158339A true JPS61158339A (en) 1986-07-18

Family

ID=17636519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59281255A Pending JPS61158339A (en) 1984-12-28 1984-12-28 Dry-type developer and electrostatic latent image developing method using same

Country Status (1)

Country Link
JP (1) JPS61158339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255462A (en) * 1990-03-06 1991-11-14 Tomoegawa Paper Co Ltd Two-component developer for electrophotography and production thereof
EP0762224A2 (en) * 1995-08-11 1997-03-12 Mita Industrial Co., Ltd. Electrophotographic carrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255462A (en) * 1990-03-06 1991-11-14 Tomoegawa Paper Co Ltd Two-component developer for electrophotography and production thereof
EP0762224A2 (en) * 1995-08-11 1997-03-12 Mita Industrial Co., Ltd. Electrophotographic carrier
EP0762224A3 (en) * 1995-08-11 1997-09-24 Mita Industrial Co Ltd Electrophotographic carrier

Similar Documents

Publication Publication Date Title
JP4001606B2 (en) Resin-filled carrier and electrophotographic developer using the carrier
JP4864147B2 (en) Manufacturing method of resin-coated carrier, resin-coated carrier, two-component developer, developing device, image forming apparatus, and image forming method
JP4864116B2 (en) Resin-coated carrier, method for producing the same, two-component developer including the resin-coated carrier, developing device, and image forming apparatus
JP2008090055A (en) Image forming apparatus
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP4355734B2 (en) Developer, developing device, image forming apparatus, and image forming method
JP2011022217A (en) Two-component developer, developing device, image forming apparatus, and image forming method
JP2007057743A (en) Carrier for electrostatic latent image development, developer for electrostatic latent image development and developing device
JP2007033583A (en) Electrophotographic toner
JP5828569B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP4763216B2 (en) Magnetic carrier particles
JPH06194866A (en) Electrostatic latent image developer
JPS61158339A (en) Dry-type developer and electrostatic latent image developing method using same
JP2010230873A (en) Carrier for replenishment, developer for replenishment, developer cartridge for replenishment, and image forming apparatus
JP2011164230A (en) Resin coated carrier, method for producing the same, and two-component developer
JP4992101B2 (en) Electrophotographic developing carrier, method for producing the same, and electrophotographic developer
JP2007114766A (en) Developer for developing electrostatic charge image and image forming method
JP2018128619A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2015203742A (en) Magnetic carrier, two-component developer, developer to be supplied, and image forming method
WO2017175647A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
US11150569B2 (en) Ferrite carrier core material for electrophotographic developer, carrier for electrophotographic developer, and developer
JP2007328035A (en) Electrostatic charge image developer, image forming method and device
JPH08334932A (en) Two-component developer
JP2000267443A (en) Device and method for forming full color image
JP2005195960A (en) Carrier for electrophotographic development, its manufacturing method, and electrophotographic developer