JPS61157604A - Introducting method of raw material for blast furnace - Google Patents

Introducting method of raw material for blast furnace

Info

Publication number
JPS61157604A
JPS61157604A JP28006784A JP28006784A JPS61157604A JP S61157604 A JPS61157604 A JP S61157604A JP 28006784 A JP28006784 A JP 28006784A JP 28006784 A JP28006784 A JP 28006784A JP S61157604 A JPS61157604 A JP S61157604A
Authority
JP
Japan
Prior art keywords
bunker
raw material
hollow cylinder
discharged
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28006784A
Other languages
Japanese (ja)
Inventor
Yoshimasa Kajiwara
梶原 義雅
Chisato Yamagata
山縣 千里
Takanobu Inada
隆信 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28006784A priority Critical patent/JPS61157604A/en
Publication of JPS61157604A publication Critical patent/JPS61157604A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To control surely the grain size distribution in the diameter direction of raw material in a discharging period by providing a hollow cylinder movable up and down in the inside of a furnace top banker and introducing the different raw materials into the bunker and the cylinder. CONSTITUTION:A hollow cylinder 14 is provided movably up and down in the inside of a lower stage furnace top bunker 11 between two-stage furnace top bunkers. A fine granular raw material 20 discharged in an initial period is introduced into the hollow cylinder 14 and a middle granular raw material 21 is introduced into the bunker 11. Then a coarse raw material 22 is accumulated on the middle granular raw material 21. The fine granular raw material 20 in the hollow cylinder 14 is preferentially discharged by opening a gate valve 9. The middle granular raw material 21 of the bottom of the bunker 11 is discharged by elevating the hollow cylinder 14. The coarse granular raw material accumulated in the upper part of the bunker 11 is discharged by elevating more the hollow cylinder 14. The same operation is performed for a parallel type furnace top bunker. The change of the discharged raw material with time can be efficiently controlled in case of utilizing this method.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、高炉の原料装入方法に係り、特に炉頂バン
カーと旋回シュートからなるいわゆるベルレス型装入装
置による原料の装入方法において、炉頂バンカーから旋
回シュートを介して炉内に装入される装入原料の粒径の
経時変化を制御するための原料装入方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for charging raw materials into a blast furnace, and in particular, in a method for charging raw materials using a so-called bellless type charging device consisting of a top bunker and a rotating chute, The present invention relates to a raw material charging method for controlling changes over time in the particle size of charged raw materials charged into a furnace from a bunker via a rotating chute.

従来技術とその問題点 高炉操業においては、炉内半径方向のガス流分布を適正
に制御し炉内の鉱石の還元・溶解を安定に行なう必要が
ある。炉内半径方向のガス流分布の制御方法としては、
炉頂の装入物分布制御による方法が多用されている。こ
の装入物分布制御は、半径方向の鉱石とコークスの重量
比分布、半径方向の粒径分布、半径方向の空隙率分布等
を制御して行なう方法である。。
Prior art and its problems In operating a blast furnace, it is necessary to appropriately control the gas flow distribution in the radial direction within the furnace to stably reduce and dissolve the ore within the furnace. As a method of controlling the gas flow distribution in the radial direction inside the furnace,
A method based on controlling the burden distribution at the top of the furnace is often used. This charge distribution control is performed by controlling the radial weight ratio distribution of ore and coke, the radial particle size distribution, the radial porosity distribution, etc. .

例えば、炉頂バンカーが並列に設置された従来のベルレ
ス型装入装置の場合は、第5図に示すごとく、原料はベ
ルトコンベア(1)、上部ゲート弁(2)、上部シール
弁(3)を介していったん炉頂バンカー(4)内に貯蔵
され、高炉内の装入物が荷下がりし、補給すべき所定の
ストックレベル(5)に達すると、装入物流量調整用の
下部ゲート弁(6)および下部シール弁(7)を開口し
、炉頂バンカー(4)内の原料を旋回しニート(8)上
に落下させ、該旋回シュートの傾動角度、旋回速度等を
調整して原料を連続的に旋回シュート(8)から炉内に
装入する。
For example, in the case of a conventional bellless charging device in which top bunkers are installed in parallel, the raw material is transferred to the belt conveyor (1), the upper gate valve (2), and the upper seal valve (3), as shown in Figure 5. Once the charge in the blast furnace is unloaded and reaches a predetermined stock level (5) to be replenished, the lower gate valve for adjusting the charge flow rate is (6) and the lower seal valve (7) are opened, the raw material in the top bunker (4) is rotated and dropped onto the neat (8), and the tilting angle and rotation speed of the rotating chute are adjusted to are continuously charged into the furnace through the rotating chute (8).

しかし、従来のベルレス装入では、第6図に示す炉頂バ
ンカーへの原料装入時に生じる原料の分級状況例から明
らかなごとく、バンカー(4)内に形成されている原料
の斜面上で原料の分級が生じ、装入位置に細粒が、バン
カー壁側に粗粒が堆積する。第6図の例では、焼結鉱の
粒度分布が大きいためにバンカー内の径方向の粒径偏析
゛が大きくなっている。さらに後で詳述するように炉頂
バンカー内の装入物の排出挙動は一様ではないため炉頂
バンカーから構成される装入物の粒径に顕著な経時変化
を生じる。
However, in conventional bellless charging, as is clear from the example of the classification of raw materials that occurs when charging raw materials into the top bunker shown in Figure 6, the raw materials are placed on the slope of the raw materials formed in the bunker (4). Classification occurs, with fine grains depositing at the charging position and coarse grains depositing on the bunker wall. In the example shown in FIG. 6, since the grain size distribution of the sintered ore is large, the grain size segregation in the radial direction within the bunker is large. Furthermore, as will be explained in detail later, the discharge behavior of the charge in the top bunker is not uniform, and therefore the grain size of the charge constituted by the top bunker changes significantly over time.

このため、単に旋回シュートの傾動角度、旋回速度等を
変えて装入物の分布制御を行なう従来のベルレス装入方
法では、装入物の分布制御性は不充分であった。
For this reason, the conventional bellless charging method in which the distribution of the charge is controlled by simply changing the tilting angle, rotation speed, etc. of the rotating chute has been insufficient in controlling the distribution of the charge.

そこで、近年、「粒度別装入」と称して粒径の異なる原
料を分割して炉内に装入し、半径方向の装入物分布の微
調整を行なう方法が提案されている(特公昭55−16
203)。しかし、従来の粒度別装入技術は、以下に示
す問題点を有している。
Therefore, in recent years, a method has been proposed called ``grain size-based charging'' in which raw materials with different particle sizes are divided and charged into the furnace to finely adjust the radial distribution of the burden. 55-16
203). However, the conventional charging technology according to particle size has the following problems.

■ 原料を分割して装入するため1チヤ一ジ装入時間が
長くなり、高炉の生産量を増加した場合に追随できない
可能性がある。また、均排圧回数が倍増することにより
、それに要するガス(N2ガス等)の使用量が倍増する
■ Since the raw materials are charged in parts, the charging time per charge becomes longer, and there is a possibility that it will not be possible to keep up with the increase in the production volume of the blast furnace. Further, by doubling the number of times of pressure equalization and evacuation, the amount of gas (N2 gas, etc.) required for it is doubled.

■ 粒径の異なる原料を得るために、別途ふるいによる
機械分級や搬送時に圧空を使用して分級する気流分級等
の分級操作を必要とする。
■ In order to obtain raw materials with different particle sizes, separate classification operations such as mechanical classification using a sieve or air flow classification using compressed air during transportation are required.

発  明  の  目  的 この発明は、従来の前記問題点を解決するためになされ
たもので、炉頂バンカー内への原料装入時の原料の斜面
での分級および炉頂バンカーからの原料排出時の排出特
性を利用して、径方向の粒度分布を適確ニ制御し得る原
料装入方法を提案することを目的とするものである。
Purpose of the Invention This invention was made to solve the above-mentioned conventional problems. The purpose of this study is to propose a raw material charging method that can accurately control the radial particle size distribution by utilizing the discharge characteristics of .

発  明  の  構  成 この発明に係る高炉原料の装入方法は、炉頂バンカーを
垂直2段に設置したベルレス型炉頂装置により原料を炉
内へ装入する方法において、下段炉頂バンカー内に上下
動可能な中空円筒を設置し、この中空円筒と下段炉頂バ
ンカー内に粒径の異なる原料を装入し、前記中空円筒内
の原料はゲート弁にて排出し、下段バンカー内の原料は
中空円筒を上下動させて排出することを特徴とし、また
、炉頂バンカーを並列に設置したペルレス型装入装wL
+こより原料を装入する方法の場合は、各炉頂バンカー
内に前記と同様の中空円筒を設置し、各炉頂バンカー内
の原料はそれぞれの中空円筒を上下動させて排出し、中
空円筒内の原料は各炉頂バンカーのゲート弁にて排出す
ることを特徴とするものである。
Structure of the Invention The method of charging raw materials for a blast furnace according to the present invention is a method for charging raw materials into a furnace using a bellless type furnace top device in which top bunkers are vertically installed in two stages. A hollow cylinder that can be moved up and down is installed, and raw materials with different particle sizes are charged into this hollow cylinder and a lower furnace top bunker.The raw materials in the hollow cylinder are discharged by a gate valve, and the raw materials in the lower bunker are Pelless charging wL features a hollow cylinder that moves up and down to discharge, and has top bunkers installed in parallel.
In the case of the method of charging the raw material from the above, a hollow cylinder similar to the above is installed in each furnace top bunker, and the raw materials in each furnace top bunker are discharged by moving the respective hollow cylinders up and down. The raw material inside the furnace is discharged through the gate valve of each furnace top bunker.

以下、この発明方法について詳細に説明する。The method of this invention will be explained in detail below.

第7図はベルレス式高炉の炉頂バンカーから排出される
原料の粒径の経時変化例を示す図である。
FIG. 7 is a diagram showing an example of the change over time in the particle size of raw material discharged from the top bunker of a bellless blast furnace.

すなわち、ベルレス型装入装置の場合は、焼結鉱、コー
クス共に排出初期に細粒が、排出末期に粗粒が炉内に装
入される。この傾向は焼結鉱の方が顕著である。
That is, in the case of a bellless type charging device, fine particles of both sintered ore and coke are charged into the furnace at the beginning of discharge, and coarse particles are charged into the furnace at the end of discharge. This tendency is more pronounced for sintered ore.

また、第8図は炉頂バンカーからの原料の排出順序の複
式図である。すなわち、(イ)バンカー内の原料は排出
ゲート弁(6)上の流動域の、(ロ)バンカー壁部の静
止域■の順に排出される。図中、θAは〆流動域■の垂
直方向となす角度、θBは静止域■の原料が流動域のに
流れ込む角度であり、例えばバンカー径6.0m、ゲー
ト弁径75 Q jll 、バンカー縮小部角度θが6
0°の場合は第1表のごとくなる。なお、前記の原料排
出挙動は、7ransacti6nsOf Iron 
and 5teel In8titute Of Ja
pan“24巻1984年799頁に記載のシミュレー
ションモデルを使って推定することができる。
Moreover, FIG. 8 is a double diagram of the order of discharging raw materials from the furnace top bunker. That is, the raw material in the bunker is discharged in the following order: (a) a flowing region above the discharge gate valve (6), and (b) a stationary region (iv) on the bunker wall. In the figure, θA is the angle formed with the vertical direction of the final flow zone ■, and θB is the angle at which the raw material in the static zone ■ flows into the flow zone.For example, the bunker diameter is 6.0 m, the gate valve diameter is 75 Q jll, and the bunker reduction part. Angle θ is 6
In the case of 0°, the results are as shown in Table 1. Note that the raw material discharge behavior described above is 7ransacti6nsOf Iron
and 5teel In8titude Of Ja
It can be estimated using the simulation model described in Pan" Vol. 24, 1984, p. 799.

第   1   表 一方、炉頂バンカー内への原料の装入位置が排出ゲート
弁の垂直線上にある場合は斜面分級作用により、流動域
の内には細粒が、静止域■には粗粒が堆積する。従って
、バンカーからの原料の排出時には、流動域の内の細粒
が排出初期に、静止域■内の粗粒が排出末期に排出され
ることになる。
Table 1 On the other hand, if the charging position of the raw material into the furnace top bunker is on the vertical line of the discharge gate valve, due to the slope classification effect, fine particles will be in the flow zone and coarse particles will be in the stationary zone. accumulate. Therefore, when raw materials are discharged from the bunker, the fine particles in the flow zone are discharged at the beginning of the discharge, and the coarse particles in the stationary zone (1) are discharged at the end of the discharge.

この発明は上記知見に基づいてなされたものであり、炉
頂バンカーの中央部に中空円筒を設置し、前記流動域の
を中空円筒内に形成し、その周囲に静止域■を形成する
ようにし、バンカーへの原料装入時に中空円筒内に装入
される原料の粒径を制御するとともに、中空円筒を上下
動させてバンカー内の原料を炉内へ装入する方式である
。つまり、この発明はバンカー内の原料排出時に中空円
筒内の原料を先に排出して炉内へ装入される原料の粒径
を制御する方法である。
This invention was made based on the above knowledge, and includes installing a hollow cylinder in the center of the furnace top bunker, forming the above-mentioned flow region within the hollow cylinder, and forming a stationary region (2) around it. This method controls the particle size of the raw material charged into the hollow cylinder when charging the raw material into the bunker, and also moves the hollow cylinder up and down to charge the raw material in the bunker into the furnace. That is, the present invention is a method for controlling the particle size of the raw material charged into the furnace by first discharging the raw material in the hollow cylinder when discharging the raw material in the bunker.

1図に示すごとく、炉頂バンカーを高炉軸芯と同軸に高
さ方向に2段設置されたベルレス式高炉の場合は、下段
バンカー(1])の天井部に設けた滑車α匂にロープ0
3)を掛け、このロープにより中空円筒(14)を吊設
し、ロープ(l匈を操作することにより中空円筒(14
1を上下動させる仕組みとなすとともに、前記滑車α匂
とほぼ同レベルに設けた滑車(15)に掛けたロープ(
16iにより中空円筒の上蓋αηを開閉する仕組みとな
す。なお、上蓋07)は該円筒の上部開口端部に設けた
蝶番構造の取付治具α〜にその一端を固定されている。
As shown in Figure 1, in the case of a bellless blast furnace in which the top bunker is installed in two stages in the height direction coaxially with the blast furnace axis, a rope 0 is attached to the pulley α installed on the ceiling of the lower bunker (1).
3), the hollow cylinder (14) is suspended by this rope, and the hollow cylinder (14) is suspended by operating the rope (14).
1 is moved up and down, and a rope (
16i is used to open and close the upper lid αη of the hollow cylinder. Note that one end of the upper lid 07) is fixed to a hinge-structured mounting jig α~ provided at the upper open end of the cylinder.

中空円筒α4)の上下動および上蓋θηの開閉は、炉外
に設けたワイヤドラム(図面省略)をモータで駆動して
操作する。
The vertical movement of the hollow cylinder α4) and the opening and closing of the upper lid θη are performed by driving a wire drum (not shown) provided outside the furnace with a motor.

(10)は上段炉頂バンカー、α9)はゲート弁である
(10) is the upper furnace top bunker, and α9) is the gate valve.

中空円筒0局の直径は特に限定するものではないが、ゲ
ート弁α鴫の直径とほぼ同程度でよい。
The diameter of the hollow cylinder is not particularly limited, but may be approximately the same as the diameter of the gate valve α.

垂直2段式炉頂バンカーにおいて、上記手段で下段バン
カー内に上下動可能な蓋付き中空円筒を設置した場合、
例えば排出初期に細粒を、排出中期に中粒を、排出末期
に粗粒を排出するときの、下段パン−カーへの原料装入
期、およびバンカーからの原料排出期のバンカー内の原
料堆積状況を第2図に模式的に示す。
In a vertical two-stage furnace top bunker, if a hollow cylinder with a lid that can be moved up and down is installed in the lower bunker by the above method,
For example, when discharging fine grains at the beginning of discharge, medium grains during the middle stage of discharge, and coarse grains at the end of discharge, the raw material accumulation in the bunker is during the raw material charging stage to the lower bunker and the raw material discharge stage from the bunker. The situation is schematically shown in Figure 2.

すなわち、装入期においては、まず初期に上段バンカー
から排出される細粒原料を中空円筒圓内に集中的に装入
する。このときゲート弁(IF4は無論閉じている。細
粒原料(3)が所定量中空円筒(I4)内に堆積すると
、中空円筒の上蓋tJ7)を閉じ、上段バンカーから排
出される中粒原料@わを該バンカー(川内に装入し、中
空円筒α4)の外側に徐々に堆積させる(中期“)。そ
して、装入期の末期においては上段バンカーから排出さ
れる粗粒原料−を中空円筒(14)の上面付近まで堆積
させる。
That is, in the charging period, the fine raw material discharged from the upper bunker is initially intensively charged into the hollow cylindrical ring. At this time, the gate valve (IF4) is of course closed. When a predetermined amount of fine grain raw material (3) is deposited in the hollow cylinder (I4), the upper lid tJ7 of the hollow cylinder is closed, and the medium grain raw material is discharged from the upper bunker. Gradual raw material is charged into the river and is gradually deposited on the outside of the bunker (hollow cylinder α4) (middle stage).At the end of the charging period, the coarse raw material discharged from the upper bunker is deposited in the hollow cylinder (α4). 14) Deposit to near the top surface.

次に、原料排出期には、ゲート弁(19)を開いて中空
円筒Q4)内の細粒原料(3)を優先的に排出させる。
Next, during the raw material discharge period, the gate valve (19) is opened to preferentially discharge the fine raw material (3) inside the hollow cylinder Q4).

細粒原料の排出が終了した中期においては、中空円筒0
41を少し上昇゛させてバンカー(川底部に堆積してい
る中粒原料(21)を排出させる。排出期の末期におい
ては中空円筒α4)をさらに上昇させて原料堆積層外に
出し、バンカー上部に堆積していた粗粒原料(3)を排
出させる。
In the middle stage when the discharge of fine raw materials is finished, the hollow cylinder is 0
41 is slightly raised to discharge the medium grain raw material (21) deposited on the river bottom.At the end of the discharge period, the hollow cylinder α4 is further raised to the outside of the raw material accumulation layer, and the upper part of the bunker is discharged. The coarse grain raw material (3) that had accumulated in the tank is discharged.

また、上記と同じ方式で、排出初期に粗粒を、排出中期
に中粒を、排出末期に細粒を排出したい場合は、第3図
に原料の、装入期および排出期の原料堆積状況を模式的
に示すように、装入期には初期においてゲート弁α瞬、
及び上蓋aηを閉じ中空円筒H外のバンカー(川底部に
所定量の細粒原料(ロ)を堆積させる。続いて、中期に
おいて、前記細粒原料層の上に中粒原料Q1)を装入し
、中空円筒Q41の上蓋αη付近まで堆積させる。そし
て、末期において、中空円筒(I4Iの上蓋(17)を
開いて該円筒内に上段バンカーから最後に排出される粗
粒原料(5)を装入する。
In addition, if you want to discharge coarse particles at the beginning of discharge, medium particles at the middle of discharge, and fine particles at the end of discharge using the same method as above, Figure 3 shows the raw material accumulation situation at the charging stage and discharge stage. As shown schematically, at the beginning of the charging period, the gate valve α instant,
Then, close the upper lid aη and deposit a predetermined amount of fine grain raw material (B) in the bunker outside the hollow cylinder H (at the bottom of the river.Subsequently, in the middle stage, medium grain raw material Q1) is charged onto the fine grain raw material layer. Then, it is deposited up to the vicinity of the upper lid αη of the hollow cylinder Q41. Then, at the final stage, the upper lid (17) of the hollow cylinder (I4I) is opened and the coarse raw material (5) discharged last from the upper bunker is charged into the cylinder.

次に、原料排出期には、初期においてゲート弁(1旬を
開いて中空円筒−内の粗粒原料(ロ)を優先的に排出さ
せる。粗粒原料の排出が完了した中期においては、中空
円筒Hを上昇させてバンカー(川内の原料堆積層外へ出
し、バンカーからの原料排出特性(ファネルフロー)を
利用してバンカー上部に堆積している中粒原料(21)
を先に排出させる。そして、末期においては、バンカー
底部に堆積している細粒原料1120)が排出される。
Next, during the raw material discharge period, the gate valve (opens once) to preferentially discharge the coarse raw material (b) inside the hollow cylinder.In the middle stage when the discharge of the coarse raw material is completed, the The cylinder H is raised to take it out of the raw material accumulation layer inside the bunker, and the medium-grained raw material is deposited at the top of the bunker using the raw material discharge characteristics (funnel flow) from the bunker (21).
be discharged first. At the final stage, the fine raw material 1120) deposited at the bottom of the bunker is discharged.

なお、排出期の中期に中空円筒α4)をバンカー内の原
料層外に出さなかった場合には、バンカー底部の細粒原
料が先に排出され、排出期末期の原料粒径は中粒となり
所期の効果が得られない。
In addition, if the hollow cylinder α4) is not taken out of the raw material layer in the bunker in the middle of the discharge period, the fine grain raw material at the bottom of the bunker will be discharged first, and the raw material particle size at the end of the discharge period will be medium. The effect of the period cannot be obtained.

一方、炉頂バンカーを同一高さ位置に並列設置されたい
わゆる並列型バンカーにおいては、第1図に示す方式の
中空円筒を各バンカーに設置する。
On the other hand, in so-called parallel type bunkers in which furnace top bunkers are installed in parallel at the same height position, a hollow cylinder of the type shown in FIG. 1 is installed in each bunker.

ただし、並列型バンカーの場合は、垂直2段式バンカー
の場合と異なりバンカーに装入される原料の粒径は一定
であり、バンカーに装入される装入物の粒径の経時変化
は生じない。従って、排出初期に細粒原料を、排出末期
に粗粒原料を排出したい場合はこの発明方法によらなく
ても十分達成できる。しかし、逆に粒径の経時変化を抑
制することはできない。この発明方法は上記粒径の経時
変化の抑制を可能としたもので、その方法を第4図に基
づいて説明する。
However, in the case of a parallel bunker, unlike in the case of a vertical two-stage bunker, the particle size of the raw material charged into the bunker is constant, and the particle size of the charge charged into the bunker does not change over time. do not have. Therefore, if it is desired to discharge fine-grained raw materials at the beginning of discharge and coarse-grained raw materials at the end of discharge, this can be achieved satisfactorily without using the method of the present invention. However, on the contrary, it is not possible to suppress the change in particle size over time. The method of this invention makes it possible to suppress the above-mentioned change in particle size over time, and the method will be explained based on FIG. 4.

第4図は並列型バンカーにおける原料の装入期および排
出期の原料の堆積状況を模式的に示し1こもので、装入
期の初期においてはゲート弁(19)を閉じ、中空円筒
(+4)内に原料(時を偏析しない状態のまま集中的に
装入する。中空円筒(141内に所定量の原料を装入す
ると、該円筒の上蓋θηを閉じ、バンカー01)内の中
空円筒外に原料を装入する(装入中期)。
Figure 4 schematically shows the stacking situation of raw materials during the charging and discharging stages in a parallel bunker.At the beginning of the charging stage, the gate valve (19) is closed and the hollow cylinder (+4) is When a predetermined amount of raw material is charged into the hollow cylinder (141), the upper lid θη of the cylinder is closed, and the raw material is charged to the outside of the hollow cylinder inside the bunker 01. Charge raw materials (middle stage of charging).

装入期の末期においては、中空円筒04)の上面付近ま
で原料を堆積させる。装入期の中期および末期において
は、装入される原料はバンカー内で斜面分級作用により
粗粒が外側に、細粒が内側に分級される。
At the end of the charging period, the raw material is deposited up to the vicinity of the upper surface of the hollow cylinder 04). In the middle and final stages of the charging period, the raw material to be charged is classified in the bunker by slope classification, with coarse particles on the outside and fine particles on the inside.

次に、排出期において、初期にはゲート弁α偵を開いて
中空円筒(+4)内の原料を排出する。続いて、排出中
期および末期においては、中空円筒041を若干上昇さ
せて中空円筒外のバンカー内に堆積している原料を底部
から順に排出せしめる。このとき、バンカー内で分級が
生じた原料は同一時間に排出される。
Next, in the discharge period, the gate valve α is initially opened to discharge the raw material inside the hollow cylinder (+4). Subsequently, in the middle and final stages of discharge, the hollow cylinder 041 is slightly raised to sequentially discharge the raw materials accumulated in the bunker outside the hollow cylinder from the bottom. At this time, the raw materials that have been classified in the bunker are discharged at the same time.

発  明  の  効 果 以上説明したごとく、この発明方法によれば、上下2段
式バンカーにおいては下段バンカー内1こ中空円筒を設
置することによって、バンカー中央部すなわち流動域に
装入される原料の粒径を制御することができる上、バン
カーから炉内への原料装入時に前記流動域の原料が排出
される時間を制御することができ、また並列型バンカー
の場合はバンカー内で分級が生じた原料を同一時間に排
出することによって排出原料の平均粒径をほぼ一定に保
つことができるので、上下2段式バンカー、並列型バン
カーのいずれであってもバンカーから炉内へ排出される
原料の経時変化をより的確に制御することができ、高炉
の操業上きわめて大なる効果を奏するものである。
Effects of the Invention As explained above, according to the method of the present invention, in a two-stage bunker with an upper and lower bunker, by installing one hollow cylinder in the lower bunker, the material charged into the central part of the bunker, that is, the flow area, can be reduced. In addition to being able to control the particle size, it is also possible to control the time during which the raw material in the flow zone is discharged when charging the raw material from the bunker into the furnace, and in the case of parallel bunkers, classification occurs within the bunker. By discharging the raw materials at the same time, the average particle size of the discharged raw materials can be kept almost constant, so whether the bunker is a two-stage bunker or a parallel bunker, the raw material discharged from the bunker into the furnace is It is possible to control changes over time more accurately, and this has an extremely large effect on the operation of the blast furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図はこの発明方法を実施するための装置構成例を示
す概略図、第2図〜第4図は同上装置によるこの発明の
原料装入方法の説明図、第5図は炉頂バンカーを並列に
配置した従来のベルレス型装入装置を示す概略図、第6
図は従来のベルレス炉頂バンカーへの原料装入時に生じ
る原料の分級状況例を示す図、第7図は同じ〈従来のベ
ルレス炉頂バンカーから排出される原料の粒径の経時変
化例を示す図、第8図は同じく炉頂バンカーからの原料
の排出順序を示す模式図である。 11・・・下段バンカー、14−・・中空円筒、19・
・・ゲート弁、20・・・細粒原料、21・・・中粒原
料、22・・・粗粒原料、31・・・並列型炉頂バンカ
ー、33・・・原料。 出願人  住友金属工業株式会社 第1図 第2図 第3図 第4図 第7戸 第5図 百       第8図
@Figure 1 is a schematic diagram showing an example of the configuration of an apparatus for carrying out the method of the present invention, Figures 2 to 4 are explanatory diagrams of the raw material charging method of the present invention using the same apparatus as above, and Figure 5 is a diagram showing the furnace top bunker. Schematic diagram showing a conventional bellless charging device arranged in parallel, No. 6
The figure shows an example of the classification situation of raw materials that occurs when charging raw materials into a conventional bell-less furnace top bunker, and Figure 7 shows an example of the change over time in the particle size of raw materials discharged from a conventional bell-less furnace top bunker. FIG. 8 is a schematic diagram showing the order in which raw materials are discharged from the furnace top bunker. 11... Lower bunker, 14-... Hollow cylinder, 19.
...Gate valve, 20...Fine-grained raw material, 21...Medium-grained raw material, 22...Coarse-grained raw material, 31...Parallel type furnace top bunker, 33... Raw material. Applicant: Sumitomo Metal Industries, Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Door Figure 5 Hundred Figure 8

Claims (1)

【特許請求の範囲】 1 炉頂バンカーを高炉軸芯と同軸に高さ方向に2段設
置し、炉内に旋回シュートを設けた高炉炉頂装入装置に
よる高炉の原料装入方法において、下段炉頂バンカー内
に上下動可能な中空円筒を設置し、この中空円筒と下段
炉頂バンカー内に粒径の異なる原料を装入し、前記中空
円筒内の原料はゲート弁にて排出し、下段バンカー内の
原料は前記中空円筒を上下動させて排出することを特徴
とする高炉原料装入方法。 2、炉頂バンカーを同一高さ位置に並列設置し、炉内に
旋回シュートを設けた高炉炉頂装入装置による高炉の原
料装入方法において、各炉頂バンカー内に上下動可能な
中空円筒を設置し、この中空円筒とバンカー内に粒径の
異なる原料を装入し、中空円筒内の原料はゲート弁にて
排出し、バンカー内の原料は中空円筒を上下動させて排
出することを特徴とする高炉原料装入方法。
[Scope of Claims] 1. A method for charging materials into a blast furnace using a blast furnace top charging device in which a top bunker is installed in two stages in the height direction coaxially with the blast furnace axis, and a rotating chute is provided in the furnace. A hollow cylinder that can move up and down is installed in the furnace top bunker, and raw materials with different particle sizes are charged into this hollow cylinder and the lower furnace top bunker, and the raw materials in the hollow cylinder are discharged by a gate valve and transferred to the lower furnace top bunker. A method for charging raw materials into a blast furnace, characterized in that raw materials in a bunker are discharged by moving the hollow cylinder up and down. 2. In a blast furnace raw material charging method using a blast furnace top charging device in which top bunkers are installed in parallel at the same height and a rotating chute is provided inside the furnace, a hollow cylinder that can be moved up and down is installed in each top bunker. is installed, raw materials with different particle sizes are charged into the hollow cylinder and the bunker, and the raw materials inside the hollow cylinder are discharged with a gate valve, and the raw materials inside the bunker are discharged by moving the hollow cylinder up and down. Characteristic blast furnace raw material charging method.
JP28006784A 1984-12-28 1984-12-28 Introducting method of raw material for blast furnace Pending JPS61157604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28006784A JPS61157604A (en) 1984-12-28 1984-12-28 Introducting method of raw material for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28006784A JPS61157604A (en) 1984-12-28 1984-12-28 Introducting method of raw material for blast furnace

Publications (1)

Publication Number Publication Date
JPS61157604A true JPS61157604A (en) 1986-07-17

Family

ID=17619838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28006784A Pending JPS61157604A (en) 1984-12-28 1984-12-28 Introducting method of raw material for blast furnace

Country Status (1)

Country Link
JP (1) JPS61157604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525515A (en) * 1991-07-16 1993-02-02 Sumitomo Metal Ind Ltd Method for charging raw material in bell-less blast furnace and apparatus therefor
JPH0565513A (en) * 1991-09-05 1993-03-19 Sumitomo Metal Ind Ltd Method for charging raw material into bell-less blast furnace and apparatus therefor
JPH0570817A (en) * 1991-05-20 1993-03-23 Sumitomo Metal Ind Ltd Method and apparatus for charging raw material in bell-less blast furnace
JP2017039969A (en) * 2015-08-19 2017-02-23 Jfeスチール株式会社 Method of charging raw material into blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570817A (en) * 1991-05-20 1993-03-23 Sumitomo Metal Ind Ltd Method and apparatus for charging raw material in bell-less blast furnace
JPH0525515A (en) * 1991-07-16 1993-02-02 Sumitomo Metal Ind Ltd Method for charging raw material in bell-less blast furnace and apparatus therefor
JPH0565513A (en) * 1991-09-05 1993-03-19 Sumitomo Metal Ind Ltd Method for charging raw material into bell-less blast furnace and apparatus therefor
JP2017039969A (en) * 2015-08-19 2017-02-23 Jfeスチール株式会社 Method of charging raw material into blast furnace

Similar Documents

Publication Publication Date Title
JP2756602B2 (en) Charging equipment for blast furnace
JP2000178624A (en) Furnace top bunker of blast furnace and using method thereof
JPS61157604A (en) Introducting method of raw material for blast furnace
JP4608906B2 (en) Raw material charging method for bell-less blast furnace
JPH04235206A (en) Method and apparatus for charging raw material in bellless blast furnace
JP2782786B2 (en) Raw material charging apparatus and charging method for bellless blast furnace
JPH02305911A (en) Bell-less type raw material charging method for vertical furnace
JP2892065B2 (en) Bell-less blast furnace raw material charging method
JPH0694567B2 (en) Raw material charging device
JPH04304305A (en) Method for charging raw material in blase furnace
JP2012132056A (en) Top bunker of blast furnace
JPS61227109A (en) Charging method for blast furnace charge
JPH0421724B2 (en)
JPH03267308A (en) Method for charging raw material into blast furnace
JPS60251208A (en) Method for charging raw material to blast furnace
JPH05179320A (en) Raw material charging method for bell-less blast furnace
JPH0329311Y2 (en)
JP2847995B2 (en) Raw material charging method for bellless blast furnace
JPH02401B2 (en)
JPH0213919Y2 (en)
JPH0248414Y2 (en)
US4340423A (en) Charging of zinc-smelting blast furnaces
JPH05279715A (en) Method for charging raw material in bell-less blast furnace
JPH02205605A (en) Method and apparatus for charging raw material in bellless blast furnace
JPH0533020A (en) Method and apparatus for charging raw material in bell-less blast furnace