JPS6115699A - Growth hormone of fish - Google Patents

Growth hormone of fish

Info

Publication number
JPS6115699A
JPS6115699A JP59134536A JP13453684A JPS6115699A JP S6115699 A JPS6115699 A JP S6115699A JP 59134536 A JP59134536 A JP 59134536A JP 13453684 A JP13453684 A JP 13453684A JP S6115699 A JPS6115699 A JP S6115699A
Authority
JP
Japan
Prior art keywords
growth hormone
dna
fish
polypeptide
fish growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59134536A
Other languages
Japanese (ja)
Other versions
JPH057995B2 (en
Inventor
Susumu Sekine
進 関根
Tamio Mizukami
民夫 水上
Moriyuki Sato
盛幸 佐藤
Seiga Itou
伊藤 菁莪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP59134536A priority Critical patent/JPS6115699A/en
Priority to CA000485108A priority patent/CA1272144A/en
Priority to AU44195/85A priority patent/AU575961B2/en
Priority to NO852568A priority patent/NO174717C/en
Priority to EP85107987A priority patent/EP0166444B1/en
Priority to SU853913602A priority patent/RU1825376C/en
Priority to US06/750,587 priority patent/US4689402A/en
Publication of JPS6115699A publication Critical patent/JPS6115699A/en
Priority to US07/017,630 priority patent/US4849359A/en
Publication of JPH057995B2 publication Critical patent/JPH057995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Feed For Specific Animals (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Fodder In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain growth hormone of fish by genetic engineering method, by synthesizing cDNA from RNA extracted from the pituitary of salmon, determining a base sequence of cDNA depending upon it. CONSTITUTION:Growth hormone peptide of fish having a peptide sequence shown by the table. This peptide is obtained as follows. Namely, mRNA of growth hormone of fish (especially one obtained from the pituitary of salmon) is used as a template to prepare cDNA showing complementation of the mRNA, and a recombinant plasmid integrated with the cDNA is prepared. The recombinant plasmid is further inserted into a host such as Escherichia coli, etc. This transformant is caltivated, to give the aimed growth hormone.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は魚類の成長ホルモンポリペプチドをコードする
D’NA、該DNAを組み込んだ組換え体DNA、該組
換え体DNAを含む微生物および該微生物を用いる魚類
の成長ホルモンポリペプチドの製造法に関する。魚類の
成長ホルモンは魚類の養殖産業分野において広い用途が
期待される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a D'NA encoding a fish growth hormone polypeptide, a recombinant DNA incorporating the DNA, a microorganism containing the recombinant DNA, and a microorganism containing the recombinant DNA. The present invention relates to a method for producing a fish growth hormone polypeptide to be used. Fish growth hormones are expected to have wide applications in the fish aquaculture industry.

従来の技術 哺乳類の成長ホルモンは脳下垂体において生産されるが
、それらの活性ならびに構造は公知である。たとえば、
ヒト成長ホルモンについては、U、 J、 Lewis
 らIこよってJ、八m、Chem、Soc、、 80
  。
BACKGROUND OF THE INVENTION Mammalian growth hormones are produced in the pituitary gland, and their activity and structure are known. for example,
For human growth hormone, U. J. Lewis
La I Koyote J, 8m, Chem, Soc,, 80
.

4429 (1958)に、A、 S、tlartre
eによってBiochem。
4429 (1958), A. S. tlartre.
Biochem by e.

J6.刊0 、754(1966) に、C,tl、 
LiらによってArch、 Biochem、 Bio
phys、八cta (Suppl、)、  ユ。
J6. Publication 0, 754 (1966), C.tl.
Arch, Biochem, Bio by Li et al.
phys, octa (Suppl,), Yu.

327 (1962)に報告されている。327 (1962).

魚類の成長ホルモンについても、これまでに単離された
という報告は多く見られるが、その生理活性と蛋白化学
的な性質で信頼性のあるものは数が少ない。信頼性のあ
る報告の例には次のようなものがある。
There have been many reports that fish growth hormones have been isolated, but there are only a few that are reliable in terms of their physiological activity and protein chemical properties. Examples of reliable reporting include:

ティラピアよりの単離例 S、 W、 Farmerら
、Gen。
Example of isolation from tilapia S, W. Farmer et al., Gen.

Con+p、 Endocrin、、  30.91(
1976)。
Con+p, Endocrin, 30.91 (
1976).

チョウザメよりの単離例 S、 III、 Farme
rら、Endocrinology、 108.377
(1981)。
Isolation example from sturgeon S, III, Farme
r et al., Endocrinology, 108.377
(1981).

コイよりの単離例 A、F、 Cookら、Gen、C
omp。
Isolation example from carp A, F, Cook et al., Gen, C
omp.

Bndorcrin、、 50.335(1983)。Bndorcrin, 50.335 (1983).

一方捕乳動物の成長ホルモン遺伝子についてはラット成
長ホルモン遺伝子CP、H,Seeburgら=Nat
ure 270486(1977)) 、ウシおよびブ
タの成長ホルモン遺伝子CP、H,Seeburgら:
DNA、  2゜37 (1983) :] 、ヒト成
長ホルモン遺伝子CJ、 A。
On the other hand, regarding the growth hormone gene of mammalian animals, the rat growth hormone gene CP, H, Seeburg et al. = Nat
ure 270486 (1977)), the bovine and porcine growth hormone gene CP, H, Seeburg et al.
DNA, 2°37 (1983): ], Human Growth Hormone Gene CJ, A.

Martial ら: 5cience、 205.6
02(1979) :]などがすでに知られているが、
魚類の成長ホルモン遺伝子についてはいまだに報告がな
い。
Martial et al.: 5science, 205.6
02 (1979):] are already known, but
There are no reports yet on growth hormone genes in fish.

本発明者らは先にサケ脳下垂体から成長ホルモンを抽出
、精製し、N末端からのアミノ酸配列(31個)の決定
を行った。また、この物質が硬骨魚類において成長促進
効果を有することも確認している〔特願昭591867
0)。
The present inventors previously extracted and purified growth hormone from salmon pituitary gland, and determined the amino acid sequence (31 pieces) from the N-terminus. It has also been confirmed that this substance has a growth-promoting effect on teleost fish [Patent Application No. 591,867]
0).

発明が解決しようとする問題点 魚類の成長ホルモンは魚類の成長促進効果を有するので
、養魚用餌料の組成物として有用であるが、魚類の脳下
垂体からの採取は供給量が限られている。従って魚類の
成長ホルモンを安価に大量に供給する方法の開発が望ま
れている。
Problems to be Solved by the Invention Fish growth hormone has a growth-promoting effect on fish, and is therefore useful as a composition of fish feed. However, the supply of the hormone collected from the pituitary gland of fish is limited. . Therefore, it is desired to develop a method for supplying fish growth hormone in large quantities at low cost.

問題点を解決するための手段 本発明者らは、組換えDNA技法により魚類の成長ホル
モンを製造する方法について研究を行った。その結果、
魚類の成長ホルモン製造に使用することができる、魚類
の成長ホルモンポリペプチドに相補的なりNAの採取な
らびにこれを含む組換え体DNAおよび微生物の製造に
成功した。即ちサケ脳下垂体からメツセンジャーRN 
A (mRNA)を抽出し、これと相補的なり N A
 (cDNA)を合成し、次いでサケの成長ホルモンの
N末端付近のアミノ酸配列に対応するDNAプローブを
合成し、このDNAとハイブリダイズするcDNAを選
択することにより、サケ成長ホルモン遺伝子をクローン
化することに成功した。さらにこのcDNAの全塩基配
列を決定し、本発明を完成するに至った。
Means for Solving the Problems The present inventors conducted research on a method for producing fish growth hormone by recombinant DNA technology. the result,
We succeeded in collecting NA complementary to fish growth hormone polypeptide and producing recombinant DNA and microorganisms containing it, which can be used in the production of fish growth hormone. That is, from the salmon pituitary gland to the metsenger RN.
A (mRNA) is extracted and complementary to this N A
Cloning the salmon growth hormone gene by synthesizing (cDNA), then synthesizing a DNA probe corresponding to the amino acid sequence near the N-terminus of salmon growth hormone, and selecting cDNA that hybridizes with this DNA. succeeded in. Furthermore, the entire base sequence of this cDNA was determined, and the present invention was completed.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、魚類の成長ホルモンポリペプチド、とくに第
1表に示されたペプチド配列を有するポリペプチドを提
供する。該ポリペプチドは、組換えDNA技法を用いて
下記のごとく製造することができる。
The present invention provides fish growth hormone polypeptides, particularly polypeptides having the peptide sequences shown in Table 1. The polypeptide can be produced using recombinant DNA techniques as described below.

即ち、魚類成長ホルモンのmRNAを鋳型として用いて
該mRNAに相補性を示すDNA (cDNAを調製し
、該cDNAを組み込んだ組換え体プラスミドを調製す
る。さらに、練絹換え体プラスミドを宿主微生物に挿入
する。該DNAおよび組換え体プラスミドは、とくにエ
ッシエリヒア・コリのような細菌中でサケ成長ホルモン
遺伝子の増幅に使用することができる。練絹換え体プラ
スミドを有する微生物はサケ成長ホルモンを安価に大量
に製造するために有用である。
Specifically, fish growth hormone mRNA is used as a template to prepare a DNA (cDNA) complementary to the mRNA, and a recombinant plasmid incorporating the cDNA is prepared.Furthermore, the recombinant plasmid is introduced into a host microorganism. The DNA and the recombinant plasmid can be used to amplify the salmon growth hormone gene, especially in bacteria such as Escherichia coli. Useful for mass production.

従って、本発明は、魚類の成長ホルモンポリペプチドを
コードするDNA、該DNAを組み込んだ組換え体DN
Aならびに練絹換え体DNAを含む微生物を提供する。
Therefore, the present invention provides a DNA encoding a fish growth hormone polypeptide and a recombinant DNA incorporating the DNA.
A microorganism containing A and recombinant DNA is provided.

本発明のDNAと組換え体プラスミドは下記の一般的手
法で調製される。
The DNA and recombinant plasmid of the present invention are prepared by the following general method.

シロサケ脳下垂体より全RNAを調製し、これをオリゴ
dTセルロース(oligo dT cellulos
e)カラムを通すことによりポリアデニル酸(ポIJ 
A )を有するRNA (ポリA′″RNA)を分離す
る。
Total RNA was prepared from the pituitary gland of chum salmon, and this was added to oligo dT cellulose (oligo dT cellulose).
e) polyadenylic acid (poIJ) by passing it through a column
RNA having A) (poly A′″ RNA) is isolated.

このポリA”RNA を鋳型とし、逆転写酵素により二
重鎖DNAを合成する。組換え体は試験管内DNA組換
え技法を用い、大腸菌のプラスミドDNΔのようなベク
ターDNAに談合成りNAを挿入して得られる。シロサ
ケ成長ホルモンmRNAに相補性を示すDNAを有する
組換え体プラスミドを選択する。
Using this polyA'' RNA as a template, double-stranded DNA is synthesized using reverse transcriptase.The recombinant is produced by inserting the recombinant DNA into a vector DNA such as E. coli plasmid DNAΔ using in vitro DNA recombination technology. A recombinant plasmid having DNA complementary to chum salmon growth hormone mRNA is selected.

次に本発明のDNAおよび組換え体プラスミドの製法に
ついて具体的に説明する。
Next, the method for producing the DNA and recombinant plasmid of the present invention will be specifically explained.

捕獲されたシロサケより脳下垂体を摘出し、即座に液体
窒素中にて凍結する。この凍結脳下垂体にグアニジウム
・インチオンアネート(guanidiumisoth
iocyanate)を加え破砕し、可溶化する。次い
でC5Cjl!溶液層に重層し、超遠心後、沈殿物とし
全細胞質RNAを得る。またグアニジウム・インチオシ
アネート可溶化物にLiCj2を加えてRNAのみを沈
殿させ回収することもできる。
The pituitary gland is removed from a captured chum salmon and immediately frozen in liquid nitrogen. This frozen pituitary gland was treated with guanidium inthionanate (guanidiumisoth).
iocyanate), crush, and solubilize. Next, C5Cjl! The solution layer is layered, and after ultracentrifugation, the total cytoplasmic RNA is obtained as a precipitate. Alternatively, only RNA can be precipitated and recovered by adding LiCj2 to the guanidium inthiocyanate solubilized product.

抽出したRNAをNaCj!またはKCj2の高塩濃度
(たとえば0.5 M )溶液に溶解し、オリゴ(dT
)セルロースのカラムに通塔してポリ(A)を有するm
RNAをカラムに吸着させる。水、10m M ) I
JスーHCβ緩衝液のような低塩濃度溶液を用いて溶出
し、ポリ(A>を有するmRNAを単離する。
The extracted RNA was NaCj! Or dissolve in a high salt concentration (e.g. 0.5 M) solution of KCj2 and add oligo(dT
) through a column of cellulose containing poly(A)
Adsorb RNA onto the column. Water, 10m M) I
Elute with a low salt solution such as JSu HCβ buffer to isolate the mRNA with poly(A>).

以下、Okayama−Bergの方法COkayam
a & Berg;J、 Mo1.Ce11.Biol
、  2,161(1982))に従い、c DNへの
合成および、そのベクターへの組み込みを行う。
Below, Okayama-Berg's method
a &Berg; J, Mo1. Ce11. Biol
, 2, 161 (1982)), synthesis into cDN and its integration into a vector are performed.

まずベクタープライマーを合成する。ベクターとしては
たとえばpCDVlを適当な溶液、たとえばトリス−H
Cl緩衝液(たとえばpH7,5,10mM)、  M
 g C+22(たとえば6mM)、NaCl1(たと
えば10mM)を含む溶液中でに、pnIで処理し、p
CDVlのKpn 1部位を切断する。
First, vector primers are synthesized. As a vector, for example, pCDVl can be dissolved in a suitable solution, such as Tris-H.
Cl buffer (e.g. pH 7, 5, 10mM), M
g C+22 (e.g. 6mM), NaCl1 (e.g. 10mM) in a solution containing pnI and p
Cut the Kpn 1 site of CDVl.

このDNAをトリス−H(l緩衝液(たとえばpH6,
8,301nM)、  カコジル酸ナトリウム(たとえ
ば140mM)、CaCl2(たとえば1mM)、ジチ
オスレイトール(たとえばO:1mM)およびdTTP
 (たとえば0.25mM)中、ターミナルデオキシヌ
クレオチジルトランスフェラーゼとともに一定温度(た
とえば37℃)で一定時間(たとえば20分間〉インキ
ュベートし、ベクターDNAの両3′末端に60個前後
のチミジル残基を付加する。さらにこのDNAをトリス
−HCl緩衝液(たとえばp)(7,5,10mM)、
MgC12(たとえば6mM>、Na(、j! (たと
えば100mM)を含む溶液中EcoRIで切断後、低
融点アガロースゲル電気泳動CLars Wiesla
nder :Analytical Biochemi
stry、98,305(1979)〕にて分画し、約
3.1キロベースの断片を回収する。次いで該DNAを
NaCfまたはK(lの高塩濃度(たとえば0.5 M
 )溶液に溶解し、ポリ(dΔ)セルロースカラムに通
塔してポリ(T)を有するベクタープライマー分子のみ
をカラムに吸着させる。水、10mM)IJス−HCl
緩衝液のような低塩濃度溶液を用いて溶出し、ポIJ(
T)の付加したベクタープライマー分子のみを単離する
This DNA was diluted with Tris-H (l buffer (e.g. pH 6,
8,301nM), sodium cacodylate (e.g. 140mM), CaCl2 (e.g. 1mM), dithiothreitol (e.g. O: 1mM) and dTTP.
(for example, 0.25 mM) with terminal deoxynucleotidyl transferase at a constant temperature (for example, 37°C) for a certain period of time (for example, 20 minutes) to add approximately 60 thymidyl residues to both 3' ends of the vector DNA. Further, this DNA was added to Tris-HCl buffer (e.g. p) (7, 5, 10mM),
Low melting point agarose gel electrophoresis after cleavage with EcoRI in a solution containing MgC12 (e.g. >6mM), Na (,j! (e.g. 100mM), CLars Wiesla
nder :Analytical Biochemistry
Stry, 98, 305 (1979)], and a fragment of approximately 3.1 kilobases was recovered. The DNA was then diluted with NaCf or K (l) at a high salt concentration (e.g. 0.5 M
) Dissolved in a solution and passed through a poly(dΔ) cellulose column to adsorb only vector primer molecules having poly(T) onto the column. water, 10mM) IJ-HCl
Elute with a low salt solution such as a buffer and remove the poIJ (
Isolate only the vector primer molecule to which T) has been added.

次にリンカ−DNAを合成する。たとえばpLIDNA
を適当な溶液、たとえばトリス−H(1緩衝液(たとえ
ばp)+7.5.10mM) 、 MgCj!2(たと
えば6mM)、NaCji! (たとえば50mM)を
含む溶液中でPStIで処理し、pLlのPstI部位
を切断する。このDNAを、dTTPの代わりにdGT
Pを加える以外はベクタープライマー合成の場合と同様
に処理し、15個前後のオリゴd(JJMを付加する。
Next, linker DNA is synthesized. For example pLIDNA
in a suitable solution, e.g. Tris-H (1 buffer (e.g. p) + 7.5.10 mM), MgCj! 2 (e.g. 6mM), NaCji! (eg, 50 mM) to cleave the PstI site of pLl. This DNA was replaced with dGT instead of dTTP.
The process is the same as for vector primer synthesis except that P is added, and around 15 oligos d (JJM) are added.

該DNAを適当な溶液たとえばトリス−H(l緩衝液(
たとえばpH7,5,10mM)、Mg(J!2(たと
えば5mM)。
The DNA was dissolved in a suitable solution such as Tris-H (l buffer).
For example, pH 7, 5, 10mM), Mg(J!2 (for example, 5mM).

NaCf1(たとえば60mM)を含む溶液中Hind
lllにて切断する。アガロースゲル電気泳動にて約0
.5キロベースのDNA断片を分画し、DEAEペーパ
ーにて回収する。このようにしてリンカ−DNAを得る
d 以上のようにして得たポリ (A)+RNA、ベクター
プライマー、リンカ−DNAを用い、c DNA合成を
行う。ポリ (A)”RNA  、ベクタープライマー
DNAをトリス−H(l緩衝液(たとえばpH8,3,
50m1M)、MgC,l!2 (たとえば8mM)、
K(1! (たとえば30mM)、ジチオスレイトール
(たとえば0.3mM)、dATP。
Hind in a solution containing NaCf1 (e.g. 60mM)
Cut at lll. Approximately 0 in agarose gel electrophoresis
.. A 5 kilobase DNA fragment is fractionated and collected using DEAE paper. Thus, linker DNA is obtained.cDNA synthesis is performed using the poly(A)+RNA, vector primer, and linker DNA obtained as above. Poly(A)” RNA and vector primer DNA were added to Tris-H (l buffer (e.g. pH 8,3,
50m1M), MgC,l! 2 (e.g. 8mM),
K(1! (e.g. 30mM), dithiothreitol (e.g. 0.3mM), dATP.

dTTP、dCTP、dGTP (たとえば各々2mM
)を含む溶液中、逆転写酵素を一定温度(たとえば37
℃)、一定時間(たとえば40分間〉反応させる。こう
して得たR N A −’D NA二重鎮の3′末端に
、dTTPがdCTPに変わる以外はベクタープライマ
ーにdT鎖を付加した条件と同様の操作でオリゴd(J
JIを15個前後付加する。
dTTP, dCTP, dGTP (e.g. 2mM each
) in a solution containing reverse transcriptase at a constant temperature (e.g. 37
°C) for a certain period of time (for example, 40 minutes). The 3' end of the RNA-'DNA duplex thus obtained was treated with the same conditions as when a dT strand was added to the vector primer, except that dTTP was changed to dCTP. Oligo d(J
Add around 15 JIs.

このDNAをトリス−HCA緩衝液(たとえばpH7,
5、10m M ) 、 M g CR2(たとえば6
mM)。
This DNA was added to a Tris-HCA buffer (e.g. pH 7,
5, 10 m M ), M g CR2 (e.g. 6
mM).

NaC1(たとえば60mM)を含む溶液中Hindl
llで切断する。このDNAに、先に調製したリンカ−
DNAを混合し、トリス−H(l緩衝液(たとえばpH
7,5,20mM)、Mg(12(たとえば4 mM)
 、  (NH4)2SO4(たとえば10mM)、K
(1! (たとえば0.1M)、β−ニコチンアミドア
デニンジヌクレオチド(β−NΔD)(たとえば0.’
1mM)を含む溶液中、大腸菌DNAリガーゼとともに
一定時間(たとえば16時間)、一定温度(たとえば1
2℃)でインキュベートする。こうしてcDNAとリン
カ−DNAとの環状化が行われる。この反応液にdAT
P、dTTP。
Hindl in a solution containing NaCl (e.g. 60mM)
Cut with ll. Add the previously prepared linker to this DNA.
Mix the DNA and add Tris-H (l buffer (e.g. pH
7, 5, 20mM), Mg(12 (e.g. 4mM)
, (NH4)2SO4 (e.g. 10mM), K
(1! (e.g. 0.1M), β-nicotinamide adenine dinucleotide (β-NΔD) (e.g. 0.'
1mM) with E. coli DNA ligase for a certain period of time (e.g. 16 hours) at a certain temperature (e.g. 1mM).
Incubate at 2°C. In this way, cDNA and linker DNA are circularized. Add dAT to this reaction solution.
P, dTTP.

dGTP、dCTPを各々、終濃度40μMとなるよう
加え、大腸菌D N A IJガーゼ、大腸菌DNAポ
リメラーゼ11大腸菌リボヌクレアーゼHを加え、RN
A部分をDNAに変換することにより、完全な二重@J
fl c D N Aを含む組換えプラスミドを得る。
Add dGTP and dCTP to a final concentration of 40 μM, add E. coli DNA IJ gauze, E. coli DNA polymerase 11 and E. coli ribonuclease H, and add RN.
By converting part A to DNA, complete double @J
A recombinant plasmid containing fl c DNA is obtained.

こうして得た組換えプラスミドを用い大腸菌、たとえば
大腸菌C600SF8株を、たとえば5cottらの方
法〔重定勝哉:細胞工学 l。
Using the thus obtained recombinant plasmid, Escherichia coli, for example, Escherichia coli C600SF8 strain, is grown by the method of 5cott et al. [Katsuya Shigesada: Cell Engineering 1.

6!6(1983) :lにより形質転換する。上記で
得た組換え体プラスミド上にはアンピシリン耐性遺伝子
が存在するため、形質転換した大腸菌はアンピンリン耐
性を示す。以下の手法はこれらアンピシリン耐性(A 
p’)菌株から魚類の成長ホルモンmRNΔに相補性を
示す遺伝子を持つ新規組換え体プラスミドDNAを保有
する菌株を選択するのに一般的に用いられる。すなわち
、上記で得られた形質転換株をニトロセルロースフィル
ター上に固定し、既知のシロザケ成長ホルモンのアミノ
酸配列より予想されるD・NA配列を有する合成りNA
プローブと会合させ、強く会合するものを選択する(G
runstein −Hognessの方法、Proc
、 Natl。
6!6 (1983):1. Since the ampicillin resistance gene is present on the recombinant plasmid obtained above, the transformed E. coli exhibits resistance to ampinlin. The following method is used to treat these ampicillin-resistant (A
p') It is generally used to select from bacterial strains a strain carrying a novel recombinant plasmid DNA having a gene complementary to fish growth hormone mRNAΔ. That is, the transformed strain obtained above was immobilized on a nitrocellulose filter, and a synthetic NA having a D/NA sequence predicted from the known amino acid sequence of chum salmon growth hormone was immobilized on a nitrocellulose filter.
associate with the probe and select those that associate strongly (G
runstein-Hogness method, Proc.
, Natl.

Acad、Sc1、、 IJsA、、  72.396
.1(1975)) 。プローブDNAは通常のトリエ
ステル法〔J、Am、[hem、 Soc、。
Acad, Sc1,, IJsA,, 72.396
.. 1 (1975)). Probe DNA was prepared using the usual triester method [J, Am, [hem, Soc,.

町、7327(1975) )で合成される。合成りN
Aプローブによる選択は5outhernらの方法[J
、 Mo1゜Biol、 98.503 (1975)
 )によってさらに確実にでき、この方法でシロザケ成
長ホルモンmRNAに相補性を示す遺伝子を有する組換
え体プラスミドDNAを同定できる。
Machi, 7327 (1975)). Synthetic N
Selection using the A probe was performed using the method of 5outhern et al. [J
, Mo1゜Biol, 98.503 (1975)
), and by this method, recombinant plasmid DNA having a gene complementary to chum salmon growth hormone mRNA can be identified.

本発明の新規組換え体プラスミドは大腸菌のような微生
物、あるいは真核細胞による魚類成長ホルモンポリペプ
チドの大量生産に用いられる。
The novel recombinant plasmids of the present invention can be used for large scale production of fish growth hormone polypeptides by microorganisms such as E. coli or eukaryotic cells.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1. シロザケ脳下垂体よりのポ’JA+RNA
の調製: シロザケ脳下垂体よりグアニジウムチオシアネート−セ
シウムクロライド法[: Maniatis ら編。
Example 1. Po'JA+RNA from chum salmon pituitary gland
Preparation: Guanidium thiocyanate-cesium chloride method from chum salmon pituitary gland [edited by Maniatis et al.

Mo1ecular  Clotting、  p19
6.  Co1d  Spring Harbor刊;
重定勝哉、細胞工学、 2 、616(1983) :
lに従いポリAを有するRNAを下記のごとく調製した
Molecular Clotting, p19
6. Published by Cold Spring Harbor;
Katsuya Shigesada, Cell Engineering, 2, 616 (1983):
RNA having polyA was prepared as follows according to 1.

、シロザケの凍結脳下垂体2g(約30個体分)を4M
グアニジウムチオシアネート、0.5%ザルコシン、5
mMクエン酸ナトリウム(pH7)および0.IMβ−
メルカプトエタノールからなる溶液10m1中でテフロ
ンホモゲナイザ’−(5rpm)にて破砕し可溶化した
。このホモジネートを18G注射針に数回通してDNA
を分断した。5.7MCs’C,CO,IM  、ED
TA (pH8)の溶液各12m1を超遠心管中に分注
しておき、前記ホモジネートを重層した。旧tachi
 RP S 4.0ロークーにて35,000rpm 
、 15時間遠心後、RNAを沈殿として回収した。R
NAの沈殿を1mM  EDTAを含むトリス−H(1
(pH8,0)溶液10m1k:溶解巳、フェノール−
クロロホルムで抽出後、エタノール沈殿により回収した
。、得られたRNA約1mgを10mM)リス−HCf
1(pH8,0)および1mM  EDTAからなる溶
液1…1に溶かした。
, 2g frozen pituitary gland of chum salmon (approx. 30 individuals) 4M
Guanidium thiocyanate, 0.5% sarcosine, 5
mM sodium citrate (pH 7) and 0. IMβ-
The mixture was crushed and solubilized using a Teflon homogenizer (5 rpm) in 10 ml of a solution consisting of mercaptoethanol. Pass this homogenate through an 18G needle several times to extract the DNA.
was divided. 5.7MCs'C, CO, IM, ED
12 ml of each TA (pH 8) solution was dispensed into ultracentrifuge tubes, and the homogenate was layered thereon. old tachi
RP S 4.0 35,000 rpm at low speed
After centrifugation for 15 hours, RNA was collected as a precipitate. R
Precipitate the NA in Tris-H containing 1mM EDTA (1
(pH 8,0) solution 10ml 1k: Dissolution, phenol-
After extraction with chloroform, it was recovered by ethanol precipitation. , about 1 mg of the obtained RNA was added to 10 mM) Lis-HCf
1 (pH 8,0) and 1mM EDTA.

65℃、5分間インキュベートし、0.1mlの5MN
aCl1を加えた。混合物をオリゴdTセルロース・カ
ラム(P −L  Biochemicals社製)ク
ロマトグラフィーにかけた。吸着したポリAを有するm
RNAを10mM)リス−HCβ(p H8,0および
1 m M  E D T Aからなる溶液で溶出しポ
リAを有するmRNA約10μgを得た。
Incubate at 65°C for 5 minutes and add 0.1 ml of 5MN.
aCl1 was added. The mixture was chromatographed on an oligo dT cellulose column (PL Biochemicals). m with adsorbed polyA
The RNA was eluted with a solution consisting of 10 mM) Lis-HCβ (pH 8.0 and 1 mM EDTA) to obtain about 10 μg of polyA-containing mRNA.

実施例2.  cDNA合成と該DNAのベクターへの
挿入; Okayama−Bergの方法・CJ、Mo1.Ce
1l、Biol、r 2.161(1982) )に従
い、cDNAの合成とそれを組み込んだ組換え体プラス
ミドの造成を行った。その工程の概略を第1図に示す。
Example 2. cDNA synthesis and insertion of the DNA into a vector; Okayama-Berg method CJ, Mo1. Ce
1l, Biol, r 2.161 (1982)), synthesis of cDNA and construction of a recombinant plasmid incorporating it were performed. An outline of the process is shown in FIG.

pCDV  l   [Okayama  &  日e
rg  :  J、Mol、  Ce1l。
pCDV l [Okayama & Japan e
rg: J, Mol, Ce1l.

Biol、、 3.280(1983) ]400.L
EgをlQmM)リス−H(1(pH7,5)、6mM
  MgCLおよび10mM  NaCj!からなる溶
液300uj2に加え、さらに500単位のKpnl(
宝酒造社製)を加えて、37℃、6時間反応させ、プラ
スミド中のKpn 1部位で切断した。フェノール−ク
ロロホルム抽出後、エタノール沈殿によりDNAを回収
した。Kpn I切断した該DNA約200μgを4Q
mMカコジル酸ナトリウム、30mMトリス−HCR(
pH6,8)、1mM  CaCjl!2および0.1
mMジチオスレイトール(以下DTTと略記する)から
なる緩衝液(以下TdT緩衡液と略記する)にdTTP
を0.25mMとなるよう加えた溶液200μlに加え
、さらに81単位のターミナルデオキンヌクレオチジル
トランスフェラーゼ(以下TdTと略記する)  (P
−L Bioche−micals社製)を加えて、3
7℃11分間反応させた。ここで、pCDVlのKpn
 I切断部位の3′末端にポ1JdT鎖が約67個付加
された。該溶液からフェノール−クロロホルム抽出、エ
タノール沈殿により、ポ1JdT鎮の付加したpCDV
I DNA約100μgを回収した。該D N Aを1
0mM)リス〜H(1(pH7,5)、6mM  Mg
Cβ2゜100mM  NaClからなる緩衝液150
μβに加え、さらに360単位のEcoRI (宝酒造
社製)を加え、37℃2時間反応させた。該反応物を低
融点アガロースゲル電気泳動後、約3.IKbのDNA
断片を回収し、約60μgのポ1JdTIJl付加pC
DV 1を得た。該DNAを10mM)リス−HCβ(
pH8,0)および1mM  EDTAからなる溶液5
00μlに溶解し、65℃5分間インキュベート後、氷
冷して50μlの5M  NaCl1を加えた。混合物
をオリゴdAセルロースカラム(コラボラティブリサー
チ社製)クロマトグラフィーにかけた。ポ1.ldT鎮
長が充分なものはカラムに吸着し、これを10mM)リ
ス−HC1)(pH8,0)および1mMEDTAから
なる溶液で溶出し、ポリdT鎮の付加したp CD、V
 l(以下ベクタープライマーと略記する)27μgを
得た。
Biol, 3.280 (1983) ] 400. L
Eg 1QmM) Lis-H (1 (pH 7,5), 6mM
MgCL and 10mM NaCj! In addition to 300 uj2 of a solution consisting of 500 units of Kpnl (
(manufactured by Takara Shuzo Co., Ltd.) and reacted at 37°C for 6 hours, and the plasmid was cleaved at the Kpn 1 site. After phenol-chloroform extraction, DNA was recovered by ethanol precipitation. Approximately 200 μg of the Kpn I-cleaved DNA was added to 4Q
mM sodium cacodylate, 30 mM Tris-HCR (
pH 6,8), 1mM CaCjl! 2 and 0.1
Add dTTP to a buffer solution (hereinafter abbreviated as TdT buffer) consisting of mM dithiothreitol (hereinafter abbreviated as DTT).
was added to 200 μl of a solution containing 0.25 mM, and further 81 units of terminal deokine nucleotidyl transferase (hereinafter abbreviated as TdT) (P
-L Bioche-micals) and 3
The reaction was carried out for 11 minutes at 7°C. Here, Kpn of pCDVl
Approximately 67 po1JdT chains were added to the 3' end of the I cleavage site. From this solution, phenol-chloroform extraction and ethanol precipitation were carried out to obtain pCDV to which po-1JdT was added.
Approximately 100 μg of I DNA was recovered. The DNA is 1
0mM) Lis~H(1 (pH 7,5), 6mM Mg
Cβ2゜Buffer consisting of 100mM NaCl 150
In addition to μβ, 360 units of EcoRI (manufactured by Takara Shuzo Co., Ltd.) was added, and the mixture was reacted at 37° C. for 2 hours. After the reaction product was subjected to low melting point agarose gel electrophoresis, approximately 3. IKb DNA
The fragments were collected and about 60 μg of po1JdTIJl-added pC
Got DV1. The DNA was diluted with 10mM) Lis-HCβ (
Solution 5 consisting of pH 8,0) and 1mM EDTA
After incubating at 65° C. for 5 minutes, the mixture was cooled on ice and 50 μl of 5M NaCl was added. The mixture was subjected to chromatography on an oligo dA cellulose column (manufactured by Collaborative Research). Po1. Those with sufficient ldT binding were adsorbed onto the column and eluted with a solution consisting of 10mM) Lis-HC1) (pH 8,0) and 1mM EDTA.
27 μg of 1 (hereinafter abbreviated as vector primer) was obtained.

次にリンカ−DNAの調製を行なう。Next, linker DNA is prepared.

p L 1  (Okayama & Berg : 
J、 Mol、 Ce11.Biol、。
p L 1 (Okayama & Berg:
J, Mol, Ce11. Biol.

3、 280(1983)E約ILugを10mM)リ
ス−HCj! (pH7,5)、・6mM  Mg(J
’2および50mM  NaCj!からなる緩衝液20
0μlに加え、さらに50単位のPstI(宝酒造社製
)を加え、37℃4時間反応させ、pLIDNA中のP
stI部位で切断させた。該反応物をフェノール−クロ
ロホルム抽出後、エタノール沈殿を行い、Pstlで切
断したpLIDNA約13μgを回収した。該DNA約
13μgをTdT緩衝液に終濃度0.25mMのdGT
Pを含む溶液50μβに加え、さらにT d T (P
−L Biochemicals社製)54単位を加え
て37℃13分間インキュベートし、pLlのP s 
t I切断部位3′末端にdG鎮を約14個付加した。
3, 280 (1983) E approx. ILug at 10 mM) Lis-HCj! (pH 7,5), ・6mM Mg(J
'2 and 50mM NaCj! A buffer solution consisting of 20
In addition to 0 μl, 50 units of PstI (manufactured by Takara Shuzo Co., Ltd.) was added and reacted at 37°C for 4 hours to remove PstI in pLIDNA.
It was cut at the stI site. After the reaction product was extracted with phenol-chloroform, ethanol precipitation was performed, and about 13 μg of pLIDNA cut with Pstl was recovered. Approximately 13 μg of the DNA was added to TdT buffer with dGT at a final concentration of 0.25 mM.
In addition to 50 μβ of a solution containing P, T d T (P
-L Biochemicals) was added and incubated at 37°C for 13 minutes to increase the Ps of pLl.
Approximately 14 dG molecules were added to the 3' end of the tI cleavage site.

フェノール−クロロホルム抽出後エタノール沈殿にてD
NAを回収した。該DNAを100μj!の10mM)
す、1.−HCj!(pH7,5)、6mM  MgC
Lおよび5QmMNa’Cβからなる緩衝液100μl
に加え、さらに80単位のHindIII(宝酒造社製
)を加えて37℃3時間インキュベートし、pLIDN
’Aの)lind111部位で切断した。該反応物をア
ガロースゲル電気泳動にて分画し、約0.5 K bの
DNA断片をDEAEペーパー法[Dretzen ら
、 Anal。
D by ethanol precipitation after phenol-chloroform extraction
NA was collected. 100 μj of the DNA! 10mM)
1. -HCj! (pH 7,5), 6mM MgC
100 μl of buffer consisting of L and 5QmM Na'Cβ
In addition, 80 units of HindIII (manufactured by Takara Shuzo Co., Ltd.) was added and incubated at 37°C for 3 hours.
'A) was cut at the lind111 site. The reaction product was fractionated by agarose gel electrophoresis, and a DNA fragment of approximately 0.5 Kb was separated using the DEAE paper method [Dretzen et al., Anal.

Biochem、、  112.295(1981) 
:]にて回収し、オリゴd(JJI付きのリンカ−DN
A(以下単にリンカ−DNAと略記する)を得た。
Biochem, 112.295 (1981)
:], and oligo d (linker-DN with JJI
A (hereinafter simply referred to as linker DNA) was obtained.

上記で調製したポ’J’(A)RNA約2μg、ベクタ
ープライマー約1.4μgを50mMトリス−HCl(
pH8,3)、8mM  MgCj72.30mM  
KCjl!、0.3mM  DTT、2mMdNTP 
(dATP、dTTP、dGTPおよびdCTP)およ
び10単位のりボヌクレアーゼインヒビター(P −L
  Biochemicals社製)からなる溶液22
.3μβに溶解し、10単位の逆転写酵素(生化学工業
社製)を加え、37℃40分間インキュベートし、mR
NAに相補的なりNAを合成させた。該反応物をフェノ
ール−クロロホルム抽出、エタノール沈殿を行ない、R
NA−DNA二重二重材加したベクタープライマーDN
Aを回収した。該DNAを66μMdCTPおよび0.
2μgポリAを含むTdT緩衝液20μmに溶かし、1
4単位のT d T (P−L  Biochemic
als社製)を加えて37℃8分間インキュベートし、
c[)NΔ3′末端に12個のdC鎮を付加した。該反
応物をフェノール−クロロホルム抽出し、エタノール沈
殿によりdC鎮の付加したcDNA−ベクタープライマ
ーDNAを回収した。該DNAをトリス−H(1! (
pH7,5>、6mM  MgCj22および60mM
  NaCAからなる液40 (DzAに溶かし、20
単位のHl・ndlIl (宝酒造社製)を加え、37
℃2時間インキュベートし、HindllI部位で切断
した。該反応物をフェノール−クロロホルム抽出、エタ
ノール沈殿して0.5 pmoleのdC鎮付加cDN
A−ベクタープライマーDNAを得た。該DNA0.0
8 pmoleおよび前記のリンカ−DNA0.16 
pmoleを40μAのトリス−HC,A(p)(7,
5)、0.IM  NaCj7および1mM  E、D
TAからなる溶液40μlに加え、65℃、42℃、0
℃でそれぞれ10分、25分。
Approximately 2 μg of po'J'(A) RNA prepared above and approximately 1.4 μg of vector primer were mixed with 50 mM Tris-HCl (
pH 8,3), 8mM MgCj72.30mM
KCjl! , 0.3mM DTT, 2mM dNTPs
(dATP, dTTP, dGTP and dCTP) and 10 units of glue bonuclease inhibitor (P-L
Solution 22 consisting of (manufactured by Biochemicals)
.. 3μβ, add 10 units of reverse transcriptase (manufactured by Seikagaku Corporation), incubate at 37°C for 40 minutes, and mR
Complementary NA was synthesized. The reaction product was extracted with phenol-chloroform and precipitated with ethanol.
Vector primer DN with double NA-DNA double layer added
A was collected. The DNA was treated with 66 μM dCTP and 0.
Dissolved in 20 μm of TdT buffer containing 2 μg of polyA,
4 units of T d T (PL Biochemical
als) and incubated at 37°C for 8 minutes.
Twelve dC chains were added to the 3' end of c[)NΔ. The reaction product was extracted with phenol-chloroform, and the cDNA-vector primer DNA to which the dC compound had been added was recovered by ethanol precipitation. The DNA was purified by Tris-H (1!
pH 7,5>, 6mM MgCj22 and 60mM
A solution consisting of NaCA (40% dissolved in DzA, 20%
Add the units of Hl and ndlIl (manufactured by Takara Shuzo Co., Ltd.) and make 37
C. for 2 hours and cut at the HindllI site. The reaction product was extracted with phenol-chloroform and precipitated with ethanol to obtain 0.5 pmole of dC-adducted cDNA.
A-vector primer DNA was obtained. The DNA0.0
8 pmole and the linker-DNA 0.16 above
pmole at 40 μA Tris-HC,A(p)(7,
5), 0. IM NaCj7 and 1mM E,D
Add to 40 μl of solution consisting of TA, 65°C, 42°C, 0
℃ for 10 and 25 minutes, respectively.

30分間インキュベートした。20mM)リス−HFJ
! (pH7,5)、4mM Mg C、l’2.10
mM (NH4)2SO4゜0、IM  KCfflお
よび0.1 mMβ−NADの組成で、全量400μβ
となるよう反応液を調製した。
Incubated for 30 minutes. 20mM) Squirrel-HFJ
! (pH 7,5), 4mM MgC, l'2.10
Composition of mM (NH4)2SO4゜0, IM KCffl and 0.1 mM β-NAD, total amount 400μβ
A reaction solution was prepared as follows.

該反応液に10単位の大腸菌DNAIJガーゼ(New
 England Biolabs社製)を加え、11
℃−夜インキユベートした。該反応液を各40μMのd
NTP、0.15mMβ−NADとなるよう成分を追加
調製し、5単位の大腸菌DNA!Jガーゼ、7単位の大
腸菌DNAポリメラーゼI(P−L Bio−chem
icals社製)および2単位の大腸菌リボヌクレアー
ゼH(P−L Biochemicals社製)を加え
、12℃、25℃で順次1時間ずつインキュベートした
Add 10 units of E. coli DNAIJ gauze (New
(manufactured by England Biolabs) and 11
- Incubated overnight. The reaction solution was diluted with 40 μM of d
Add components to NTP, 0.15mM β-NAD, and add 5 units of E. coli DNA! J gauze, 7 units of E. coli DNA polymerase I (PL Bio-chem
icals) and 2 units of Escherichia coli ribonuclease H (P-L Biochemicals) were added and incubated at 12°C and 25°C for 1 hour each.

上記反応で、cD’NAを含む組換えDNAの環状化と
、RNA−DNA二重二重材NA部分がDNAに置換さ
れ、完全な二重鎖D N Aの組換えプラスミドが生成
した。
In the above reaction, the recombinant DNA containing cD'NA was circularized and the RNA-DNA duplex material NA portion was replaced with DNA, producing a complete double-stranded DNA recombinant plasmid.

実施例3. シロサケ成長ホルモンcDNAを含む組換
えDNAの選択: 実施例2で得た組換え体プラスミドを用い、大腸菌c6
00sP8株[Cameron:Proc、 Natl
、 Acad、  Sci。
Example 3. Selection of recombinant DNA containing chum salmon growth hormone cDNA: Using the recombinant plasmid obtained in Example 2, E. coli c6
00sP8 strain [Cameron: Proc, Natl
, Acad, Sci.

USA、ユ、3416(1975) 〕を5cott 
らの方法〔重定勝哉:細胞工学、 2,616(198
3) )に従い形質転換した。得られた約1万個のコロ
ニーのうち4800個をニトロセルロース上に固定した
。シロサケ成長ホルモンのN末端から22番目−27番
目のアミノ酸配列に対応する合成りNA、すなわち(3
番目の塩基はAまたはG、6番目はΔまたはG、12番
目はTまたはC115番目はCまたはTであり、組み合
わせて16通りの合成りNAの混合物となる)を32p
で標識したプローブに40℃で強く会合した8菌株を選
んだ[Grunstein−Hognessの方法、 
 Proc、Natl、Acad、 Sc1、 LIS
A。
USA, Yu, 3416 (1975)] 5cott
[Katsuya Shigesada: Cell Engineering, 2,616 (198
3) Transformation was performed according to ). Of the approximately 10,000 colonies obtained, 4,800 were fixed on nitrocellulose. Synthetic NA corresponding to the 22nd to 27th amino acid sequence from the N-terminus of chum salmon growth hormone, i.e. (3
The 115th base is A or G, the 6th base is Δ or G, the 12th base is T or C, and the 115th base is C or T, resulting in a mixture of 16 synthetic NAs).
We selected eight bacterial strains that strongly associated with the probe labeled at 40°C [Grunstein-Hogness method,
Proc, Natl, Acad, Sc1, LIS
A.

72.396’1(1975) )。得られた8菌株に
ついて5outhernの方法〔J、Mo1.Biol
、、98.503(1975) )により、上記プロー
ブおよびC末端付近のアミノ酸配列に対応する合成、D
 N Aプローブ(3番目の塩基はCまたはT、6番目
はAまたはG、9番目はA、T、G、Cのいずれか、1
2番目はGまたはAであり、組み合わせて32通りの合
成りNAの混合物となる)とも会合が確認された。これ
らのプラスミドはpsGHl、3,6,8゜9 、10
.14.17と命名したが、いずれも、シロザケ成長ホ
ルモンのアミノ酸配列から予想されるDNA配列を有す
ることから成長ホルモンcDNAを含んでいるものと考
えられた。
72.396'1 (1975)). The 5outhern method [J, Mo1. Biol
, 98.503 (1975)), the above probe and the synthesis corresponding to the amino acid sequence near the C-terminus, D
NA probe (3rd base is C or T, 6th base is A or G, 9th base is either A, T, G, or C, 1
The second one is G or A, which can be combined to form a mixture of 32 synthetic NAs). These plasmids are psGHl, 3, 6, 8°9, 10
.. 14.17, and both had DNA sequences predicted from the amino acid sequence of chum salmon growth hormone, so they were thought to contain growth hormone cDNA.

実施例4.該プラスミドpSGII 1の塩基配列;上
記で得られたプラスミド8種につき、種々の制限酵素で
消化し、cDNA部分の切断地図を決定した。制限酵素
部位の存在位置から、得られたプラスミドは3群に分類
でき、psGtll、  6.9.10゜17の群、p
sGH3の群、PSGH8、14の群と分けられた。そ
れぞれの群の制限酵素地図を第2図に示す。
Example 4. Base sequence of the plasmid pSGII 1: The eight plasmids obtained above were digested with various restriction enzymes, and the cleavage map of the cDNA portion was determined. Based on the location of the restriction enzyme site, the obtained plasmids can be classified into three groups: psGtll, 6.9.10゜17 group, psGtll, 6.9.10゜17 group,
They were divided into sGH3 group, PSGH8 and 14 groups. The restriction enzyme map of each group is shown in Figure 2.

次に実施例3で行った合成りNAプローブと最も強い会
合を示し、かつほぼ完全長のcDN八を含むと考えられ
るpSGHlを含む群のプラスミド、特にpSGH1に
ついて、その翻訳領域の全ヌクレオチド配列をM137
y−シを用いたSanger法[Sangerら、Pr
oc、Natl、  八cad、Sct、  LISA
、  74.5463(1977):へmersham
社 M l 3 cloning and seque
ncinghandbook )に従って決定した。配
列を第1表に示す。第1表中、塩基数1−66がングナ
ルペプチドを、67−630がシロザケ成長ホルモンの
成熟ペプチドをコードする。pSGII 1に含まれる
cDNA配列から予想されるアミノ酸配列は、シロザケ
成長ホルモンペプチドから決定されているN末端付近お
よびC末端付近のアミノ酸配列と完全に一致し、該cD
NAはシロザケ成長ホルモンをコードしていることが確
認された。psG1月、PSGH3。
Next, we analyzed the entire nucleotide sequence of the translated region of the plasmid, especially pSGH1, which shows the strongest association with the synthetic NA probe conducted in Example 3 and is thought to contain almost full-length cDN8. M137
Sanger method using y-shi [Sanger et al., Pr.
oc, Natl, 8cad, Sct, LISA
, 74.5463 (1977): Mersham
Company M l 3 cloning and seque
ncinghandbook). The sequences are shown in Table 1. In Table 1, base numbers 1-66 code for the gunnar peptide, and base numbers 67-630 code for the mature peptide of chum salmon growth hormone. The amino acid sequence predicted from the cDNA sequence contained in pSGII 1 completely matches the amino acid sequence near the N-terminus and near the C-terminus determined from chum salmon growth hormone peptide, and
It was confirmed that NA encodes chum salmon growth hormone. psG January, PSGH3.

pSGH8を含む大腸菌(それぞれBSGH1、BSG
H3゜ESCH8)は昭和59年6月23日付で、FB
RM BP−551゜552および553として工業技
術院微生物工業技術研究所に寄託されている。
E. coli containing pSGH8 (BSGH1, BSG, respectively)
H3゜ESCH8) is dated June 23, 1982, and is posted on FB
It has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology as RM BP-551°552 and 553.

−Genetic Code  CLlniver5a
lコ  Aへ  1  表Argl−ysSerLeu
GIuへIaAsnUyslhrLeu蒼薫*発明の効
果 本発明によれば、魚類の成長ホルモンポリペプチドをコ
ードするDNAを組み込んだ組換え体DNA、練絹換え
体DNAを含む微生物が得られ、これらは魚類の成長ホ
ルモンポリペプチドの大量生産に利用することができる
-Genetic Code CLlniver5a
To A 1 Table Argl-ysSerLeu
Effects of the Invention on GIu According to the present invention, microorganisms containing recombinant DNA and recombinant DNA incorporating DNA encoding a fish growth hormone polypeptide can be obtained, and these microorganisms can improve the growth of fish. It can be used for mass production of hormone polypeptides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はOkayama−Berg法によるcDNへ合
成と、該DNAを含む組換え体プラスミドの造成過程の
概略を示す。 第2図はpSGH1、pSGH3、psGH8に含まれ
るcDNへの制限酵素地図を示す。 ↓丘coRIジ角イU               
j)(irdl[sMイと・1 図 ベクターブライン−DNA −刀工=====訟PTTTT   ηRNA八^すへ
−−−−−−−−−−−−− 手続補正書く自発) 昭和タデ年g月17日
FIG. 1 schematically shows the process of cDNA synthesis by the Okayama-Berg method and the construction of a recombinant plasmid containing the DNA. FIG. 2 shows restriction enzyme maps to cDNs contained in pSGH1, pSGH3, and psGH8. ↓Oka coRI Jikado U
J) (IRDL [SM I and 1 Figure Vector Brine -DNA -Swordsmith ===== Type PTTTT ηRNA 8 ^ He----------------------------------------------------------------- g month 17th

Claims (11)

【特許請求の範囲】[Claims] (1)第1表に示したペプチド配列を有する魚類の成長
ホルモンポリペプチド。
(1) A fish growth hormone polypeptide having the peptide sequence shown in Table 1.
(2)魚類の成長ホルモンがニシン類(Clupeif
ormes)の成長ホルモンである特許請求の範囲第1
項のポリペプチド。
(2) The growth hormone of fish is herring (Clupeif).
Claim 1, which is a growth hormone of
term polypeptide.
(3)魚類の成長ホルモンポリペプチドをコードするD
NA。
(3) D encoding a fish growth hormone polypeptide
N.A.
(4)魚類の成長ホルモンポリペプチドが第1表に示し
たペプチド配列を有する特許請求の範囲第3項のDNA
(4) The DNA of claim 3, in which the fish growth hormone polypeptide has the peptide sequence shown in Table 1.
.
(5)魚類の成長ホルモンポリペプチドをコードするD
NAを組み込んだ組換え体DNA。
(5) D encoding a fish growth hormone polypeptide
Recombinant DNA incorporating NA.
(6)魚類の成長ホルモンポリペプチドが第1表に示し
たペプチド配列を有する特許請求の範囲第5項の組換え
体DNA。
(6) The recombinant DNA of claim 5, wherein the fish growth hormone polypeptide has the peptide sequence shown in Table 1.
(7)プラスミドpSGH1、pSGH3またはpSG
H8と名づけた特許請求の範囲第5項の組換え体DNA
(7) Plasmid pSGH1, pSGH3 or pSG
Recombinant DNA of claim 5 named H8
.
(8)魚類の成長ホルモンポリペプチドをコードするD
NAを組み込んだ組換え体DNAを含む微生物。
(8) D encoding a fish growth hormone polypeptide
A microorganism containing recombinant DNA incorporating NA.
(9)魚類の成長ホルモンポリペプチドが第3図に示し
たペプチド配列を有する特許請求の範囲第8項の微生物
(9) The microorganism according to claim 8, wherein the fish growth hormone polypeptide has the peptide sequence shown in FIG.
(10)該微生物がエッシェリヒア・コリに属する特許
請求の範囲第8項の微生物。
(10) The microorganism according to claim 8, wherein the microorganism belongs to Escherichia coli.
(11)魚類の成長ホルモンポリペプチドをコードする
DNAを組み込んだ組換え体DNAを含む微生物を栄養
培地に培養し、該培養物中に魚類の成長ホルモンポリペ
プチドを蓄積せしめ、該培養物から該ポリペプチドを採
取することを特徴とする魚類の成長ホルモンポリペプチ
ドの製造法。
(11) Cultivating a microorganism containing a recombinant DNA incorporating DNA encoding a fish growth hormone polypeptide in a nutrient medium, accumulating the fish growth hormone polypeptide in the culture, and extracting the fish growth hormone polypeptide from the culture. A method for producing a fish growth hormone polypeptide, which comprises collecting the polypeptide.
JP59134536A 1984-06-29 1984-06-29 Growth hormone of fish Granted JPS6115699A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59134536A JPS6115699A (en) 1984-06-29 1984-06-29 Growth hormone of fish
CA000485108A CA1272144A (en) 1984-06-29 1985-06-25 Fish growth hormone polypeptide
AU44195/85A AU575961B2 (en) 1984-06-29 1985-06-26 Salmon fish growth hormone by genetic engeneering
NO852568A NO174717C (en) 1984-06-29 1985-06-26 A method for producing a fish growth hormone polypeptide from Oncorhynchus keta as well as expression vectors for use in the method
EP85107987A EP0166444B1 (en) 1984-06-29 1985-06-27 Fish growth hormone polypeptide
SU853913602A RU1825376C (en) 1984-06-29 1985-06-28 Method for producing deoxyribonucleic acid coding salmon growth hormone: method of constructing intermediate recombination plasmide dna including dna fragment coding salmon growth hormone for producing p s g h1, p s g h3, p s b h9, p s g h10, p s g h14 and p s g h17 plasmides: method of producing recombination plasmi
US06/750,587 US4689402A (en) 1984-06-29 1985-07-01 Fish growth hormone polypeptide
US07/017,630 US4849359A (en) 1984-06-29 1987-04-14 Fish growth hormone polypeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134536A JPS6115699A (en) 1984-06-29 1984-06-29 Growth hormone of fish

Publications (2)

Publication Number Publication Date
JPS6115699A true JPS6115699A (en) 1986-01-23
JPH057995B2 JPH057995B2 (en) 1993-01-29

Family

ID=15130608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134536A Granted JPS6115699A (en) 1984-06-29 1984-06-29 Growth hormone of fish

Country Status (1)

Country Link
JP (1) JPS6115699A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193197A (en) * 1984-10-12 1986-05-12 Kyowa Hakko Kogyo Co Ltd Growth hormone polypeptide of fish
JPS6193196A (en) * 1984-10-12 1986-05-12 Kyowa Hakko Kogyo Co Ltd Growth hormone gene of fish
JPH0568572A (en) * 1991-09-11 1993-03-23 Agency Of Ind Science & Technol Blue-green alga synechococcus capable of producing salmon growth hormone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193197A (en) * 1984-10-12 1986-05-12 Kyowa Hakko Kogyo Co Ltd Growth hormone polypeptide of fish
JPS6193196A (en) * 1984-10-12 1986-05-12 Kyowa Hakko Kogyo Co Ltd Growth hormone gene of fish
JPH051799B2 (en) * 1984-10-12 1993-01-11 Kyowa Hakko Kogyo Kk
JPH0568572A (en) * 1991-09-11 1993-03-23 Agency Of Ind Science & Technol Blue-green alga synechococcus capable of producing salmon growth hormone

Also Published As

Publication number Publication date
JPH057995B2 (en) 1993-01-29

Similar Documents

Publication Publication Date Title
JPS61275223A (en) Microbiological preparation of human blood serum albumin
JPH09294590A (en) Recombinant human endothelial-cell growth factor
LaFayette et al. Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean
US4992367A (en) Enhanced expression of human interleukin-2 in mammalian cells
JPS62501538A (en) Replicable expression vehicle containing the araB promoter
GB2241703A (en) Preparation of IGF-1 and plasmids for use therein
JP2637393B2 (en) Human gene having proinsulin and preproinsulin producing code
JPS6011557A (en) Clone sheep growth hormone gene
JPS6115699A (en) Growth hormone of fish
WO1988005082A1 (en) Microbial production of peptide oligomers
JPS60126299A (en) Novel dna and recombined plasmid
WO1985001067A1 (en) Recombinant materials and methods for producing human connective tissue-activating peptide-iii and analogs thereof
JPS611387A (en) Development of recombination dna incident vector and gene
JPS62224297A (en) Production of growth hormone polypeptide of fish or such
CN113388009B (en) Tag protein, coding gene thereof, recombinant vector and application
JPS61210100A (en) Novel growth hormone polypeptide for fish
JPS6222800A (en) Growth hormone gene of fish and polypeptide coded by said gene
JPS6193196A (en) Growth hormone gene of fish
JPS59140884A (en) Cloned dna fragment coding corticotropin releasing factor
JPS61291598A (en) Fish calcitonin derivative and production thereof
Niemeyer et al. Purification of a high-mobility-group 1 sea-urchin protein and cloning of cDNAs
JP3335194B2 (en) Plant disease resistance specific lipoxygenase gene
JPS62230799A (en) Growth hormone gene of fish and polypeptide coding said gene
JPS63304997A (en) Gonadotropin gene of fishes
JPH0418099A (en) Osmosin-like protein