JPS61156544A - Optical recording medium - Google Patents
Optical recording mediumInfo
- Publication number
- JPS61156544A JPS61156544A JP59274537A JP27453784A JPS61156544A JP S61156544 A JPS61156544 A JP S61156544A JP 59274537 A JP59274537 A JP 59274537A JP 27453784 A JP27453784 A JP 27453784A JP S61156544 A JPS61156544 A JP S61156544A
- Authority
- JP
- Japan
- Prior art keywords
- information
- recording
- optical recording
- thin film
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は光ディスクにおけるように光学的に情報を記録
する媒体に係り、特に一旦記録した情報を消去して新た
に記録することができる光学的情報の記録媒体に関する
。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a medium for optically recording information, such as an optical disk, and in particular to a medium for optically recording information, such as an optical disk, and particularly for recording optical information that can be used to erase previously recorded information and record new information. Regarding recording media.
従来の技術
光学的な情報の記録は記録の速度および密度が高いので
今後有望な情報記録方法として注目を集めている。従来
、光学的な情報の記録媒体としては、第1に、金属薄膜
にレーザビームを照射して、照射部位に微細な穴を設け
ることによって情報を記録するものがある。しかし、こ
の媒体は情報を記録することはできるが消去して記録を
行なうことは不可能であるという制約がある。そこで、
第2に、光学的に情報を記録するだけでなく消去および
再記録を行なうことが可能な記録媒体として、Teat
Ge+s Sz P zのような非晶質半導体薄膜を
用いて、その2つの構造状態、すなわち、安定な高抵抗
状態(これは原子または分子間配列の乱れた状態でいわ
ゆる非晶質状態である)と安定な低抵抗状態(これは原
子または分子の規則正しい配列状態でいわゆる結晶状態
である)との間を可逆的に変化させて情報を記録、消去
および再記録するものが知られている(特公昭47−2
6897号公報参照)。2. Description of the Related Art Optical information recording is attracting attention as a promising information recording method in the future because of its high recording speed and density. Conventionally, as an optical information recording medium, firstly, there is one in which information is recorded by irradiating a metal thin film with a laser beam and forming minute holes in the irradiated area. However, this medium has a limitation in that although it is possible to record information, it is impossible to erase and record information. Therefore,
Second, as a recording medium that can not only optically record information but also erase and re-record information,
Using an amorphous semiconductor thin film such as Ge+s Sz P z, its two structural states, namely, a stable high-resistance state (this is a so-called amorphous state in which the arrangement of atoms or molecules is disordered) It is known that information can be recorded, erased, and rerecorded by reversibly changing between the state of Kosho 47-2
(See Publication No. 6897).
発明が解決しようとする問題点
しかし、上記の消去可能な記録媒体は、一方に原子配列
の乱れた状Li(非晶質状態)を使っているため本質的
に情報保持における不安定さがつきまとっていた。なぜ
ならば、非晶質状態は結晶状態へ至る準安定な状態であ
り、熱エネルギーあるいは化学エネルギーの印加により
容易に結晶状態へ遷移するため、情報が失われ易いから
である。Problems to be Solved by the Invention However, since the above erasable recording medium uses Li in a disordered atomic arrangement (amorphous state) on one side, it inherently suffers from instability in information retention. was. This is because the amorphous state is a metastable state that leads to the crystalline state, and because it easily transitions to the crystalline state by application of thermal energy or chemical energy, information is easily lost.
また、非晶質と結晶質という大きな相違のある状態間を
遷移させるという使い方をするため、くり返して記録お
よび消去している間に材料の疲労が起こり、そのために
記録および消去の可能なくり返し回数が少ないという欠
点がある。In addition, since the material is used to transition between states with large differences between amorphous and crystalline, fatigue of the material occurs during repeated recording and erasing, resulting in the number of possible repetitions of recording and erasing. The disadvantage is that there are few
問題点を解決するための手段
本発明の目的は、光パルスを照射することにより情報を
記録し、しかも必要な時にはすでに記録した情報を消去
でき、さらに情報を安定に保持できる新しい光記録媒体
を提供することにある。Means for Solving the Problems The object of the present invention is to provide a new optical recording medium that can record information by irradiating light pulses, erase already recorded information when necessary, and stably retain information. It is about providing.
本発明は、上記目的を達成するために、規則正しい原子
配列をもった微結晶の集合体からなる薄膜であるが光学
的特性に差異のある2つ以上の安定状態が存在する薄膜
に対して、パワーおよび時間幅の異なる2種類の光パル
スを照射することによって、その2つの安定状態のどち
らかの状態を取らせて情報を記録する。In order to achieve the above object, the present invention is directed to a thin film consisting of an aggregate of microcrystals with a regular atomic arrangement, but in which two or more stable states with different optical properties exist. By irradiating two types of light pulses with different powers and time widths, information is recorded in one of the two stable states.
我々は、既に、このように結晶相の2つの状態間で記録
および消去を行なう光記録媒体としてインジウムいアン
チモンからなる合金、ならびにインジウムとアンチモン
からなる合金に更に必要に応じてアルミニウム、ケイ素
、リン、イオウ、亜鉛、カリウム、ゲルマニウム、ヒ素
、セレン、銀。We have already developed an alloy consisting of indium and antimony, as well as an alloy consisting of indium and antimony, as well as an alloy consisting of indium and antimony, as well as aluminum, silicon, and phosphorus, as an optical recording medium that performs recording and erasing between two crystalline states. , sulfur, zinc, potassium, germanium, arsenic, selenium, silver.
カドミウム、錫、テルル、タリウム、鉛、ビスマス等の
1種または2種以上を添加した合金からなる光記録薄膜
を用いた媒体を開示した(昭和59年12月5日出願の
特許願「光学的情報記憶媒体」)。Disclosed a medium using an optical recording thin film made of an alloy containing one or more of cadmium, tin, tellurium, thallium, lead, bismuth, etc. information storage medium).
そして、さらに検討を行なったところ、ビスマスとガリ
ウムからなる合金系においても同様の光記録が達成され
ることを見い出し、本発明を為すに到った。Upon further investigation, it was discovered that similar optical recording could be achieved in an alloy system consisting of bismuth and gallium, leading to the present invention.
すなわち、本発明の光記録媒体の光記録膜は、ビスマス
とガリウムと添加剤からなる合金からなり、ビスマスと
ガリウムの原子数比がI:0.6〜1.5であり、添加
剤がアルミニウム(AI)、ケイ素(Si)、 リン
(P)、イオウ(S)、亜鉛(Zn)、ゲルマニウム(
Ge)、ヒ素(As)。That is, the optical recording film of the optical recording medium of the present invention is made of an alloy consisting of bismuth, gallium, and an additive, and the atomic ratio of bismuth and gallium is I: 0.6 to 1.5, and the additive is aluminum. (AI), silicon (Si), phosphorus (P), sulfur (S), zinc (Zn), germanium (
Ge), arsenic (As).
セレン(Se)、銀(Ag)、カドミウム(Cd)。Selenium (Se), silver (Ag), cadmium (Cd).
インジウム(In)、錫(Sn)、アンチモン(Sb
) 、テルル(Te ) 、タリウム(TI)。Indium (In), tin (Sn), antimony (Sb)
), tellurium (Te), thallium (TI).
鉛(Pb ”)のうち1種または2種以上からなりかつ
合金全体に関して0〜20原子%含有されるものである
。It is composed of one or more types of lead (Pb'') and is contained in an amount of 0 to 20 atomic % with respect to the entire alloy.
本発明の記録薄膜において情報の記録を行なうための光
学的特性の異なる2つの安定状態は両方共に結晶質であ
る。共に結晶質であるが光学的特性が異なる2つの安定
な状態の間の遷移を利用するものである。ここで、非晶
質と区別する意味で結晶質と称する場合薄膜が規則正し
い原子配列をもつ領域の寸法(微結晶の粒径)が少な(
とも約5nm以上、通常20〜3Qnm以上のものをさ
している。The two stable states with different optical properties for recording information in the recording thin film of the present invention are both crystalline. It utilizes the transition between two stable states that are both crystalline but have different optical properties. Here, when a thin film is called crystalline to distinguish it from amorphous, it means that the dimensions of the region where the thin film has a regular atomic arrangement (microcrystal grain size) are small (
Both refer to those with a diameter of about 5 nm or more, usually 20 to 3 Qnm or more.
本発明における微結晶質記録薄膜の2つの安定な状態は
適当な条件の光パルスを照射することにより可逆的に遷
移することが可能であるため、一旦記録したものであっ
ても消去することができ、何回でもくり返して利用でき
る。The two stable states of the microcrystalline recording thin film in the present invention can be reversibly transitioned by irradiation with light pulses under appropriate conditions, so even once recorded, it cannot be erased. It can be used over and over again.
この微結晶質薄膜の2つの安定状態は、一般に、電気伝
導度が高いけれどもその電気伝導度の間に本質的な差異
は存在しない(これに対して、非晶質では結晶質に較べ
て電気伝導度が本質的に低い)。These two stable states of microcrystalline thin films generally have high electrical conductivity, but there is no essential difference between their electrical conductivities (in contrast, the amorphous state has a higher electrical conductivity than the crystalline state). conductivity is inherently low).
しかし、この微結晶質薄膜の2つの結晶質の安定状態は
光学的特性、すなわち、光反射率、光透過率等に若干の
違いが生じるため、情報の記録状態、消去状態をそれぞ
れの反射率の違いとして識別することができる。また、
その2つの安定状態は、わずかな体積変化や膜形状の変
形を伴っているため、等価的に光学的な違いを増加させ
る効果をもつ。However, the stable states of the two crystalline states of this microcrystalline thin film have slight differences in optical properties, such as light reflectance and light transmittance. can be identified as the difference. Also,
The two stable states are accompanied by slight changes in volume and deformation of the film shape, so they have the effect of equivalently increasing the optical difference.
この記録媒体は、非晶質と結晶との間の変化を利用する
ものではない。非晶質相は、準安定相であるため、長期
間のうちには熱作用により次第に結晶相へ遷移するので
、この2つの相の違いを情報記録に利用する場合は情報
が失われやすい。それに対して、本発明では、結晶相と
いう熱力学的に安定な相における2つの状態間を遷移さ
せるため、長期間情報を安定に保持することができる。This recording medium does not utilize the change between amorphous and crystalline states. Since the amorphous phase is a metastable phase, it gradually transitions to a crystalline phase due to thermal action over a long period of time, so when the difference between these two phases is used to record information, information is likely to be lost. In contrast, in the present invention, information is stably retained for a long period of time because a transition is made between two states in a thermodynamically stable phase called a crystalline phase.
このような薄膜材料をガラス、プラスチック。Such thin film materials as glass and plastic.
金属等の基板上に成膜するには原料成分の共蒸着、コス
パッタリング、コイオンブレーティングによって基板上
で合金化するほか、合金化した原料を蒸着やスペックリ
ングしてもよい。To form a film on a substrate made of metal or the like, raw material components may be alloyed on the substrate by co-evaporation, co-sputtering, or co-ion blating, or the alloyed raw material may be vapor-deposited or speckled.
こうして成膜しただけの薄膜は一般に原子配列が乱れて
おり、非晶質であるが、加熱あるいは光を照射すること
によって薄膜全体あるいは薄膜のうち記録部だけを結晶
化することができる。A thin film formed in this manner generally has a disordered atomic arrangement and is amorphous, but by heating or irradiating it with light, the entire thin film or only the recording portion of the thin film can be crystallized.
本発明の記録媒体を用いる情報記録用の光学系の例を第
1図に示す。これは従来穴あけ型の追記型光ディスクで
使われているものと全く同じである。An example of an optical system for recording information using the recording medium of the present invention is shown in FIG. This is exactly the same as that used in conventional write-once optical discs.
レーザダイオード1から出射して光(波長通常780〜
830nm) 2をビーム整形光学系3、偏位ビームス
プリッタ−4,174波長板5を通し、対物レンズ6で
集束して記録薄膜7上に照射する。図中、8は基板、9
はレンズアクチュエータである。Light is emitted from the laser diode 1 (wavelength usually 780 ~
830 nm) 2 passes through a beam shaping optical system 3, a deflection beam splitter 4, and a 174 wavelength plate 5, and is focused by an objective lens 6 and irradiated onto a recording thin film 7. In the figure, 8 is the substrate, 9
is the lens actuator.
反射光は偏光ビームスプリッタ−4により横方向にまげ
られレンズ10を通して光検知器11に当たる。光検知
器11は4分割されておりその対角成分の信号の差が照
射ビームのフォーカスずれの程度を表わす。The reflected light is laterally bent by a polarizing beam splitter 4 and impinges on a photodetector 11 through a lens 10. The photodetector 11 is divided into four parts, and the difference in the signals of the diagonal components represents the degree of defocus of the irradiation beam.
通常レーザーダイオード1は記録膜面7上で1mW程度
のパワーになるように直流発光させ、その記録膜7から
の反射光を使って常時光ビームが膜面上で合焦点となる
ように対物レンズアクチュエータ9を制御する。記録膜
7からの反射光量は4つの検知器の和信号として得られ
、記録膜7の信号記録状態を知る、すなわち、情報を再
生するために使われる。Normally, the laser diode 1 emits DC light with a power of about 1 mW on the recording film surface 7, and the objective lens uses the reflected light from the recording film 7 to constantly focus the light beam on the film surface. The actuator 9 is controlled. The amount of reflected light from the recording film 7 is obtained as a sum signal of the four detectors, and is used to know the signal recording state of the recording film 7, that is, to reproduce information.
情報を記録する場合は記録すべき信号によりレーザーダ
イオード1を強度変調するための変調電流をレーザーダ
イオード1に重畳する。また情報を消去する際には所望
の記録部分に直流的な光ビームを照射する。この場合も
再生用光ビームに消去に必要な光パワーを重畳させる。When recording information, a modulation current for intensity modulating the laser diode 1 is superimposed on the laser diode 1 according to the signal to be recorded. Furthermore, when erasing information, a direct current light beam is irradiated onto a desired recorded area. In this case as well, the optical power necessary for erasing is superimposed on the reproduction light beam.
一般に記録時は消去時よりも強いパワーが必要である。Generally, stronger power is required when recording than when erasing.
また消去は一回の光ビームで完了しない場合がある。そ
れは薄膜を消去状態に変化させるにはある程度の時間が
必要だからである。その場合は消去ビームを何回も(何
回軸分も)同一場所に照射することによって完全な消去
状態を得ることができる。Furthermore, erasing may not be completed with one light beam. This is because it takes a certain amount of time to change the thin film to the erased state. In that case, a complete erased state can be obtained by irradiating the same location with the eraser beam many times (multiple times).
第1図の例では使っていないが、レーザ光源を2つそな
え、そこからの一方の光ビームは第1図と同じ構成をと
り、もう一方のビームは薄膜面上で円周方向に長い(〜
10μm程度)形状で照射される光学系を使うこともよ
(行われる。その場合、長いビームは消去専用に使われ
、−回の照射のみで完全な情報の消去を実現できる。Although not used in the example in Figure 1, two laser light sources are provided, one of which has the same configuration as in Figure 1, and the other beam is elongated in the circumferential direction on the thin film surface ( ~
It is also possible to use an optical system that irradiates the information with a shape of about 10 μm). In that case, the long beam is used exclusively for erasing, and complete erasure of information can be achieved with only -times of irradiation.
記録および消去時に使われる光ビームのパワー条件は同
板の径や回転数つまり記録薄膜の速度により異なる。The power conditions of the light beam used during recording and erasing vary depending on the diameter of the plate and the number of revolutions, that is, the speed of the recording thin film.
また、反射率の変化に伴って透過率もわずかながら変化
する。Furthermore, as the reflectance changes, the transmittance also changes slightly.
記録および再生用の光としてはコヒーレントな光である
レーザー光が好ましいが、その波長は半導体レーザー光
に限らず、He−Neレーザー光、He−Cdレーザー
光、Arレーザー光その他であってもよい。Laser light, which is coherent light, is preferable as recording and reproducing light, but its wavelength is not limited to semiconductor laser light, but may also be He-Ne laser light, He-Cd laser light, Ar laser light, or others. .
我々は結晶構造の2つの状態の反射率変化は、つぎのよ
うな原因によるのではないかと推測する。We conjecture that the change in reflectance between the two states of the crystal structure is due to the following causes.
B1Ga合金は光の照射条件によって薄膜中にBiまた
はGaが析出しかつその析出の割合が光の照射条件に依
存して異なる。B1−Ga合金とBiまたはGaの光反
射率は異なるため、薄膜全体としての光反射率も光の照
射条件に依存して旧またはGaの析出量に応じて可逆的
に変化する。In the B1Ga alloy, Bi or Ga precipitates in the thin film depending on the light irradiation conditions, and the rate of the precipitation varies depending on the light irradiation conditions. Since the light reflectance of the B1-Ga alloy is different from that of Bi or Ga, the light reflectance of the entire thin film also changes reversibly depending on the light irradiation conditions and the amount of precipitated Ga.
また、結晶状態ではあるが、反射率が見かけ上界なるよ
うな薄膜の2つの状態の生成する可能性は、上記のほか
にも考えられる。他の可能性としては、結晶粒の大きさ
が異なりそのため光を散乱する能力が異って反射率に差
が生じるものがある。Furthermore, although the thin film is in a crystalline state, two states in which the reflectance is apparently at a limit may be generated in addition to the above-mentioned possibilities. Another possibility is that the grains have different sizes and therefore different abilities to scatter light, leading to differences in reflectance.
また、薄膜の形状変化が光の散乱の具合を異ならせるこ
ともありうる。膜の表面が平坦であるか、あるいは凹レ
ンズ状または凸レンズ状に変形しているかで光の散乱効
果は明らかに異なる。Furthermore, a change in the shape of the thin film may cause the state of light scattering to vary. The light scattering effect clearly differs depending on whether the surface of the film is flat or deformed into a concave or convex lens shape.
また別の可能性として、結晶質ではあっても膜の冷却過
程の差異によって異なる結晶相を生成する場合もありう
る。例えば、強くて短い光パルスを照射すると膜は溶融
するが急激に冷却されるため、通常の溶融冷却凝固の過
程では得られない準安定な結晶相が出現することもあり
うる。Another possibility is that even though the film is crystalline, different crystal phases may be generated due to differences in the cooling process of the film. For example, when a strong and short light pulse is irradiated, the film melts but is rapidly cooled, which may result in the appearance of a metastable crystalline phase that cannot be obtained through the normal melt-cooling-solidification process.
以上の如く、その原因は種々考えられるものの、結果的
には結晶体でありながら反射率あるいは光学的特性が見
かけ上変化するものであればよい。As mentioned above, although various causes are conceivable, the result is that the reflectance or optical characteristics apparently change even though it is a crystalline body.
実施例
(実施例1)
−Uム1股立作底
第2図を参照すると、外径30cm厚さ1.2ma+の
アクリル基板21上にBiとGaの合金薄膜22を真空
蒸着法により形成する。各成分の蒸着源は独立に温度制
御し、基板を回転させ、蒸着中の成分レートがほぼ一定
になるように制御する。形成した薄膜の厚さ90nmで
あった。さらにその上に有機高分子の保護膜23を形成
する。材料はTj2Tl旧の記録膜に悪影響を及ぼさな
いものであれば何でもよいが、例えば、PMMA、ポリ
スチレン等の熱可塑性樹脂、エポキシ樹脂等の熱硬化樹
脂、紫外線硬化型の樹脂であってもよい。第3図に示す
如く、各層21,22.23間に安定化層24としてご
く薄い無機質(例えば、5iOz、 CeO,、Zn5
)の透明膜を挿入してもよい。Example (Example 1) - Referring to FIG. 2, an alloy thin film 22 of Bi and Ga is formed by vacuum evaporation on an acrylic substrate 21 with an outer diameter of 30 cm and a thickness of 1.2 ma+. . The temperature of the vapor deposition source for each component is independently controlled, the substrate is rotated, and the rate of the component during vapor deposition is controlled to be approximately constant. The thickness of the formed thin film was 90 nm. Furthermore, a protective film 23 of organic polymer is formed thereon. The material may be any material as long as it does not have an adverse effect on the old Tj2Tl recording film; for example, it may be a thermoplastic resin such as PMMA or polystyrene, a thermosetting resin such as an epoxy resin, or an ultraviolet curing resin. As shown in FIG. 3, a very thin inorganic material (for example, 5iOz, CeO, Zn5) is used as a stabilizing layer 24 between each layer 21, 22, 23.
) may be inserted.
友反■患聚■
こうして作成した媒体を次のようにして評価した。円板
を静止した状態で半導体レーザー(830nm)光をコ
リナートレンズ及び対物レンズにより1μmに絞った光
学ヘッドによりパワー、パルス幅を変えた2種のレーザ
ー光パルスを交互に照射し、その間低パワーのレーザー
光で反射率を測定する。Tomotan ■Patients■ The medium thus prepared was evaluated in the following manner. While the disk is stationary, two types of laser light pulses with different power and pulse width are alternately irradiated with a semiconductor laser (830 nm) light focused to 1 μm using a colinate lens and an objective lens using an optical head. Measure the reflectance using a laser beam.
この方法で15mW、 200nsのレーザー光と5d
。In this method, 15 mW, 200 ns laser light and 5 d
.
1μsのレーザー光を照射した後の反射率に差のあるも
のが見いだされた。反射率は可逆的に変化し、大パワー
短パルスで反射率が上昇し、小パワー長パルスで反射率
は下降する。合金薄膜の組成依存性を調べたところ、B
iが15〜70原子%の範囲内で反射率が可逆的に変化
した。しかし、Gaの多い領域ではGaの偏析と思われ
る模様が顕微鏡で観察され、実用上適当ではなく、Ga
の偏析が生じない適当な範囲はBiが40〜70原子%
であることがわかった。It was found that there was a difference in reflectance after irradiation with a 1 μs laser beam. The reflectance changes reversibly, increasing with high power short pulses and decreasing with low power long pulses. When the composition dependence of the alloy thin film was investigated, B
The reflectance changed reversibly within the range of i from 15 to 70 at.%. However, in areas with a large amount of Ga, patterns that appear to be due to segregation of Ga were observed under a microscope, and this was not suitable for practical use.
The appropriate range where no segregation occurs is 40 to 70 at% Bi.
It turned out to be.
亘益1遺皇耗伍
上記の分割した円板から記録膜をはがし、電子顕微鏡に
て膜の結晶構造を調べた。The recording film was peeled off from the above-described divided disk, and the crystal structure of the film was examined using an electron microscope.
まず、成膜後レーザ光照射を全く行なっていない未記録
部は、結晶の規則正しい配列に起因する電子の回折は見
られず、非晶質特有のハローパターンが見られた。多数
回光パルス照射して反射率を低下させた部分と、強パル
ス照射によって再び反射率を増加させた部分を観察した
ところ、両方とも結晶状態であることが判明した。この
電子顕微鏡の観察により、記録膜は結晶と非晶質(また
は成膜後の状態に近い結晶の乱れた状B)との間の相転
移によって情報を記録するのではなく、一旦結晶化した
後に結晶と結晶の間の状態変化によって情報を記録して
いることが判明した。First, in the unrecorded area where no laser beam irradiation was performed after film formation, no electron diffraction due to the regular arrangement of crystals was observed, and a halo pattern characteristic of amorphous materials was observed. When we observed the part where the reflectance was lowered by multiple light pulse irradiations and the part where the reflectance increased again by strong pulse irradiation, we found that both were in a crystalline state. Observation using this electron microscope revealed that the recording film does not record information through a phase transition between crystal and amorphous (or a disordered crystal state B similar to the state after film formation), but rather through a crystallized state. It was later discovered that information is recorded through state changes between crystals.
なお、走査型電子顕微鏡による観察では、光照射された
部分と膜のわずかな凹凸が見出された。In addition, observation using a scanning electron microscope revealed slight irregularities in the irradiated areas and the film.
しかも、記録部分と消去部分は凹凸の方向が逆であるこ
とも確認できた。Furthermore, it was confirmed that the direction of the unevenness was opposite between the recorded part and the erased part.
旦久拭駿
この媒体の耐久性を調べるべく、スライドガラスに媒体
を蒸着し、200℃30分加熱することにより結晶化し
、保護膜を設けてないものと、前記ディスク基体を形成
したものにトラック状に60゜rpm 、 2MII
zで書込んだディスクとを70℃85%RH中に保持し
、スライドガラス上の媒体の反射率変化、ディスクのC
/Nの変化を測定した。To investigate the durability of this medium, the medium was vapor-deposited on a slide glass, crystallized by heating at 200°C for 30 minutes, and tracks were placed on one without a protective film and one with the disk substrate formed on it. 60°rpm, 2MII
The disc recorded with Z was kept at 70°C and 85% RH, and the change in reflectance of the medium on the slide glass and the C of the disc were observed.
/N change was measured.
その結果をそれぞれ第4図および第5図に示す。The results are shown in FIGS. 4 and 5, respectively.
図に見られるように、反射率は保護膜のない媒体であっ
ても3ケ月経過後も変化は少なく、またC/Nの低下も
3dB以下であった。As seen in the figure, there was little change in reflectance even after 3 months had passed, even in the medium without a protective film, and the C/N drop was less than 3 dB.
(実施例2) BiGaの媒体に添加剤を加え、その効果を見た。(Example 2) Additives were added to the BiGa medium and their effects were observed.
Seを全体に対し5,10.20原子%にな゛るよう添
加した媒体を実施例1の方法で評価した。その結果、G
aが多い組成でもGaの偏析が起きなくなった。第6図
に示すように偏析の起きない領域が増え、安定化に役立
っていることがわかった。A medium in which Se was added to the total amount of 5.10.20 atomic % was evaluated by the method of Example 1. As a result, G
Even in a composition with a large amount of a, segregation of Ga no longer occurs. As shown in Figure 6, the area where segregation does not occur increases, and it is found that this is helpful for stabilization.
第6図において、○印は偏析が起きないこと、x印は偏
析が起きること、斜線を付した領域では偏析が起きない
ことを表わしている。In FIG. 6, the ◯ mark indicates that no segregation occurs, the x mark indicates that segregation occurs, and the hatched area indicates that no segregation occurs.
Seに代えてSi 、 P、 S、 Ge 、 A
sを添加した場合にも同様な結果が得られた。Si, P, S, Ge, A instead of Se
Similar results were obtained when s was added.
(実施例3)
GaとBiの原子比を一定(40:60)にしてZnを
全体に対して5,10.20原子%になるように添加し
た記録媒体を作成し、実施例1の方法で評価した。そし
て、反射率の変化量を高反射率状態の反射率で割った値
として求めた反射率コントラストを下記表に示す。(Example 3) A recording medium was created in which the atomic ratio of Ga and Bi was kept constant (40:60) and Zn was added at 5.10.20 atomic % based on the whole, and the method of Example 1 was performed. It was evaluated by The table below shows the reflectance contrast obtained by dividing the amount of change in reflectance by the reflectance in the high reflectance state.
表からZnの添加によってコントラストが増加すするこ
とがわかる。It can be seen from the table that the contrast increases with the addition of Zn.
Znに代えてAl、Ag、Cd、Sn、Pb。Al, Ag, Cd, Sn, Pb in place of Zn.
Te、Sb、Inを添加した場合にも同様な結果が見ら
れた。Similar results were observed when Te, Sb, and In were added.
(実施例4)
BiとGaの原子比を一定(40:60)にしてAsを
全体に対して5.10.20原子%になるように添加し
た記録媒体を実施例1の方法で評価した。(Example 4) A recording medium in which the atomic ratio of Bi and Ga was kept constant (40:60) and As was added to the total amount of 5.10.20 at.% was evaluated using the method of Example 1. .
その際、高パワー短パルスのレーザ光のパワーだけをい
ろいろに変えて反射率のコントラストを求めた。その結
果を第7図に示すが、図に見られるように、Asの添加
によって記録媒体の感度が向上した。At that time, only the power of the high-power, short-pulse laser light was varied to determine the contrast in reflectance. The results are shown in FIG. 7, and as seen in the figure, the addition of As improved the sensitivity of the recording medium.
Asに代えてIn、Pb、Snを添加した場合にも同様
の結果が得られた。Similar results were obtained when In, Pb, and Sn were added instead of As.
発明の効果
本発明によれば、薄膜に光パルスを照射するのみで高密
度に記録でき、しかも必要な時には消去および再記録で
き、さらに長期間安定に情報を保持できる。Effects of the Invention According to the present invention, it is possible to record at high density simply by irradiating a thin film with a light pulse, and also to be able to erase and re-record when necessary, and to retain information stably for a long period of time.
第1図は本発明による光学的情報記憶および再生方法の
光学系を示す模式図、第2図および第3図は本発明を実
施するための光学的情報記録媒体の要部断面図、第4図
はB1Ga薄膜の反射率の長時間変化を表わすグラフ図
、第5図はB1Ga薄膜のC/N比の長時間変化を表わ
すグラフ図、第6図は旧Ga薄膜にSsを添加した場合
にG″aの偏析が起きるかどうかを表わすBi −Ga
−Se三元状態図、第7図はB1Ga薄膜にAsを添加
した場合のコントラストを表わすグラフ図である。
1〜レーザーダイオード、2−光、
3・−ビーム整形光学系、
4−偏光ビームスプリソター、
5・−1/ 4波長板、 6・一対物レンズ、7−・記
録薄膜、 8一基板、
9−・・レンズアクチュエータ、
l〇−・レンズ、 11−・光検知器、21−アクリル
基板、 22−・−(nSb薄膜、23−有機質保護膜
、 24・−無機質安定化層。FIG. 1 is a schematic diagram showing an optical system of an optical information storage and reproducing method according to the present invention, FIGS. 2 and 3 are sectional views of essential parts of an optical information recording medium for implementing the present invention, and FIG. The figure is a graph showing the long-term change in reflectance of the B1Ga thin film, Figure 5 is a graph showing the long-term change in the C/N ratio of the B1Ga thin film, and Figure 6 is a graph showing the long-term change in the reflectance of the B1Ga thin film. Bi −Ga indicating whether segregation of G″a occurs
-Se ternary phase diagram, FIG. 7 is a graph showing the contrast when As is added to the B1Ga thin film. 1 - Laser diode, 2 - Light, 3 - Beam shaping optical system, 4 - Polarizing beam splitter, 5 - 1/4 wavelength plate, 6 - Objective lens, 7 - Recording thin film, 8 - Substrate, 9 --Lens actuator, l〇--Lens, 11--Photodetector, 21-Acrylic substrate, 22--(nSb thin film, 23-Organic protective film, 24--Inorganic stabilizing layer.
Claims (1)
定状態を取り得る微結晶体からなる記録薄膜に、異なる
条件の光エネルギーを照射して上記2つの安定状態を選
択的に生起させることによって情報を記録および(また
は)消去する光記録体であって、上記光記録膜がビスマ
スとガリウムと添加剤からなる合金からなり、ビスマス
とガリウムの原子数比が1:0.6〜1.5であり、添
加剤がアルミニウム、ケイ素、リン、イオウ、亜鉛、ゲ
ルマニウム、ヒ素、セレン、銀、カドミウム、インジウ
ム、錫、アンチモン、テルル、タリウム、錫のうちの1
種または2種以上からなり、かつ合金全体に対して0〜
20原子%であることを特徴とする光記録媒体。1. By irradiating a recording thin film made of microcrystals that can assume two stable states with different crystal structures and different optical properties with light energy under different conditions to selectively cause the above two stable states. An optical recording medium for recording and/or erasing information, wherein the optical recording film is made of an alloy of bismuth, gallium, and an additive, and the atomic ratio of bismuth and gallium is 1:0.6 to 1.5. and the additive is one of aluminum, silicon, phosphorus, sulfur, zinc, germanium, arsenic, selenium, silver, cadmium, indium, tin, antimony, tellurium, thallium, and tin.
consisting of one species or two or more species, and 0 to 0 to the entire alloy
An optical recording medium characterized in that the content is 20 atomic %.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59274537A JPS61156544A (en) | 1984-12-28 | 1984-12-28 | Optical recording medium |
CN85109508A CN1008845B (en) | 1984-12-05 | 1985-12-04 | The method of optical data recording medium and recording of information and erasing |
EP85308850A EP0184452B1 (en) | 1984-12-05 | 1985-12-05 | Optical information memory medium and methods and apparatus using such a medium |
DE8585308850T DE3586816T2 (en) | 1984-12-05 | 1985-12-05 | MEDIUM FOR OPTICAL INFORMATION STORAGE AND METHOD AND DEVICE FOR THE APPLICATION OF SUCH A MEDIUM. |
KR1019850009133A KR890004263B1 (en) | 1984-12-05 | 1985-12-05 | Optical memory and its recording device and its method |
AU50796/85A AU566999B2 (en) | 1984-12-05 | 1985-12-05 | Optical information memory medium |
US07/401,499 US5058061A (en) | 1984-12-05 | 1989-08-31 | Method for recording information in an optical information memory medium including indium (in) and antimony (sb) |
US07/443,860 US4947372A (en) | 1984-12-05 | 1989-11-30 | Optical information memory medium for recording and erasing information |
US07/657,966 US5138572A (en) | 1984-12-05 | 1991-02-20 | Optical information memory medium including indium (In) and bismuth (Bi) |
US07/681,457 US5072423A (en) | 1984-12-05 | 1991-04-04 | Optical information memory medium recording and erasing information including gallium and antimony |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59274537A JPS61156544A (en) | 1984-12-28 | 1984-12-28 | Optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61156544A true JPS61156544A (en) | 1986-07-16 |
JPH043573B2 JPH043573B2 (en) | 1992-01-23 |
Family
ID=17543087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59274537A Granted JPS61156544A (en) | 1984-12-05 | 1984-12-28 | Optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61156544A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186825A (en) * | 1984-03-07 | 1985-09-24 | Hitachi Ltd | Information recording and reproducing device |
-
1984
- 1984-12-28 JP JP59274537A patent/JPS61156544A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186825A (en) * | 1984-03-07 | 1985-09-24 | Hitachi Ltd | Information recording and reproducing device |
Also Published As
Publication number | Publication date |
---|---|
JPH043573B2 (en) | 1992-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5072423A (en) | Optical information memory medium recording and erasing information including gallium and antimony | |
JP3150267B2 (en) | Optical recording medium | |
JP2000229478A (en) | Optical recording body | |
JPH10166738A (en) | Optical recording material and optical recording medium | |
JPH041933B2 (en) | ||
JPH0371035B2 (en) | ||
JP2629746B2 (en) | Optical recording medium | |
JPS61156544A (en) | Optical recording medium | |
JP2726259B2 (en) | Information recording method | |
JPH0526668B2 (en) | ||
JPH0530393B2 (en) | ||
JPS61156543A (en) | Optical recording medium | |
JP2615627B2 (en) | Optical information recording medium | |
JPS61134925A (en) | Method for storing and reproducing optical information | |
JP2537875B2 (en) | Information recording method | |
JPH0530193B2 (en) | ||
JP2538915B2 (en) | How to record and erase information | |
JP3365441B2 (en) | Optical information recording medium | |
JP2687358B2 (en) | Optical information recording medium | |
JPH01171133A (en) | Information recording method | |
JPH0530192B2 (en) | ||
JPH0355892B2 (en) | ||
JPH02139283A (en) | Optical information recording medium | |
JPH0530194B2 (en) | ||
JPH0675994B2 (en) | Optical information recording member |