JPS61156122A - Recording medium - Google Patents

Recording medium

Info

Publication number
JPS61156122A
JPS61156122A JP59274827A JP27482784A JPS61156122A JP S61156122 A JPS61156122 A JP S61156122A JP 59274827 A JP59274827 A JP 59274827A JP 27482784 A JP27482784 A JP 27482784A JP S61156122 A JPS61156122 A JP S61156122A
Authority
JP
Japan
Prior art keywords
film
light
recording
recording medium
chelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59274827A
Other languages
Japanese (ja)
Inventor
Haruki Kawada
河田 春紀
Takeshi Eguchi
健 江口
Yoshinori Tomita
佳紀 富田
Takashi Nakagiri
孝志 中桐
Yukio Nishimura
征生 西村
Kenji Saito
謙治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59274827A priority Critical patent/JPS61156122A/en
Publication of JPS61156122A publication Critical patent/JPS61156122A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain such a high density recording medium which induces a chemical change or physical change in a molecular unit by providing the monomolecular film of a chelate compd. having the C=N bond which desorb metallic ions or metallic atoms by syn-anti isormerization when applied with the rays of light or the cumulative film thereof and electrodes. CONSTITUTION:The chelate coordinate molecular film cumulated with the trans-type chelate coordinate molecules 2 to two layers is formed on a glass substrate 5 on which a transparent electrode 7 is deposited by evaporation. The substrate constituted by fetching metallic ions (or metallic atoms) 3 on the glass substrate 5 on which another transparent electrode 7 is deposited by evaporation and laminated with a fatty acid 4 is formed and is disposed to face the above-mentioned substrate. A bias voltage is applied between both electrodes and cis type isomerizing light 6 consisting of the light such as UV rays and visible light which can supply the energy necessary for isomerization is irradiated thereto according to a certain pattern. Then the photoisomerization reaction arises in the irradiated part where the transfer to the syn-type chelate coordinate molecules arises and the metallic ions 3 are fetched to permit the recording of information. Monitor light 10 is then irradiated to a recording medium and the change in the absorption of the light is read from transmitted light 9, 9' by which the recording is reproduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、キレート配位子分子の単分子膜乃至単分子層
累積膜の化学変化若しくは物理変化を利用して記録を行
なう記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a recording medium in which recording is performed using chemical or physical changes in a monomolecular film or a monomolecular layer stack of chelate ligand molecules.

[従来の技術] 従来、有機化合物を記録層とする記録媒体としては種々
のものが知られている。
[Prior Art] Various types of recording media having recording layers made of organic compounds are known.

例えば、有機化合物を薄膜にして記録層として用いる光
記録媒体については、例えば特開昭58−18948号
公報、特開昭58−125248号公報にも開示されて
いる。いずれも有機色素を記録層とし、レーザビームに
より記録再生を行なうレーザ記録媒体に関するものであ
る。特に、特開昭58−125248号公報に開示され
た媒体は、で表わされるシアニン系色素の薄膜を記録層
とするものである。一般式CI)で表わされるシアニン
系色素溶液を回転塗布機などを用いて、100OA以下
の厚さ、例えば約300人の厚さにプラスチック基板上
に塗布し薄膜を形成する。膜内の分子分布配向がランダ
ムであると、光照射に伴って膜内で光の散乱が生じ、微
視的にみた場合各党照射の度に生ずる化学反応の度合が
異なってくる。そこで記録媒体としては、膜内の分子分
布、配向が一様になっていることが望ましく、またでき
る限り膜厚が薄いことが、記録の高密度化のために要請
される。しかしながら、塗布法による場合、膜厚におい
ては300人程度が限界であり、膜内の分子分布、配向
がランダムであることは解決しがたいことであった。
For example, optical recording media in which a thin film of an organic compound is used as a recording layer are also disclosed in, for example, JP-A-58-18948 and JP-A-58-125248. All of them relate to laser recording media in which recording layers are made of organic dyes and recording and reproduction are performed using laser beams. In particular, the medium disclosed in JP-A-58-125248 uses a thin film of a cyanine dye represented by as a recording layer. A cyanine dye solution represented by the general formula CI) is coated onto a plastic substrate to a thickness of 100 OA or less, for example about 300 OA, using a spin coater or the like to form a thin film. If the molecular distribution and orientation within the film is random, light scattering occurs within the film upon light irradiation, and when viewed microscopically, the degree of chemical reaction that occurs each time the film is irradiated differs. Therefore, as a recording medium, it is desirable that the molecular distribution and orientation within the film be uniform, and the film thickness is required to be as thin as possible in order to achieve high density recording. However, when using the coating method, the film thickness is limited to about 300, and it is difficult to solve the problem that the molecular distribution and orientation within the film are random.

レジスト材料の一つとして光量子効率が大でかつ優れた
解像力を有するものとして提案されていたジアセチレン
化合物累積膜が、レジスト材料のみならず、薄膜電気−
光学デバイス、電気−音響デバイス、圧・焦電デバイス
等にも応用されることが、特開昭58−42229号公
報、特開昭58−43220号公報などに示されている
A diacetylene compound cumulative film, which has been proposed as a resist material with high photon efficiency and excellent resolution, has been used not only as a resist material but also as a thin film electrical
JP-A-58-42229, JP-A-58-43220, etc. show that it can be applied to optical devices, electro-acoustic devices, piezo-pyroelectric devices, etc.

近時においては、ジアセチレン化合物累積膜の製造方法
の改良について特開昭58−111029号公報に示さ
れている。かかる発明にて製造された基板上のジアセチ
レン化合物累積膜は紫外線を照射することにより重合さ
せてジアセチレン化合物重合体膜を作り、或はマスキン
グして紫外線を照射し部分的に重合させ、未重合部分を
除去して図形を作り、薄膜光学デバイスや集積回路素子
として使用される。
Recently, Japanese Patent Application Laid-Open No. 111029/1983 discloses an improvement in the method for producing a diacetylene compound cumulative film. The diacetylene compound cumulative film on the substrate produced according to the invention can be polymerized by irradiation with ultraviolet rays to form a diacetylene compound polymer film, or masked and irradiated with ultraviolet rays to partially polymerize and remove the unused material. The overlapping portions are removed to create shapes, which are used as thin film optical devices and integrated circuit elements.

しかし、これらはいずれもジアセチレン化合物に限るも
のであり、薄膜光学デバイスとして使用するときに、一
度記録したものの消去の可能性については述べられてい
ない。
However, all of these are limited to diacetylene compounds, and there is no mention of the possibility of erasing once recorded data when used as a thin film optical device.

一方、上述欠点を解決すべく、分子内に親木基、疎水基
及び少なくとも1個の不飽和結合を有する1種類の光重
合性モノマーの単分子膜又は単分子層累積膜を基板上に
形成して記R層としたことを特徴とする、反復使用可能
な光記録媒体が特願昭58−190932号の光記録媒
体に示されている。
On the other hand, in order to solve the above-mentioned drawbacks, a monomolecular film or a monomolecular layer stack of one type of photopolymerizable monomer having a parent tree group, a hydrophobic group, and at least one unsaturated bond in the molecule is formed on a substrate. An optical recording medium which can be used repeatedly is disclosed in Japanese Patent Application No. 190932/1983, which is characterized in that it has an R layer.

これらのジアセチレン化合物累積膜にしても、光重合性
オレフィンモノマーの単分子膜若しくは単分子層累積膜
にしても、光反応性化合物に親木基、疎水基を導入して
、直接基板上に担持させる製法を採用している。従って
、種々の機能性膜を簡単に作製することが困難なのに加
えて、親木基、疎水基の導入に伴う光反応性の低下の恐
れがあった。更には、非常に高度な高密度記録を行う際
に重要となる、膜面内の分子配向の制御についても、極
めて複雑な操作が要求される問題があった。
Whether it is a cumulative film of these diacetylene compounds, a monomolecular film or a monomolecular layer cumulative film of photopolymerizable olefin monomers, a parent group or a hydrophobic group is introduced into a photoreactive compound and the film is directly deposited on a substrate. Adopts a manufacturing method that allows it to be supported. Therefore, not only is it difficult to easily produce various functional films, but also there is a fear that photoreactivity may decrease due to the introduction of parent groups and hydrophobic groups. Furthermore, there is a problem in that an extremely complicated operation is required for controlling the molecular orientation within the film plane, which is important when performing extremely advanced high-density recording.

[発明が解決しようとする問題点] 本発明は、かかる従来例の欠点を解消し、1)各種の機
能性膜を比較的簡単に作製する方法、2)その際、機能
性分子の持つ各種機能が、薄膜化した場合に於いても、
損失若しくは低下されることなく発現する様に膜化する
方法、更には、3)上記の薄膜化に於いて、特別な操作
を行うことなしに。
[Problems to be Solved by the Invention] The present invention solves the drawbacks of the conventional examples, and provides 1) a method for relatively easily producing various functional films, and 2) a method for producing various kinds of functional molecules. Even if the function becomes thinner,
3) A method of forming a film so that the film is developed without loss or deterioration, and 3) without performing any special operation in the above-mentioned film formation.

膜構成分子が膜面内方向に対して高度の秩序構造を持っ
て配向される方法を種々検討した結果、本発明を成すに
至った。又、かかる成膜法を用いて、高感度、高解像度
の記録媒体を、容易にかつ高品質に提供できるに至った
The present invention was achieved as a result of various studies on methods for aligning film constituent molecules with a highly ordered structure in the in-plane direction of the film. Furthermore, by using such a film forming method, it has become possible to easily provide a high-sensitivity, high-resolution recording medium with high quality.

本発明の目的は、外因により分子単位での化学変化若し
くは物理変化を起こす様な高密度記録媒体を提供するこ
とにある。
An object of the present invention is to provide a high-density recording medium that undergoes chemical or physical changes in molecular units due to external factors.

また、この様な分子単位での高密度記録を行うのに際し
て重要な因子となる媒体面内での分子配向に関して、従
来例よりも秀逸な媒体を提供することにある。更には、
上述記録媒体を製造するに当って、比較的簡単な操作変
更により、様々な性質を有する媒体を提供することにあ
る。
Another object of the present invention is to provide a medium that is superior to conventional examples in terms of molecular orientation within the medium plane, which is an important factor when performing high-density recording on a molecular basis. Furthermore,
In manufacturing the above-mentioned recording medium, it is an object of the present invention to provide a medium having various properties through relatively simple operational changes.

[問題点を解決するための手段]及び[作用]本発明の
上記目的は、以下の本発明によって達成される。
[Means for Solving the Problems] and [Operation] The above objects of the present invention are achieved by the present invention as described below.

光を当てるとアンチ−シン異性化し、金属イオン又は金
属原子を脱着するC=N結合を有するキレート配位子分
子の単分子膜又はその累積膜及び電極とから成ることを
特徴とする記録媒体である。
A recording medium comprising a monomolecular film of a chelate ligand molecule having a C=N bond that undergoes anti-syn isomerization and desorbs metal ions or metal atoms when exposed to light, or a cumulative film thereof, and an electrode. be.

尚、本発明において、金属イオン又は金属原子の脱着と
は、金属イオン又は金属原子の取込み又は放出を言い、
かつ両者は同時に行われないことを意味する。
In the present invention, desorption of metal ions or metal atoms refers to the uptake or release of metal ions or metal atoms,
This also means that both cannot be performed at the same time.

本発明の記録層を構成する物質は分子内に親木性部位、
疎水性部位、キレート配位子、シン−アンチ異性化する
部位をそれぞれ少なくとも一ケ所有する分子から成る。
The substance constituting the recording layer of the present invention has a woody site in the molecule,
It consists of a molecule each possessing at least one hydrophobic site, at least one chelating ligand, and at least one site for syn-anti isomerization.

かかる分子の単分子膜または単分子累積膜を担体上に形
成することにより、本発明の記録媒体が形成される。親
水性部位や、疎水性部位を形成し得る構成要素としては
、一般に広く知られている各種の親木基や疎水基等など
が挙げられる。キレート配位子は例えば水酸基、カルボ
ニル基、エーテル基、カルボキシル基、エステル基、ア
ミノ基、ニトリル基、チオアルコール基。イミノ基、ス
ルホン基、スルフィニル基等の少なくとも2ケ所以上の
基の導入によって形成される。
The recording medium of the present invention is formed by forming a monomolecular film or a monomolecular cumulative film of such molecules on a carrier. Components that can form hydrophilic sites and hydrophobic sites include various types of parent groups and hydrophobic groups that are generally widely known. Chelate ligands include, for example, hydroxyl groups, carbonyl groups, ether groups, carboxyl groups, ester groups, amino groups, nitrile groups, and thioalcohol groups. It is formed by introducing at least two or more groups such as imino groups, sulfone groups, and sulfinyl groups.

キレート配位子分子は一般式1〜■nで示される。尚、
キレート配位子、長鎖アルキル基の置換部位は式に示し
た位置に限定されるものではなR:長鎖アルキル基 R’ : H,CH3,C2H5,ClCH3を示す。
Chelate ligand molecules are represented by general formulas 1 to ■n. still,
The substitution site of the chelate ligand and the long-chain alkyl group is not limited to the positions shown in the formula. R: Long-chain alkyl group R': H, CH3, C2H5, ClCH3.

第1表 し くL (L L 即ち1分子内に親水性部位及び疎水性部位を有するとは
例えば上記の一般式において、疎水性部位とはアルキル
鎖であり、親水性部位とはキレート配位子なとそれ以外
の部位を示す。疎水性部位に関して、これを導入する場
合には、特に炭素原子数5〜30の長鎖アルキル基が好
ましい。
The first expression L (L L That is, having a hydrophilic site and a hydrophobic site in one molecule) means, for example, in the above general formula, the hydrophobic site is an alkyl chain, and the hydrophilic site is a chelate ligand. and other moieties.When introducing a hydrophobic moiety, a long-chain alkyl group having 5 to 30 carbon atoms is particularly preferred.

本発明に於いてキレート配位子分子の一例を具体的に示
すと、下記の式(13) 〜(23)で示される化合物
が挙げられる。但し、式(13) 〜(23)において
、 CH2−CH2 F]:/  \ を示す。
Specific examples of chelate ligand molecules in the present invention include compounds represented by the following formulas (13) to (23). However, in formulas (13) to (23), CH2-CH2F]:/\ is shown.

第2表 CH2 C)12 0M0 0′ CH2 鬼 C=0 以上挙げた化合物はキレート配位子分子に疎水性部位を
導入した点を除けばそれ自体既知の化合物であり、又、
長鎖アルキル基で修飾されていないキレート配位子分子
が種々の金属イオンとキレート錯体を形成する点も既知
のものである。
Table 2 CH2 C) 12 0M0 0' CH2 Oni C=0 The compounds listed above are known compounds in themselves, except that a hydrophobic moiety is introduced into the chelate ligand molecule, and
It is also known that chelating ligand molecules that are not modified with long-chain alkyl groups form chelate complexes with various metal ions.

これらキレート配位子分子とキレート錯体を形成し得る
金属イオンとしては一般にキレート配位子分子と配位結
合をし得るものが望ましく、例えばAg”  、 Gu
” 、 Hg” 、 Rh” 、  K”などが挙げら
れる。
As metal ions that can form chelate complexes with these chelate ligand molecules, those that can form a coordination bond with the chelate ligand molecules are generally desirable, such as Ag'', Gu
", Hg", Rh", K", etc.

キレート配位子分子の単分子膜または単分子累積膜を作
成する方法としては、例えばI。
As a method for creating a monomolecular film or a monomolecular cumulative film of chelate ligand molecules, for example, I.

Lalgmu i rらの開発したラングミュア・プロ
ジェット法(LB法)を用いる。 LB法は、例えば分
子内に親木基と疎水基を有する構造の分子において、両
者のバランス(両親媒性のバランス)が適度に保たれて
いるとき、分子は水面上で親水基を下に向けて単分子の
層になることを利用して単分子膜または単分子層の累積
膜を作成する方法である。水面上の単分子層は、二次元
系の特徴をもつ0分子がまばらに散開しているときは、
一分子当り面積Aと表面圧■との間に二次元理想気体の
式、nA= kT が成り立ち、“気体膜”となる、ここに、kはポルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり二次元固体の“°凝縮膜(または
固体膜)”になる、凝縮膜はガラス基板などの種々の材
質や形状を有する担体の表面へ一層ずつ移すことができ
る。この方法を用いて、本発明のキレート配位子分子の
単分子膜、若しくはキレート配位子分子層累積膜の具体
的な製法としては、例えば以下に示す方法を挙げること
ができる。
The Langmuir-Prodgett method (LB method) developed by Lalgmuir et al. is used. In the LB method, for example, in a molecule with a structure that has a parent wood group and a hydrophobic group in the molecule, when the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule is placed on the water surface with the hydrophilic group facing down. This is a method of creating a monomolecular film or a cumulative film of monomolecular layers by utilizing the fact that the film becomes a monomolecular layer. When the monomolecular layer on the water surface is sparsely dispersed with 0 molecules, which have the characteristics of a two-dimensional system,
A two-dimensional ideal gas equation, nA=kT, holds between the area per molecule A and the surface pressure ■, resulting in a "gas film", where k is Portzmann's constant and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes strong and a two-dimensional solid "°condensed film (or solid film)" is formed.The condensed film is transferred layer by layer to the surface of a support having various materials and shapes, such as a glass substrate. be able to. As a specific method for producing a monomolecular film of chelate ligand molecules or a cumulative film of chelate ligand molecule layers of the present invention using this method, for example, the following method can be mentioned.

先ず、垂直浸漬法について成膜装置を用いて説明する。First, the vertical immersion method will be explained using a film forming apparatus.

第4図(a)及び(b)に示されるように、純水が収容
された浅くて広い角型の水槽12の内側に、例えばポリ
プロピレン製等の枠13が水平に釣ってあり、液面21
を仕切っている。枠13の内側には、例えばやはりポリ
プロピレン製等の浮子14が浮かべられている。浮子1
4は、幅が枠13の内幅より僅かに短かい直方体で、図
中左右方向に二次元ピストン運動可能なものとなってい
る。浮子14には、浮子14を図中右方に引張るための
重り15が滑車16を介して結び付けられている。また
、浮子14上に固定された磁石17と、浮子14の上方
で図中左右に移動可能で磁石17に接近すると互に反撥
し合う対磁石18とが設けられていて、これによって浮
子14は図中左右への移動並びに停止が可能なものとな
っている。このような重り15や一組の磁石17.18
の代りに、回転モーターやプーリーを用いて直接浮子1
4を移動させるものもある。
As shown in FIGS. 4(a) and 4(b), a frame 13 made of, for example, polypropylene is suspended horizontally inside a shallow and wide rectangular water tank 12 containing pure water. 21
is in charge of A float 14 made of, for example, polypropylene is floated inside the frame 13. Float 1
4 is a rectangular parallelepiped whose width is slightly shorter than the inner width of the frame 13, and is capable of two-dimensional piston movement in the left-right direction in the figure. A weight 15 is tied to the float 14 via a pulley 16 for pulling the float 14 to the right in the figure. Further, a magnet 17 fixed on the float 14 and a pair of magnets 18 which are movable from side to side in the figure above the float 14 and repel each other when approaching the magnet 17 are provided. It is possible to move left and right in the figure as well as stop. Such a weight 15 or a set of magnets 17.18
Instead, use a rotary motor or pulley to directly move the float 1.
Some move 4.

枠13内の両側には、吸引パイプ19を介して吸引ポン
プ(図示されていない)に接続された吸引ノズル20が
並べられている。この吸引ノズル20は、単分子膜や単
分子累積膜内に不純物が混入してしまうのを防止するた
めに、液面21上の不要になった前工程の単分子膜等を
迅速に除去するのに用いられるものである。尚、22は
担体上下腕23に取付けられて垂直に上下される担体で
ある。
Suction nozzles 20 connected to a suction pump (not shown) via suction pipes 19 are arranged on both sides of the frame 13 . This suction nozzle 20 quickly removes unnecessary monomolecular films from the previous process on the liquid surface 21 in order to prevent impurities from being mixed into the monomolecular film or monomolecular cumulative film. It is used for. Note that 22 is a carrier that is attached to upper and lower carrier arms 23 and is vertically moved up and down.

上記の成膜装置を用いて、まず金属イオンを水相中に溶
解させ、目的とするキレート配位子分子を溶剤に溶解さ
せる。キレート配位子分子溶液を水相上に展開させてキ
レート配位子分子を膜状に析出させる。
Using the above-described film forming apparatus, metal ions are first dissolved in an aqueous phase, and target chelate ligand molecules are dissolved in a solvent. A chelate ligand molecule solution is developed on an aqueous phase to precipitate the chelate ligand molecules into a film.

次にこの析出物が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)を設けて展開面積を制限
して膜物質の集合状態を制御し、その集合状態に比例し
た表面圧■を得る。この仕切板を動かし、展開面積を縮
少して膜物質の集合状態を制御し、表面圧を徐々に上昇
させ、累積膜の製造に適する表面圧■を設定することが
できる。この表面圧を維持しながら静かに清浄な担体を
垂直に上下させることによりキレート配位子分子膜が担
体上に移しとられる。キレート配位子分子膜は以上で製
造されるが、キレート配位子分子層累積膜は前記の操作
を繰り返すことにより所望の累積度のキレート配位子分
子層累積膜が形成される。
Next, to prevent this precipitate from freely diffusing on the aqueous phase and spreading too much, a partition plate (or float) is installed to limit the area of development and control the state of aggregation of the membrane material, and Obtain surface pressure ■. By moving this partition plate, the developed area can be reduced to control the state of aggregation of the film material, and the surface pressure can be gradually increased to set the surface pressure (2) suitable for producing a cumulative film. By gently moving the clean carrier up and down vertically while maintaining this surface pressure, the chelate ligand molecule film is transferred onto the carrier. A chelate ligand molecule layer film is produced as described above, and a chelate ligand molecule layer cumulative film having a desired degree of accumulation can be formed by repeating the above operations.

キレート配位子分子層を担体上に移すには、上述した垂
直浸漬法の他、水平付着法、回転円筒法などの方法によ
る。水平付着法は担体を水面に水平に接触させて移しと
る方法で、回転円筒法は、円筒型の担体を水面上を回転
させてキレート配位子分子層を担体表面に移しとる方法
である。前述した垂直浸漬法では、表面が親水性である
担体を水面を横切る方向に水中から引き上げるとキレー
ト配位子分子の親水基が担体側に向いたキレート配位子
分子層が担体上に形成される。前述のように担体を上下
させると、各行程ごとに1枚ずつキレート配位子分子層
が積み重なっていく、成膜分子の向きが引上げ行程と浸
漬行程で逆になるので、この方法によると各層間はキレ
ート配位子分子の親木基と親水基、キレート配位子分子
の疎水基と疎水基が向かい合うY型膜が形成される。そ
れに対し、水平付着法は、担体を水面に水平に接触させ
て移しとる方法で、キレート配位子分子の疎水基が担体
側に向いたキレート配位子分子層が担体上に形成される
。この方法では、累積しても、成膜分子の向きの交代は
なく全ての層において、疎水基が担体側に向いたX型膜
が形成される0反対に全ての層において親木基が担体側
に向いた累積膜はX型膜と呼ばれる。
In order to transfer the chelate ligand molecule layer onto the carrier, in addition to the above-mentioned vertical immersion method, methods such as the horizontal deposition method and the rotating cylinder method can be used. The horizontal adhesion method is a method in which the carrier is transferred by bringing it into horizontal contact with the water surface, and the rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface to transfer the chelate ligand molecule layer onto the surface of the carrier. In the vertical immersion method described above, when a carrier with a hydrophilic surface is lifted out of water in a direction across the water surface, a layer of chelate ligand molecules with the hydrophilic groups of the chelate ligand molecules facing the carrier is formed on the carrier. Ru. When the carrier is moved up and down as described above, one chelate ligand molecule layer is accumulated in each step.The direction of the film-forming molecules is reversed in the pulling step and the dipping step, so this method A Y-shaped film is formed between the layers, in which the parent wood group and the hydrophilic group of the chelate ligand molecule and the hydrophobic group and the hydrophobic group of the chelate ligand molecule face each other. On the other hand, the horizontal attachment method is a method in which the carrier is brought into horizontal contact with the water surface and transferred, and a layer of chelate ligand molecules with the hydrophobic groups of the chelate ligand molecules facing the carrier side is formed on the carrier. In this method, there is no change in the direction of the film-forming molecules even if they are accumulated, and an X-type film is formed in which the hydrophobic groups face the carrier in all layers. A side-facing cumulative film is called an X-type film.

回転円筒法は、円筒型の担体を水面上を回転させて単分
子層を担体表面に移しとる方法である。
The rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface to transfer a monomolecular layer onto the carrier surface.

単分子層を担体上に移す方法は、これらに限定されるわ
けではなく、大面積担体を用いる時には、担体ロールか
ら水相中に担体を押し出していく方法などもとり得る。
The method of transferring the monomolecular layer onto the carrier is not limited to these methods, and when a large-area carrier is used, a method of extruding the carrier from a carrier roll into an aqueous phase may also be used.

また、前述した親木基、疎水基の担体への向きは原則で
あり、担体の表面処理等によって変えることもできる。
Furthermore, the orientation of the aforementioned parent wood group and hydrophobic group toward the carrier is a general rule, and can be changed by surface treatment of the carrier.

上述の方法によって担体上に形成されるキレート配位子
分子膜及びキレート配位子分子層累積膜は高密度でしか
も高度の秩序性を有しており、これらの膜で記録層を構
成することによって、キレート配位子分子の機能に応じ
て光記録、熱的記録、電気的記録あるいは磁気的記録等
の可能な高密度で高解像度の記録機能を有する記録媒体
を得ることができる。
The chelate ligand molecule film and the chelate ligand molecule layer cumulative film formed on the carrier by the above-mentioned method have a high density and a high degree of order, and these films can constitute a recording layer. Accordingly, it is possible to obtain a recording medium having a high-density, high-resolution recording function capable of optical recording, thermal recording, electrical recording, magnetic recording, etc. depending on the function of the chelate ligand molecule.

次に本発明に係わる記録媒体におけるキレート配位子分
子の光によるシン−アンチ異性化による金属イオンの放
出、取込反応について説明する。
Next, the release and incorporation reactions of metal ions due to light-induced syn-anti isomerization of chelate ligand molecules in the recording medium according to the present invention will be explained.

第1図〜第3図は本発明に係る記録媒体のl実流側を示
す縦断面図である。尚、各図は模式図であり、具体的に
分子の形状などを示すものではない。第1図において1
本発明に係る記録媒体は、ITO(透明電極)7を蒸着
したガラス基板5上にアンチ型キレート配位子分子2を
2層に累積したキレート配位子分子膜を形成してなるも
のである。他方、別のITO(透明電極)7を蒸着した
ガラス基板5上に金属イオン(又は金属原子)3を取込
み、脂肪酸4を積層した基板を形成し、本発明に係る記
録媒体と対向させ両電極間にバイアス電圧をかけ、ある
パターンに従って、紫外線、可視光などの光異性化に必
要なエネルギーを供給し得る光からなるシン型異性化光
6を照射すると照射部位において、式(I) syn型           anti型に示すよう
にhν′の方向の光異性化反応が起き、シン型キレート
配位子分子への転位が起こり、金属イオン3の取込みが
行われる。このようにして情報を記録した記録媒体を得
ることができる。
1 to 3 are longitudinal sectional views showing the actual flow side of the recording medium according to the present invention. Note that each figure is a schematic diagram and does not specifically show the shape of the molecules. In Figure 1, 1
The recording medium according to the present invention is formed by forming a chelate ligand molecule film in which anti-type chelate ligand molecules 2 are accumulated in two layers on a glass substrate 5 on which ITO (transparent electrode) 7 is deposited. . On the other hand, a metal ion (or metal atom) 3 is incorporated onto a glass substrate 5 on which another ITO (transparent electrode) 7 is vapor-deposited, a fatty acid 4 is laminated to form a substrate, and both electrodes are placed opposite to the recording medium according to the present invention. When a bias voltage is applied between them and syn-type isomerization light 6 consisting of light such as ultraviolet rays and visible light that can supply the energy necessary for photoisomerization is irradiated according to a certain pattern, the syn-type of formula (I) is irradiated at the irradiated site. As shown in the anti-type, a photoisomerization reaction in the hv' direction occurs, rearrangement to a syn-type chelate ligand molecule occurs, and the metal ion 3 is taken up. In this way, a recording medium on which information is recorded can be obtained.

次いで、第2図に示す様に、記録媒体にモニター光10
を照射し、透過光9.9′からの光の吸収変化を読み取
ることにより、記録の再生を行うことができる。
Next, as shown in FIG. 2, a monitor light 10 is applied to the recording medium.
The recorded data can be reproduced by irradiating it with light and reading the change in absorption of light from the transmitted light 9.9'.

さらに、記録の再生後に、必要に応じて第3図に示す様
に逆電圧を印加し、アンチ型異性光11を照射すると、
前記の式(I)に示すようにhνへの方向の光異性化反
応が起り、アンチ型キレート配位子分子の転位が起り、
金属イオンの放出が行われ、記録を消去することができ
る。
Furthermore, after reproducing the recording, if necessary, apply a reverse voltage as shown in FIG. 3 and irradiate the anti-isomer light 11.
As shown in the above formula (I), a photoisomerization reaction in the direction of hν occurs, and rearrangement of the anti-type chelate ligand molecule occurs,
Metal ions are released and the record can be erased.

以上説明した様に記録された情報の読み取りは、光の照
射によって行う。
As explained above, the recorded information is read by irradiating light.

即ち、キレート錯体の吸収波長とキレート配位子分子の
吸収波長とは異なるため、吸収スペクトルの変化を読み
取ることにより情報の再生が行なわれる。吸収波長の差
は非常に大きいため、情報の再生時S/N比が優れてい
る。
That is, since the absorption wavelength of the chelate complex and the absorption wavelength of the chelate ligand molecule are different, information is reproduced by reading changes in the absorption spectrum. Since the difference in absorption wavelength is very large, the S/N ratio when reproducing information is excellent.

この光異性化反応は可逆的に光照射によって制御が可能
であるため、任意に金属イオンの脱着を行なうことがで
きる。
Since this photoisomerization reaction can be reversibly controlled by light irradiation, metal ions can be desorbed as desired.

即ち記録、再生をくり返し使用することが可能である。That is, it is possible to use the recording and reproduction repeatedly.

また高密度、高秩序性を伴った膜であるので解像力に優
れている。
Furthermore, since the film has high density and high orderliness, it has excellent resolution.

[実施例] 以下に本発明の実施例を示して更に具体的に説明する。[Example] EXAMPLES The present invention will be explained in more detail by showing examples below.

式1−LLLIで示される化合物は表2に示すものを使
用した。
As the compound represented by formula 1-LLLI, those shown in Table 2 were used.

実施例1 キレート配位子分子として式Wのイミン誘導 ・体ヲク
ロロホルムに5 X 10−” Hの濃度で溶かした後
、pH5゜2硝酸銀製度4 X 1041’lの水相上
に展開させた。溶媒のクロロホルムを蒸発除去後、31
3nmの光を照射しながら表面圧を30dyne/am
まで高めてキレート配位子を膜状に析出させた。この後
表面圧を一定に保ちながら表面が十分に清浄で親水性と
なっているITOを蒸着したガラス基板を上下速度3.
5cm/winにて水面を横切る方向に静かに上下させ
、キレート配位子分子膜を基板上に移し取り、キレート
配位子単分子膜及び5 、11.15.21.25層に
累積し、さらにアラキシン酸を同様な方法で11層累積
したキレート配位子分子膜を記録層とする光記録媒体を
製造した。この累積行程において基板を水相から引き上
げる都度に30分間以上放置して、基板に付着している
水分を蒸発除去した。なお成膜装置としては英国JOY
CE社製のLangmuir−Trough  (ラン
グミュア−トラフ)を使用した。光記録媒体を液相から
引き上げ乾燥させ、 ITOを蒸着したガラス基板でキ
レート配位子分子膜をはさみ込んだ0両電極間にバイア
ス電圧(5V〜l0V)をかけ、パターンに従って45
0nm光を照射することによりアンチ−シン異性化反応
を行ない、情報を記録した0分子オーダーの高密度記録
が可能であった。記録の再生は530nmの吸収変化を
読み取ることにより行なった。次いで、逆電圧を5V〜
IOVの範囲内で印加し、313nmの光を3分間照射
したところシン−アンチ異性化が起こり、記録が消去さ
れた。さらに、記録−再生−消去の操作を35回繰り返
し行ない、反復使用が可能であることを確信した。Sl
N比の低下は認められなかった。
Example 1 Derivation of an imine of formula W as a chelating ligand molecule The body was dissolved in chloroform at a concentration of 5 x 10-''H and then developed on an aqueous phase of pH 5°2 and silver nitrate of 4 x 1041'l. After removing the solvent chloroform by evaporation, 31
The surface pressure is increased to 30 dyne/am while irradiating with 3 nm light.
The chelate ligand was deposited in the form of a film. After this, while keeping the surface pressure constant, the glass substrate on which ITO was deposited, whose surface was sufficiently clean and hydrophilic, was moved up and down at a speed of 3.
Gently move it up and down in the direction across the water surface at 5 cm/win to transfer the chelate ligand molecular film onto the substrate and accumulate it into a chelate ligand monomolecular film and 5, 11, 15, 21, 25 layers, Furthermore, an optical recording medium having a chelate ligand molecule film in which 11 layers of araxic acid were accumulated as a recording layer was manufactured in a similar manner. During this cumulative process, each time the substrate was lifted from the aqueous phase, it was left for 30 minutes or more to evaporate and remove the water adhering to the substrate. The film forming equipment used is JOY in the UK.
A Langmuir-Trough manufactured by CE was used. The optical recording medium was lifted from the liquid phase and dried, and a bias voltage (5 V to 10 V) was applied between two electrodes sandwiching a chelate ligand molecule film between a glass substrate coated with ITO, and 45 V was applied according to the pattern.
By irradiating with 0 nm light, an anti-sine isomerization reaction was carried out, and high-density recording of information on the order of 0 molecules was possible. Reproduction of recording was performed by reading the change in absorption at 530 nm. Next, set the reverse voltage to 5V~
When the light was applied within the IOV range and 313 nm light was irradiated for 3 minutes, thin-anti isomerization occurred and the record was erased. Furthermore, the recording-reproducing-erasing operation was repeated 35 times, and it was confirmed that repeated use was possible. Sl
No decrease in N ratio was observed.

実施例2〜11 キレート配位子分子として式U〜Uの化合物をそれぞれ
5X10’Hの濃度でクロロホルムに溶かした後、キュ
プリシン、硝酸銀又はチオグリコール酸モリブデン塩濃
度4 X 104M濃度の水相上に展開させた。溶媒の
クロロホルムを蒸発除去後、 300nm〜500nm
の間の適当な波長の光を照射しながら表面圧を30dy
ne/cmまで高めてキレート配位子分子を膜状に析出
させた。
Examples 2 to 11 Compounds of formulas U to U as chelating ligand molecules were each dissolved in chloroform at a concentration of 5 x 10'H and then placed on an aqueous phase with a concentration of cupricin, silver nitrate or molybdenum thioglycolate at a concentration of 4 x 104 M. Expanded. After removing the solvent chloroform by evaporation, 300 nm to 500 nm
The surface pressure was increased for 30dy while irradiating light with an appropriate wavelength between
ne/cm to deposit chelate ligand molecules in the form of a film.

この後表面圧を一定に保ちながら表面が十分に清浄で親
水性となっているITOを蒸着したガラス基板を上下速
度3.5cm/winにて水面を横切る方向に静かに上
下させ、キレート配位子分子膜を基板上に移し取りキレ
ート配位子分子単分子膜及び5 、11.15.21.
25層に累積し、さらにアラキシン酸を同様な方法で1
1層累積したキレート配位子分子膜を記録層とする光記
録媒体を製造した。この累積行程において基板を水相か
ら引き上げる都度に30分間以上放置して、基板に付着
している水分を蒸発除去した。なお成膜装置としては英
国JOYCiE社製のLang++uir−Troug
h  (ラングミュア−トラフ)を使用した0作成した
光記録媒体を液相から引き上げ、乾燥させ、ITOを蒸
着したガラス基板でキレート配位子分子膜をはさみ込ん
だ0両電極間にバイアス電圧を5 V −10Vの範囲
内で印加し、パターンに従って、400nm 〜850
nmの光を照射することによりアンチ−シン異性化反応
を行ない情報を記録した0分子オーダーの高密度記録が
可能であった。記録の再生は450〜700nmの適当
な波長の吸収変化を読み取ることにより行なった0次い
で、逆電圧を5v〜IOVの範囲内で印加し、 300
nm〜500nmの適当な波長の光を3分間照射したと
ころ、シン−アンチ異性化が起こり、記録が消去された
After this, while keeping the surface pressure constant, the glass substrate with sufficiently clean and hydrophilic ITO vapor-deposited surface was gently moved up and down in the direction across the water surface at a vertical speed of 3.5 cm/win, and the chelate coordination was carried out. Transfer the molecular film onto a substrate and form a monomolecular film of chelate ligand molecules.5, 11.15.21.
Accumulate 25 layers, and add 1 layer of araxic acid in the same way.
An optical recording medium having a recording layer composed of one layer of accumulated chelate ligand molecular film was manufactured. During this cumulative process, each time the substrate was lifted from the aqueous phase, it was left for 30 minutes or more to evaporate and remove the water adhering to the substrate. The film forming equipment used is Lang++uir-Troug manufactured by JOYCiE in the UK.
The optical recording medium prepared using h (Langmuir trough) was lifted from the liquid phase, dried, and a bias voltage of 5 was applied between the two electrodes, in which a chelate ligand molecule film was sandwiched between glass substrates on which ITO was deposited. Apply within the range of V -10V and follow the pattern from 400nm to 850
By irradiating with nanometer light, an anti-sine isomerization reaction was performed and information was recorded at a high density on the order of 0 molecules. Reproduction of recording was performed by reading the absorption change at an appropriate wavelength of 450 to 700 nm.Next, a reverse voltage was applied within the range of 5 V to IOV, and 300 nm was applied.
When light of an appropriate wavelength of nm to 500 nm was irradiated for 3 minutes, thin-anti isomerization occurred and the record was erased.

さらに記録−再生−消去の操作を25回〜40回の間で
繰り返し行ない、反復使用が可能であることを確信した
。S/N比の低下は認められなかった。
Furthermore, the recording-reproducing-erasing operation was repeated 25 to 40 times, and it was confirmed that repeated use was possible. No decrease in S/N ratio was observed.

[発明の効果] 本発明の効果を以下に列挙する。[Effect of the invention] The effects of the present invention are listed below.

1、ラングミュア−プロジェット法を用いて高密度、高
秩序性を有する単分子膜又は単分子累積膜を容易に作製
できるのでS/N比が優れた高密度記録が可能である。
1. Since a monomolecular film or a monomolecular cumulative film having high density and high orderliness can be easily produced using the Langmuir-Prodgett method, high-density recording with an excellent S/N ratio is possible.

2、キレート配位子分子の異性化がほぼ定量的であるた
め記録安定性に富む。
2. The isomerization of the chelate ligand molecules is almost quantitative, resulting in excellent recording stability.

3、効率の良いシン−アンチ異性化、アンチ−シン異性
化反応が起きるキレート配位子分子を用いているので反
復使用が可能である。
3. Since a chelate ligand molecule is used that causes efficient syn-anti isomerization and anti-syn isomerization reactions, repeated use is possible.

4、可逆性のある異性化反応を利用しているためネガ型
、ポジ型の両方の機能をもった記録媒体として応用でき
る。
4. Since it uses a reversible isomerization reaction, it can be applied as a recording medium with both negative and positive functions.

5、固相状態で作製できるので溶液セルを組み立てる必
要がない。
5. Since it can be produced in a solid state, there is no need to assemble a solution cell.

B、電圧を印加しない限り金属イオンなどの脱着を行な
わないため記録保持力に優れている。
B. It has excellent recording retention power because metal ions and the like are not desorbed unless a voltage is applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明に係る記録媒体の1実施例を示
す縦断面図であり、各々第1図は記録過程、第2図は再
生過程、第3図は消去過程を示す、第4図(a)、 (
b)は従来の成Iり装置の1例を示す説明図である。 l・・・シン型キレート配位子分子 2・・・アンチ型キレート配位子分子 3・・・金属イオン(又は金属原子) 4・・・脂肪酸 5・・・ガラス基板 6・・・シン型異性化光 7・・・ITO(透明電極) 8・・・電源(直流) 9.9′・・・透過光 10・・・モニター光 11・・・アンチ型異性化光 12・・・水槽 13・・・枠 14・・・浮子 15・・・重り 】8・・・滑車 17・・・磁石 18・・・対磁石 19・・・吸引バイブ 20・・・吸引ノズル 21・・・液面 22・・・担体 23・・・担体上下腕 第1図 2 7ンテ”1LffL−Lムシ官)分3シニ↑昇4生
化乞 第2図 11アンチ型1!I、イ生化元
1 to 3 are longitudinal sectional views showing one embodiment of a recording medium according to the present invention, respectively, in which FIG. 1 shows a recording process, FIG. 2 shows a reproduction process, and FIG. 3 shows an erasing process. Figure 4(a), (
b) is an explanatory diagram showing an example of a conventional production device. l... Thin-type chelate ligand molecule 2... Anti-type chelate ligand molecule 3... Metal ion (or metal atom) 4... Fatty acid 5... Glass substrate 6... Thin-type Isomerization light 7... ITO (transparent electrode) 8... Power supply (DC) 9.9'... Transmitted light 10... Monitor light 11... Anti-isomerization light 12... Water tank 13 ... Frame 14 ... Float 15 ... Weight] 8 ... Pulley 17 ... Magnet 18 ... Counter-magnet 19 ... Suction vibe 20 ... Suction nozzle 21 ... Liquid level 22 ...Carrier 23...Carrier upper and lower arms Fig. 1 2 7 te" 1 LffLff L-L insect function) Min 3 Shini ↑ Ascension 4 Life transformation request Figure 2 11 Anti type 1! I, I life transformation source

Claims (1)

【特許請求の範囲】[Claims] 光を当てると異性化し、金属イオン又は金属原子を脱着
するC=N結合を有するキレート配位子分子の単分子膜
又はその累積膜及び電極とから成ることを特徴とする記
録媒体。
A recording medium comprising a monomolecular film or a cumulative film thereof of a chelate ligand molecule having a C=N bond that isomerizes when exposed to light and desorbs metal ions or metal atoms, and an electrode.
JP59274827A 1984-12-28 1984-12-28 Recording medium Pending JPS61156122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274827A JPS61156122A (en) 1984-12-28 1984-12-28 Recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274827A JPS61156122A (en) 1984-12-28 1984-12-28 Recording medium

Publications (1)

Publication Number Publication Date
JPS61156122A true JPS61156122A (en) 1986-07-15

Family

ID=17547122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274827A Pending JPS61156122A (en) 1984-12-28 1984-12-28 Recording medium

Country Status (1)

Country Link
JP (1) JPS61156122A (en)

Similar Documents

Publication Publication Date Title
JPS61156122A (en) Recording medium
JPS61143190A (en) Recording medium
JPS61156117A (en) Recording medium
JPS61156121A (en) Recording medium
JPS61143186A (en) Recording medium
JPH0452934B2 (en)
JPS61163339A (en) Optical recording method
JPS61156119A (en) Recording medium
JPS61156120A (en) Recording medium
JPS61180237A (en) Recording medium
JPS61143185A (en) Recording medium
JPS61143189A (en) Recording medium
JPS61137774A (en) Recording medium
JPS61156118A (en) Recording medium
JPS61143187A (en) Recording medium
JPS61143188A (en) Recording medium
JPS61222790A (en) Recording medium
JPS61137779A (en) Recording medium
JPS61137776A (en) Recording medium
JPS61179791A (en) Recording medium
JPS61137775A (en) Recording medium
JPS61137777A (en) Recording medium
JPS60239740A (en) Recording medium
JPS61163338A (en) Recording method
JPS60239739A (en) Recording medium