JPS61155776A - Method and apparatus for estimating life of light emitting diode - Google Patents

Method and apparatus for estimating life of light emitting diode

Info

Publication number
JPS61155776A
JPS61155776A JP59274546A JP27454684A JPS61155776A JP S61155776 A JPS61155776 A JP S61155776A JP 59274546 A JP59274546 A JP 59274546A JP 27454684 A JP27454684 A JP 27454684A JP S61155776 A JPS61155776 A JP S61155776A
Authority
JP
Japan
Prior art keywords
emitting diode
light emitting
delay time
measured
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59274546A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ichimura
清 市村
Manabu Kagami
学 各務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59274546A priority Critical patent/JPS61155776A/en
Publication of JPS61155776A publication Critical patent/JPS61155776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To elevate the accuracy of screening with the estimation of the life, by non-destructively measuring the emission delay time, injection current and junction capacitance of a light emitting diode to be measured. CONSTITUTION:A square wave low current pulse is outputted from a current pulse application circuit 4 to be inputted into a light emitting diode 6 to be measured through a switching circuit 2 and light is emitted at a specified cycle to be received with a light receiving element 7. A measuring circuit 8 measures the delay time between the drive current inputted into the light emitting diode 6 being measured and a photocurrent received with an APD7 to be memorized into a computer 1. Then, the junction capacitance at non-bias of the light emitting diode 6 being measured is gauged with a semiconductor capacitance meter 3. It is found that the delay time is in proportion to the junction capacity with a strong correlation. The estimation of a correlation curve (l) by regression analysis or the like with the computer 1 reveal that deviation from the correlation curve (l) means variations in the defect density among elements. So to speak, samples on the correlation curve (l) indicate the average life among all of those measured and thus, those samples farther above the solid line (l) have the shorter life.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光ダイオードの寿命推定方法及び装置に関す
る0本発明に係る方法及び装置は発光ダイオードを破壊
することなくスクリーニングすることができ、高品質、
高信頼性の製品を提供することができるので、高信頼性
を必要とする通信用光源及び光学機器用光源等に用いら
れる発光ダイオードのスクリーニングに利用し得る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and device for estimating the lifespan of light emitting diodes.The method and device according to the present invention can screen light emitting diodes without destroying them, and provide high quality ,
Since a highly reliable product can be provided, it can be used for screening light emitting diodes used in communication light sources, optical equipment light sources, etc. that require high reliability.

〔従来の技術〕[Conventional technology]

発光ダイオードのスクリーニング法として従来用いられ
ている方法は、多数のサンプルから所定の抜き取り検査
基準に基づいて抜取られたサンプルの結晶解析を行い結
晶欠陥の大小によって判別する破壊試験や、抜取られた
サンプルに高温又は過電流による加速負荷を一定時間負
荷して劣化状況を判別する加速通電試験等が一般的であ
る。また、発光ダイオードを非破壊でスクリーニングす
る方法としては、発光遅延時間のみによる寿命推定方法
を用いたスクリーニング法が発表されている(昭和59
年度電子通信学会総合全国大会予稿集524−3)、こ
の方法は非発光再結合寿命の時間依存性について追求し
、発光ダイオードのpn接合部に存在する結晶欠陥の大
小による非発光再結合領域の影響によって、電流注入か
ら発光までに遅延時間を生ずる点に着目し、所定時間通
電後の結晶欠陥濃度は初期の結晶欠陥濃度に比例するこ
とから、初期の欠陥濃度によって寿命推定を行いスクリ
ーニングする。即ち、実際には発光遅延時間を測定する
回路を設け、初期の欠陥濃度による初期発光遅延時間を
測定しスクリーニングすることによって非破壊試験を行
っている。
Conventionally used screening methods for light emitting diodes include destructive testing, in which samples are taken from a large number of samples based on predetermined sampling inspection criteria, and then subjected to crystal analysis to determine the size of crystal defects. Accelerated energization tests, etc., are commonly used to determine the state of deterioration by applying an accelerated load due to high temperature or overcurrent for a certain period of time. In addition, as a method for non-destructively screening light emitting diodes, a screening method using a life estimation method based only on the light emission delay time has been announced (1971).
This method pursues the time dependence of the non-radiative recombination lifetime and investigates the non-radiative recombination region depending on the size of crystal defects existing in the pn junction of a light-emitting diode. Focusing on the fact that the effect causes a delay time from current injection to light emission, and since the crystal defect concentration after energization for a predetermined time is proportional to the initial crystal defect concentration, lifetime estimation is performed based on the initial defect concentration and screening is performed. That is, in practice, a circuit for measuring the light emission delay time is provided, and a nondestructive test is performed by measuring and screening the initial light emission delay time depending on the initial defect concentration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の破壊試験あるいは加速通電試験では次のような問
題がある。即ち、結晶欠陥の大小の測定として、DLT
S測定、移動度測定、フォトルミネッセンス測定等が行
われるが、これらは抜き取り試験であるため全製品につ
いて測定するわけではなく、また、同一、ロフト同一ウ
ェハ中での結晶欠陥濃度のバラツキを無視しており、従
ってスクリーニングの確度が十分でない、さらに、上述
の各測定を行う測定装置は非常に高価でかつ測定に要す
る時間が長い上に半導体の各種物理量を予め調査してお
かなければならないという問題がある。
The above-mentioned destructive test or accelerated energization test has the following problems. That is, as a measurement of the size of crystal defects, DLT
S measurement, mobility measurement, photoluminescence measurement, etc. are performed, but since these are sampling tests, they are not measured on all products, and also ignore variations in crystal defect concentration among wafers with the same loft. Therefore, the accuracy of screening is not sufficient.Furthermore, the measurement equipment that performs each of the above measurements is very expensive and takes a long time to measure, and various physical quantities of the semiconductor must be investigated in advance. There is.

一方、簡単な方法として発光パターンを目視検査によっ
てスクリーニングする方法があるが、これは、当然、識
別可能な大なる結晶欠陥による非発光部位しか発見でき
ず、点欠陥は見逃してしまう問題がある。
On the other hand, a simple method is to screen the luminescent pattern by visual inspection, but this naturally has the problem that only non-luminous sites due to identifiable large crystal defects can be discovered, and point defects are overlooked.

さらに、前述の初期発光遅延時間の測定によるスクリー
ニングでは、非破壊である点は改善されるが、発光ダイ
オードの接合容量における遅延時間を考慮しておらず、
また、接合容量および注入電流が強く依存するpn接合
部の面積が各サンプルごとに不均一である点の補正を行
っていない。
Furthermore, although the aforementioned screening by measuring the initial light emission delay time improves the non-destructive aspect, it does not take into account the delay time in the junction capacitance of the light emitting diode.
Further, no correction is made for the fact that the area of the pn junction, on which the junction capacitance and the injection current strongly depend, is non-uniform for each sample.

実際問題として、各発光ダイオードチップの形状(活性
層厚、接合面積等)を全く一致させたデバイスを作製す
ることは困難であるため上述の問題はつきまとい結局ス
クリーニングの確度としても十分ではない。
As a practical matter, it is difficult to manufacture devices in which the shapes (active layer thickness, junction area, etc.) of each light emitting diode chip are exactly the same, so the above-mentioned problems persist and the accuracy of screening is not sufficient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点を解消した発光ダイオードの寿命
推定方法及び装置であって、非破壊で被測定発光ダイオ
ードの発光遅延時間、注入電流および接合容量を測定す
ることにより寿命推定してスクリーニングの確度を向上
させることができる方法及び装置を提供するものであり
、その手段としては、発光ダイオードの非破壊寿命推定
方法であって、被測定発光ダイオードに所定周期の方形
波低電流パルスを印加して発光させ、該発光を受光素子
にて受光して得られた光電流と該方形波低電流パルスと
の発光遅延時間を測定し、該方形波低電流パルスをオフ
した後該被測定発光ダイオードの無バイアス時の接合容
量を測定し、該被測定発光ダイオードの接合面積のバラ
ツキを注入電流密度と該接合容量により補正し、得られ
た該発光遅延時間、接合容量および注入電流密度に基づ
いて規格化発光遅延時間を求め、該規格化発光遅延時間
と該接合容量との関係から寿命を推定する、発光ダイオ
ードの寿命推定方法が提供され、さらに本発明によれば
、発光ダイオードの非破壊寿命推定装置であって、被測
定発光ダイオードに所定周期の方形波低電流パルスを印
加する電流パルス印加回路と、該被測定発光ダイオード
による発光を受光素子により受光して得られた光電流と
該方形波低電流パルスとの発光遅延時間を測定する発光
遅延時間測定回路と、該被測定発光ダイオードの無バイ
アス時の接合容量を測定する半導体装置計と、該半導体
容量計と該電流パルス印加回路とを切換える切換回路と
、該遅延時間と該接合容量に基づいて回帰分析等を行い
相関曲線を算出する計算機とを具備する発光ダイオード
の寿命推定装置が提供される。
The present invention provides a method and device for estimating the lifespan of a light emitting diode that solves the above-mentioned problems.The present invention non-destructively measures the light emitting delay time, injection current and junction capacitance of the light emitting diode under test to estimate the lifespan and perform screening. The purpose of the present invention is to provide a method and apparatus capable of improving accuracy, and the means thereof include a non-destructive life estimation method for a light emitting diode, which applies a square wave low current pulse of a predetermined period to a light emitting diode to be measured. emit light, measure the light emission delay time between the photocurrent obtained by receiving the emitted light with the light receiving element and the square wave low current pulse, and after turning off the square wave low current pulse, the light emitting diode under test Measure the junction capacitance in the non-bias state, correct the variation in the junction area of the light emitting diode to be measured using the injection current density and the junction capacitance, and based on the obtained light emission delay time, junction capacitance and injection current density. A method for estimating the life of a light emitting diode is provided, which calculates a normalized light emission delay time and estimates the life from the relationship between the normalized light emission delay time and the junction capacitance. The estimation device includes a current pulse applying circuit that applies a square wave low current pulse of a predetermined period to a light emitting diode to be measured, and a photocurrent obtained by receiving light emitted by the light emitting diode to be measured by a light receiving element and the square wave. A light emission delay time measurement circuit that measures light emission delay time with a low current pulse; a semiconductor device meter that measures the junction capacitance of the light emitting diode to be measured when no bias is applied; the semiconductor capacitance meter and the current pulse application circuit; A light emitting diode life estimating device is provided, which includes a switching circuit that switches the delay time and a computer that performs regression analysis or the like to calculate a correlation curve based on the delay time and the junction capacitance.

〔実施例〕〔Example〕

第1図は本発明に係る発光ダイオードの寿命推定装置の
一実施例ブロック線図である。第1図において、lはコ
ンピュータ、2は切換回路、3は半導体容量計、4は電
流パルス印加回路、5は駆動回路、6は被測定発光ダイ
オード、7は受光素子、8は発光遅延時間測定回路、9
は操作盤である。このような構成において、電流パルス
印加回路4からは方形波低電流パルスが出力され、この
パルスは切換回路2を介して被測定発光ダイオード6に
入力される。被測定発光ダイオード6はこのパルスによ
って所定周期で発光し発光パルスは受光素子7、例えば
アバランシェ・フォト・ダイオード(APD)に受光さ
れ、得られた光電流はAPD駆動回路5によって増幅さ
た後、発光遅延時間測定回路8に入力される。一方、電
流パルス回路4の出力は同時に測定回路8に入力される
ので、測定回路8において、被測定発光ダイオード6に
入力された駆動電流とAPD7により受光された光電流
との遅延時間を測定し、この結果をコンピュータ1に一
時記憶する0次に切換回路2をコンピュータ1の指令に
より切換えて駆動電流をオフし、半導体容量計3によっ
て被測定発光ダイオード6の無バイアス時の接合容量を
測定する。
FIG. 1 is a block diagram of an embodiment of a light emitting diode life estimation device according to the present invention. In Fig. 1, l is a computer, 2 is a switching circuit, 3 is a semiconductor capacitance meter, 4 is a current pulse application circuit, 5 is a drive circuit, 6 is a light emitting diode to be measured, 7 is a light receiving element, and 8 is a light emission delay time measurement. circuit, 9
is the control panel. In such a configuration, the current pulse application circuit 4 outputs a square wave low current pulse, and this pulse is input to the light emitting diode 6 to be measured via the switching circuit 2. The light emitting diode 6 to be measured emits light at a predetermined period according to this pulse, and the emitted light pulse is received by a light receiving element 7, for example, an avalanche photo diode (APD), and the obtained photocurrent is amplified by an APD drive circuit 5, and then The signal is input to the light emission delay time measuring circuit 8. On the other hand, since the output of the current pulse circuit 4 is simultaneously input to the measurement circuit 8, the measurement circuit 8 measures the delay time between the drive current input to the light emitting diode 6 to be measured and the photocurrent received by the APD 7. , the zero-order switching circuit 2, which temporarily stores this result in the computer 1, is switched by a command from the computer 1 to turn off the drive current, and the semiconductor capacitance meter 3 measures the junction capacitance of the light emitting diode 6 to be measured when no bias is applied. .

測定された遅延時間と接合容量に基づいて、各素子のウ
ェハー裁断時の寸法ずれを電気的に補正するために後述
する一定注入電流密度換算の遅延時間をコンピュータl
により算出する。
Based on the measured delay time and junction capacitance, a computer calculates the delay time converted to a constant injection current density, which will be described later, in order to electrically correct the dimensional deviation of each element during wafer cutting.
Calculated by

第2図は注入電流密度J、と発光遅延時間T。Figure 2 shows the injection current density J and the light emission delay time T.

との関係、第3図は接合容量C4と規格化発光遅延時間
T0′との関係を示すグラフである。今、同一ロフトの
複数サンプルにおいて、上述の遅延時間と接合容量の測
定を行うと両者の間には第3図に示す如く比例関係にあ
り比較的強い相関がある。コンピュータ1による回帰分
析等によりこの相関曲線lを推定するとこの相関臼&I
zからのずれが各素子の欠陥濃度の大小を意味している
。即ち、相関曲線E上にあるサンプルが全測定サンプル
中の平均寿命を示すことになる。又、各素子の接合面積
の違いを補うために注入電流密度により評価を行うと第
2図に示すように指数関数的関係にあることが解明され
ている。ここで、発光遅延時間T、と注入電流密度JF
には次の関係がある。
FIG. 3 is a graph showing the relationship between the junction capacitance C4 and the normalized light emission delay time T0'. Now, when the delay time and junction capacitance described above are measured for a plurality of samples having the same loft, there is a proportional relationship between the two as shown in FIG. 3, and a relatively strong correlation. When this correlation curve l is estimated by regression analysis etc. by computer 1, this correlation mill &I
The deviation from z means the magnitude of the defect concentration of each element. That is, the samples lying on the correlation curve E indicate the average lifespan among all the measured samples. Furthermore, when the injection current density is evaluated to compensate for the difference in the junction area of each element, it has been found that there is an exponential relationship as shown in FIG. Here, the light emission delay time T, and the injection current density JF
has the following relationship.

即ち、 To=トeXp (−B−JF)+TL+73    
 ”’(1)ここで、TLはpn接合部での結晶欠陥に
よる遅延時間、T、は測定系による遅延であってサンプ
ルに関係なく一定と見做す値、そしてA、Bは定数であ
る。pn接合面積は同一ロットである場合は単に接合容
量に比例すると考えられるので、接合容量からpn接合
部への注入電流密度が決定できるので、式(1)におい
て注入電流密度Jrが一定となるように補正した規格化
発光遅延時間TD’を算出して各素子の比較を行う。即
ち、T、+’xA−exp、(−B−D−CJ)+TL
+T3 ・=(2)ここで、Dは素子定数である。この
T o ’とCJの相関関係は第3図のようになる。第
3図では各サンプルの’ra’と01をプロットした場
合、前述の如く実線で示した相関曲線!上にあるサンプ
ルが全被測定サンプルの平均寿命時間を示すので実線!
よりも上方に位置するサンプルはど短寿命であると推定
できる。この場合のデータは接合容1t30〜50ρF
を有する可視光発光ダイオードについて測定を行い、こ
のとき注入電流パルスは振幅1mA、繰り返し周波数I
MHzを用いた。初期的にTll’  CJ相関を求め
温度および電流により加速通電した結果6000時間経
過した後発光量の低下が現われたのは第3図において実
vAlの上方にあるサンプルのみであった。この寿命推
定法は発光ダイオードの活性層が薄いほど、つまり取出
光が全活性層からの発光を反映しているほど(Aj! 
Ga As材料の場合、再吸収のため約10μm以下)
信鯨性が強まる。又、各サンプルのTD′の差異は低電
流密度約IA/cdを示し顕著である。
That is, To=ToeXp (-B-JF)+TL+73
(1) Here, TL is the delay time due to crystal defects at the pn junction, T is the delay due to the measurement system and is a value that is considered constant regardless of the sample, and A and B are constants. Since the pn junction area is considered to be simply proportional to the junction capacitance in the same lot, the injection current density Jr to the pn junction can be determined from the junction capacitance, so the injection current density Jr is constant in equation (1). Calculate the normalized light emission delay time TD' corrected as follows and compare each element. That is, T, +'xA-exp, (-B-D-CJ)+TL
+T3.=(2) Here, D is an element constant. The correlation between T o ' and CJ is as shown in FIG. In Figure 3, when 'ra' and 01 of each sample are plotted, the correlation curve shown by the solid line as mentioned above! The sample on the top shows the average life time of all the samples being measured, so it is a solid line!
It can be assumed that samples located above this point have very short lifetimes. The data in this case is junction capacity 1t30~50ρF
Measurements were made on a visible light emitting diode with
MHz was used. As a result of initially determining the Tll' CJ correlation and applying accelerated current using temperature and current, only the sample located above the actual vAl in FIG. 3 showed a decrease in luminescence amount after 6000 hours had elapsed. This lifetime estimation method is effective as the active layer of the light emitting diode becomes thinner, that is, the more the extracted light reflects the light emitted from the entire active layer (Aj!
In the case of GaAs materials, it is approximately 10 μm or less due to reabsorption)
Belief in people becomes stronger. Also, the difference in TD' of each sample is significant as it shows a low current density of about IA/cd.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発光ダイオードの寿命推定を非破壊で
かつ短時間に行うことができ、又、全サンプルの測定に
よる相関関係から寿命推定を行うため半導体の物理量を
一切調査することなく簡単な電気的測定によってスクリ
ーニングの確度を大幅に向上させることができ、さらに
目視検査のような検査iJの主観による影響も排除でき
るので信鎖性を大幅に向上させることができる。
According to the present invention, it is possible to estimate the lifespan of a light emitting diode non-destructively and in a short time, and since the lifespan is estimated from correlations obtained by measurements of all samples, it is possible to easily estimate the lifespan of a light emitting diode without investigating any physical quantities of the semiconductor. The accuracy of screening can be greatly improved by electrical measurement, and since the influence of subjectivity of inspection iJ such as visual inspection can also be eliminated, reliability can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る発光ダイオードの寿命推定装置の
一実施例ブロック線図、 第2図は注入電流密度と発光遅延時間との関係を示すグ
ラフ、および 第3図は接合容量と規格化発光遅延時間との関係を示す
グラフである。 (符号の説明) l・・・コンピュータ翫 2・・・切換回路、 3・・・半導体容量計、 4・・・電流パルス印加回路、 5・・・駆動回路、 6・・・被測定発光ダイオード、 7・・・受光素子、 8・・・発光遅延時間測定回路、 9・・・操作盤。
Fig. 1 is a block diagram of an embodiment of the light emitting diode life estimating device according to the present invention, Fig. 2 is a graph showing the relationship between injection current density and light emission delay time, and Fig. 3 is a graph showing junction capacitance and normalization. It is a graph showing the relationship with light emission delay time. (Explanation of symbols) 1...Computer connection 2...Switching circuit, 3...Semiconductor capacitance meter, 4...Current pulse application circuit, 5...Drive circuit, 6...Light-emitting diode to be measured , 7... Light receiving element, 8... Light emission delay time measuring circuit, 9... Operation panel.

Claims (1)

【特許請求の範囲】 1、発光ダイオードの非破壊寿命推定方法であって、被
測定発光ダイオードに所定周期の方形波低電流パルスを
印加して発光させ、該発光を受光素子にて受光して得ら
れた光電流と該方形波低電流パルスとの発光遅延時間を
測定し、該方形波低電流パルスをオフした後該被測定発
光ダイオードの無バイアス時の接合容量を測定し、該被
測定発光ダイオードの接合面積のバラツキを注入電流密
度と該接合容量により補正し、得られた該発光遅延時間
、接合容量および注入電流密度に基づいて規格化発光遅
延時間を求め、該規格化発光遅延時間と該接合容量との
関係から寿命を推定する、発光ダイオードの寿命推定方
法。 2、該発光遅延時間が該接合容量および測定系により生
じる遅延時間から分離して測定される特許請求の範囲第
1項に記載の方法。 3、発光ダイオードの非破壊寿命推定装置であって、被
測定発光ダイオードに所定周期の方形波低電流パルスを
印加する電流パルス印加回路と、該被測定発光ダイオー
ドによる発光を受光素子により受光して得られた光電流
と該方形波低電流パルスとの発光遅延時間を測定する発
光遅延時間測定回路と、該被測定発光ダイオードの無バ
イアス時の接合容量を測定する半導体容量計と、該半導
体容量計と該電流パルス印加回路とを切換える切換回路
と、該遅延時間と該接合容量に基づいて回帰分析を行い
相関曲線を算出する計算機とを具備する発光ダイオード
の寿命推定装置。
[Claims] 1. A non-destructive life estimation method for a light emitting diode, which involves applying a square wave low current pulse of a predetermined period to a light emitting diode to be measured to cause it to emit light, and receiving the emitted light with a light receiving element. The light emission delay time between the obtained photocurrent and the square wave low current pulse is measured, and after the square wave low current pulse is turned off, the junction capacitance of the light emitting diode under test at no bias is measured. The variation in the junction area of the light emitting diode is corrected by the injection current density and the junction capacitance, and the normalized luminescence delay time is determined based on the obtained luminescence delay time, junction capacitance and injection current density, and the normalized luminescence delay time is calculated. A method for estimating the lifespan of a light emitting diode, which estimates the lifespan from the relationship between and the junction capacitance. 2. The method according to claim 1, wherein the light emission delay time is measured separately from the delay time caused by the junction capacitance and the measurement system. 3. A non-destructive life estimating device for a light emitting diode, which includes a current pulse application circuit that applies a square wave low current pulse of a predetermined period to a light emitting diode to be measured, and a light receiving element that receives light emitted from the light emitting diode to be measured. A light emission delay time measurement circuit that measures the light emission delay time between the obtained photocurrent and the square wave low current pulse, a semiconductor capacitance meter that measures the junction capacitance of the light emitting diode to be measured in the absence of bias, and the semiconductor capacitance. 1. A light emitting diode life estimation device, comprising: a switching circuit that switches between a meter and a current pulse applying circuit; and a calculator that performs regression analysis and calculates a correlation curve based on the delay time and the junction capacitance.
JP59274546A 1984-12-28 1984-12-28 Method and apparatus for estimating life of light emitting diode Pending JPS61155776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274546A JPS61155776A (en) 1984-12-28 1984-12-28 Method and apparatus for estimating life of light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274546A JPS61155776A (en) 1984-12-28 1984-12-28 Method and apparatus for estimating life of light emitting diode

Publications (1)

Publication Number Publication Date
JPS61155776A true JPS61155776A (en) 1986-07-15

Family

ID=17543219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274546A Pending JPS61155776A (en) 1984-12-28 1984-12-28 Method and apparatus for estimating life of light emitting diode

Country Status (1)

Country Link
JP (1) JPS61155776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8111388B2 (en) 2010-08-04 2012-02-07 Oldenburg Group Incorporated Luminous flux depreciation notification system for light fixtures incorporating light emitting diode sources
CN105137367A (en) * 2015-08-11 2015-12-09 王佳莺 Device for automatically detecting illumination performances of LED lamp
CN116165506A (en) * 2023-03-03 2023-05-26 江苏语诣光电科技有限公司 LED automobile lamp detection device and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8111388B2 (en) 2010-08-04 2012-02-07 Oldenburg Group Incorporated Luminous flux depreciation notification system for light fixtures incorporating light emitting diode sources
CN105137367A (en) * 2015-08-11 2015-12-09 王佳莺 Device for automatically detecting illumination performances of LED lamp
CN105137367B (en) * 2015-08-11 2018-06-08 中山市共赢照明科技有限公司 A kind of LED light illumination performance automatic detection device
CN116165506A (en) * 2023-03-03 2023-05-26 江苏语诣光电科技有限公司 LED automobile lamp detection device and detection method
CN116165506B (en) * 2023-03-03 2023-09-19 江苏语诣光电科技有限公司 LED automobile lamp detection device and detection method

Similar Documents

Publication Publication Date Title
JP2863633B2 (en) Apparatus and method for accelerated degradation testing of semiconductor devices
TWI460422B (en) Lock in thermal laser stimulation through one side of the device while acquiring lock-in thermal emission images on the opposite side
CN103477208B (en) The quantification resistance in series imaging of photovoltaic cell
CN101506962A (en) Surface inspecting method and device
KR102248091B1 (en) Automatic optical inspection method
WO2012111093A1 (en) Method and device for measuring carrier lifetime
US7256892B2 (en) Measuring instrument and fluorometric method
JPH0750331A (en) Method and apparatus for evaluating semiconductor light-emitting element
US5196786A (en) Method for inspecting an electronic state of a surface of a semiconductor substrate and an apparatus therefor
KR100633460B1 (en) Method for inspecting semiconductor device
US7560940B2 (en) Method and installation for analyzing an integrated circuit
CN114720567A (en) Double-crystal ultrasonic probe and automatic sensitivity detection method of flaw detection system thereof
JPS61155776A (en) Method and apparatus for estimating life of light emitting diode
KR20100074345A (en) Measuring apparatus for warpage wafer and method thereof
US5008542A (en) Method and system for automated measurement of whole-wafer etch pit density in GaAs
CN207852625U (en) A kind of processing system of semiconductor substrate
KR100335597B1 (en) Apparatus and method for measuring optical distance
JPS58137723A (en) Apparatus for measuring temperature
Donley et al. Zero–phonon lines of single molecules in polyethylene down to millikelvin temperatures
Engelke et al. Radiative lifetimes of Fe I levels of astrophysical interest
CN113325004A (en) Method and device for detecting surface defects of semiconductor wafer
JPS59182341A (en) Apparatus for measuring anisotropy of sample luminescence
TWI770809B (en) Rapid luminous efficiency testing method
TWI758088B (en) Array luminous efficiency testing method
CN215894850U (en) Test system of TOF chip