JPS6115567B2 - - Google Patents

Info

Publication number
JPS6115567B2
JPS6115567B2 JP5873278A JP5873278A JPS6115567B2 JP S6115567 B2 JPS6115567 B2 JP S6115567B2 JP 5873278 A JP5873278 A JP 5873278A JP 5873278 A JP5873278 A JP 5873278A JP S6115567 B2 JPS6115567 B2 JP S6115567B2
Authority
JP
Japan
Prior art keywords
tap
winding
voltage
voltageless
changer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5873278A
Other languages
Japanese (ja)
Other versions
JPS54150634A (en
Inventor
Motoyasu Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5873278A priority Critical patent/JPS54150634A/en
Publication of JPS54150634A publication Critical patent/JPS54150634A/en
Publication of JPS6115567B2 publication Critical patent/JPS6115567B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無電圧タツプ切換変圧器に係り、特に
タツプ間にかかる電圧の大きい無電圧タツプ切換
変圧器に関する。 従来より、変圧器においては、入出力電圧を調
整するために、負荷時タツプ切換器あるいは無電
圧タツプ切換器を用いて、負荷時タツプ切換変圧
器、または無電圧タツプ切換変圧器とする場合が
多い。このうち無電圧タツプ切換変圧器において
は、価格、据付容積の面から回転橋絡式の無電圧
タツプ切換器を用いる場合が多い。回転橋絡式の
無電圧タツプ切換器を用いた場合の従来の無電圧
タツプ切換変圧器の構成例を第1図に示す。 第1図において、1は電圧を調整したい巻線
で、2,3はこれの主巻線、4a,4bはそれぞ
れ主巻線2,3に直列に接続されたタツプ巻線で
所定の電圧調整範囲に対応した巻回数を有する。
a〜fは所定の調整ステツプ電圧が得られるよ
う、それに対応した巻回数毎にタツプ巻線4a,
4bより引き出されたリード線で、回転橋絡式の
無電圧タツプ切換器6の端子A〜Fに表1に示す
ごとく対応接続される。
The present invention relates to a voltageless tap-changing transformer, and more particularly to a voltageless tap-changing transformer in which a large voltage is applied between the taps. Conventionally, in order to adjust the input and output voltages of transformers, on-load tap changers or non-voltage tap changers are sometimes used to create on-load tap change transformers or non-voltage tap change transformers. many. Among these, a rotary bridge type non-voltage tap changer is often used in the non-voltage tap changer from the viewpoint of cost and installation volume. FIG. 1 shows an example of the configuration of a conventional non-voltage tap changer using a rotary bridge type non-voltage tap changer. In Figure 1, 1 is the winding whose voltage is to be adjusted, 2 and 3 are its main windings, and 4a and 4b are tap windings connected in series to the main windings 2 and 3, respectively, to adjust the voltage. The number of turns corresponds to the range.
a to f are the tap windings 4a,
The lead wires drawn out from 4b are connected to terminals A to F of the rotary bridge type non-voltage tap changer 6 as shown in Table 1.

【表】 7は変圧器のタンク外の操作ハンドル(図示せ
ず)により回転軸8を中心に回転し、回転橋絡式
無電圧タツプ切換器6の任意のとなり合つた端子
間を橋絡する橋絡片である。 以上の構成において、たとえば操作ハンドルに
より橋絡片7の位置を第1図の実線の位置にした
とすると、無電圧タツプ切換器6の端子AとBが
橋絡され、電気的にはタツプ巻線4a,4bのリ
ード線aとfが接続された事になり、巻線1の電
気的巻回数は最小となる。また操作ハンドルの操
作により、橋絡片7を第1図の点線の位置にもつ
てくると、無電圧タツプ切換器6の端子BとCが
橋絡され、電気的にはタツプ巻線4a,4bのリ
ード線bとfが接続された事になり、巻線1の電
気的巻回数は最小よりも、タツプ巻線4aリード
線aとbの間の巻回数分だけ多くなる。以下同様
にして橋絡片7の位置を矢印の方向に回転して行
くとタツプ巻線4a,4bのリード線はbとe、
cとe、cとdの順に接続され巻線1の電気的巻
回数は順次増加して、所定の電圧調整ができる。 しかしながらこの方法によるととなり合つた無
電圧タツプ切換器の端子間に全タツプ範囲の電圧
すなわちタツプ巻線4と5に誘起される電圧の和
がかかる事が必ず起る。上記の例だと橋絡片7が
実線の位置にある場合のEとF間である。またリ
ード線cとdまたはaとfの間すなわちタツプ巻
線4aと4bの端部間にも必ず全タツプ電圧がか
かる事が起る。(上記の例だと橋絡片7が実線の
位置にある場合等)このためタツプ範囲が広い場
合や、インパルス電圧に対するタツプ巻線内の電
圧振動の振巾が大きい場合等は、端子間の耐電圧
が高い無電圧タツプ切換器を用い、また、タツプ
巻線4aと4bの端部間の絶縁寸法を大きくしな
ければならない。 耐電圧の高いタツプ切換器は、タツプ切換器端
子間の寸法を大きくしなければならないので全体
の寸法が大きくなり、広い据付容積を必要とする
ので、変圧器全体が大きくなる。またこれに伴な
い無電圧タツプ切換器自身の価格および、変圧器
全体の価格も高くなる。一方タツプ巻線端部間の
絶縁寸法を大きくすると、巻線自体の占積率も低
下する欠点が生じる。 本発明は以上の点にかんがみなされたもので、
タツプ範囲の広い場合や、インパルス電圧に対す
るタツプ巻線内の電圧振動の振巾が大きい場合に
も、耐電圧の低い回転橋絡式の無電圧タツプ切換
器を用い、しかもタツプ巻線端部間の絶縁寸法を
大きくせずに、コンパクトで従つて価格の安い無
電圧タツプ切換変圧器を提供する事を目的とす
る。 本発明の構成は無電圧タツプ切換器2個を用い
て、一方の無電圧タツプ切換器には、第1の線路
端または第1の主巻線のタツプ側巻線端およびタ
ツプ巻線より引出されるリード線のうち第1の線
路端または第1の主巻線側の半分を接続し、他方
の無電圧タツプ切換器には第2の線路端または第
2の主巻線のタツプ側巻線端およびタツプ巻線よ
り引用されるリード線のうち第2の線路端または
第2の主巻線側の半分を接続し、かつタツプ巻線
より引出されるリード線のうち中央の1本を両方
の無電圧タツプ切換器に接続するものである。 以下本発明の1実施例を第2図によつて具体的
に説明する。 第2図において、1は電圧を調整したい巻線
で、2,3はこれの主巻線、4はタツプ巻線で所
定の電圧調整範囲に対応した巻回数を有する。b
〜fは上記タツプ巻線4より、所定の調整ステツ
プ電圧が得られるよう、それに対応した巻回数毎
に引出されるリード線である。またaおよびgは
それぞれ主巻線2,3のタツプ側巻線端から引き
出されるリード線である。タツプ巻線4から引出
されるリード線b〜fのうち、第1の主巻線2側
のb,cはそれぞれ第1の無電圧タツプ切換器5
の端子A,Cに接続され、第2の主巻線3側の
e,fはそれぞれ第2の無電圧タツプ切換器6の
端子D′,B′に接続される。またタツプ巻線4よ
り引出されるリード線のうち中央のdは第1の無
電圧タツプ切換器5の端子Eおよび第2の無電圧
タツプ切換器6の端子F′に接続される。さらに
第1の主巻線2のタツプ側巻線端より引出される
リード線aは第1の無電圧タツプ切換器5の端子
Fに接続されリード線9により端子B,Dに共通
接続される。第2の主巻線3のタツプ側巻線端よ
り引出されるリード線gは第2の無電圧タツプ切
換器6の端子E′に接続されリード線9により端
子A′,C′に共通に接続される。以上のように接
続して第1および第2の無電圧タツプ切換器5,
6の橋絡片10,11の回転軸7,8を共通にし
て、1つの無電圧タツプ切換器操作ハンドルの操
作で2台の無電圧タツプ切換器5,6の橋絡片1
0,11が同一角度回転するように構成する。
尚、各リード線と端子との接続を表2に示す。
[Table] 7 is rotated around a rotating shaft 8 by an operating handle (not shown) outside the transformer tank, and bridges arbitrary adjacent terminals of the rotary bridging type non-voltage tap changer 6. It is a bridge piece. In the above configuration, if the bridging piece 7 is moved to the position shown by the solid line in FIG. Lead wires a and f of wires 4a and 4b are now connected, and the number of electrical turns of winding 1 is minimized. When the bridging piece 7 is brought to the position indicated by the dotted line in FIG. 1 by operating the operating handle, terminals B and C of the voltageless tap changer 6 are bridged, and the tap windings 4a, Lead wires b and f of tap winding 4b are now connected, and the number of electrical turns of winding 1 is greater than the minimum number by the number of turns between lead wires a and b of tap winding 4a. Similarly, when the position of the bridging piece 7 is rotated in the direction of the arrow, the lead wires of the tap windings 4a and 4b become b and e,
C and e are connected in this order, and c and d are connected in this order, and the number of electrical turns of the winding 1 increases sequentially, thereby making it possible to adjust the voltage to a predetermined value. However, according to this method, the voltage of the entire tap range, that is, the sum of the voltages induced in the tap windings 4 and 5, is inevitably applied between the terminals of adjacent voltageless tap changers. In the above example, it is between E and F when the bridging piece 7 is at the position indicated by the solid line. Further, the entire tap voltage is always applied between the leads c and d or a and f, that is, between the ends of the tap windings 4a and 4b. (In the above example, when the bridging piece 7 is at the position of the solid line, etc.) For this reason, if the tap range is wide or the amplitude of voltage oscillation in the tap winding with respect to the impulse voltage is large, it is necessary to A voltageless tap changer with a high withstand voltage must be used, and the insulation dimension between the ends of the tap windings 4a and 4b must be increased. A tap changer with a high withstand voltage requires a large dimension between the tap changer terminals, resulting in a large overall size, and requires a large installation volume, resulting in an overall large transformer. In addition, the price of the voltageless tap changer itself and the price of the transformer as a whole increase accordingly. On the other hand, if the insulation dimension between the ends of the tap winding is increased, the space factor of the winding itself is also reduced. The present invention has been made in view of the above points,
Even when the tap range is wide or the amplitude of voltage oscillation within the tap winding is large in response to the impulse voltage, a rotary bridging type non-voltage tap changer with low withstand voltage is used. To provide a no-voltage tap-change transformer that is compact and inexpensive without increasing the insulation dimensions of the transformer. The configuration of the present invention uses two non-voltage tap changers, and one of the non-voltage tap changers has a tap-side winding end of the first line end or the first main winding and a lead-out from the tap winding. Connect the first line end or half of the lead wire on the first main winding side, and connect the second line end or the tap side half of the second main winding to the other voltageless tap changer. Connect the line ends and half of the lead wires drawn from the tap winding on the second line end or second main winding side, and connect the middle one of the lead wires drawn out from the tap winding. It connects to both voltageless tap changers. An embodiment of the present invention will be explained in detail below with reference to FIG. In FIG. 2, 1 is a winding whose voltage is to be adjusted, 2 and 3 are its main windings, and 4 is a tap winding having a number of turns corresponding to a predetermined voltage adjustment range. b
-f is a lead wire drawn out from the tap winding 4 every corresponding number of turns so that a predetermined adjustment step voltage can be obtained. Further, a and g are lead wires drawn out from the tap side winding ends of the main windings 2 and 3, respectively. Among the lead wires b to f drawn out from the tap winding 4, the leads b and c on the first main winding 2 side are connected to the first voltageless tap changer 5, respectively.
The terminals e and f on the second main winding 3 side are connected to the terminals D' and B' of the second voltageless tap changer 6, respectively. Further, the central lead wire d drawn out from the tap winding 4 is connected to the terminal E of the first voltageless tap changer 5 and the terminal F' of the second voltageless tap changer 6. Furthermore, a lead wire a drawn out from the tap side winding end of the first main winding 2 is connected to the terminal F of the first voltageless tap changer 5, and is commonly connected to terminals B and D by a lead wire 9. . A lead wire g pulled out from the tap-side winding end of the second main winding 3 is connected to the terminal E' of the second non-voltage tap changer 6, and is commonly connected to terminals A' and C' by the lead wire 9. Connected. Connected as above, the first and second voltageless tap changers 5,
The rotating shafts 7 and 8 of the bridging pieces 10 and 11 of the two non-voltage tap changers 5 and 6 are made common, and the bridging pieces 1 of the two non-voltage tap changers 5 and 6 are operated by operating one non-voltage tap changer operating handle.
0 and 11 are configured to rotate by the same angle.
Table 2 shows the connection between each lead wire and the terminal.

【表】 次に本発明の作用を説明する。 今はじめに2台の無電圧タツプ切換器5,6の
橋絡片10,11がそれぞれ実線で示す位置にく
るようにセツトすると、第1の主巻線2のタツプ
側巻線端より引出されるリード線a→タツプ切換
器5の端子F→橋絡片10→タツプ切換器5の端
子A→タツプリード線b→タツプ巻線4→タツプ
リード線f、タツプ切換器6の端子B′→橋絡片1
1→タツプ切換器6の端子A′→第2の主巻線の
タツプ側巻線端より引出されるリード線gの順に
導通することになり結局リード線aとb、fとg
が接続された事になり巻線1の電気的巻回数は最
大になる。また操作ハンドルの操作により橋絡片
10,11をそれぞれ第2図の点線の位置にした
とすると上記と同じような経路でリード線aと
c、fとgが接続される事になり、巻線1の電気
的巻回数は最大よりも、タツプリード線bとcの
間の巻回数分だけ少なくなる。以下同様にして橋
絡片10,11の位置を矢印の方向に回転して行
くとリード線はaとc、eとg、aとd、eと
g、aとd、dとgの順に接続され巻線1の電気
的巻回数は順次減少して所定の電圧調整ができ
る。 以上の構成によると第1および第2の無電圧タ
ツプ切換器5,6の端子間にかかる最大電圧はそ
れぞれ、タツプリード線bとdの間に誘起される
電圧、およびタツプリード線dとfの間に誘起さ
れる電圧となり、従来の構成の約半分となる。ま
た第1の主巻線2のタツプ側巻線端とタツプ巻線
4の第1の主巻線側巻線端の間にかかる最大電圧
および第2の主巻線3のタツプ側巻線端とタツプ
巻線4の第2の主巻線側巻線端の間にかかる最大
電圧はそれぞれ、タツプリード線bとdの間に誘
起される電圧、およびタツプリード線dとfの間
に誘起される電圧となりこれも従来の半分とな
る。 以上の説明はタツプ電圧が4段階の場合につい
て行なつたが、タツプ電圧が2段階以上であれば
本発明の構成とする事が出来る。また第1、第2
の無電圧タツプ切換器の回転軸を別々として、そ
れぞれ別々に操作する事も可能である事は明白で
ある。 以上述べたように本発明によると無電圧タツプ
切換器端子間にかかる最大電圧、および巻線端部
間にかかる最大電圧が従来の構成の場合の約半分
になるため、タツプ範囲の広い場合やインパルス
電圧に対するタツプ巻線内の電圧振動の振巾が大
きい場合にも、比較的、耐電圧の低い無電圧タツ
プ切換器を用いる事が出来、巻線端部間の絶縁寸
法も小さく出来るので、コンパクトで価格が安く
品質の良い無電圧タツプ切換変圧器の製作が可能
となる。 尚、タツプ巻線を主巻線と別の絶縁筒上に巻く
場合も本発明の対象となることは明らかである。 また上記の実施例ではタツプ巻線が主巻線に接
続される場合について説明したが、タツプ巻線が
線路端に接続される場合も同様に適用できる。
[Table] Next, the effects of the present invention will be explained. When the bridging pieces 10 and 11 of the two voltageless tap changers 5 and 6 are set at the positions shown by the solid lines, they are pulled out from the tap side winding end of the first main winding 2. Lead wire a → terminal F of tap changer 5 → bridge piece 10 → terminal A of tap changer 5 → tap lead wire b → tap winding 4 → tap lead wire f, terminal B' of tap changer 6 → bridge piece 1
1 → terminal A' of the tap changer 6 → lead wire g pulled out from the tap side winding end of the second main winding. Eventually, the lead wires a and b, f and g
is connected, and the number of electrical turns of winding 1 becomes maximum. Furthermore, if the bridging pieces 10 and 11 are moved to the positions indicated by the dotted lines in Fig. 2 by operating the operating handles, the lead wires a and c and f and g will be connected in the same way as above, and the winding The number of electrical turns of wire 1 is less than the maximum by the number of turns between tapped leads b and c. Similarly, when the positions of the bridging pieces 10 and 11 are rotated in the direction of the arrow, the lead wires become a and c, e and g, a and d, e and g, a and d, and d and g. The number of electrical turns of the connected winding 1 is successively reduced to achieve a predetermined voltage adjustment. According to the above configuration, the maximum voltage applied between the terminals of the first and second voltageless tap changers 5 and 6 is the voltage induced between the tap lead wires b and d, and the voltage induced between the tap lead wires d and f, respectively. The voltage induced in this case is approximately half that of the conventional configuration. Also, the maximum voltage applied between the tap-side winding end of the first main winding 2 and the first main winding-side winding end of the tap winding 4 and the tap-side winding end of the second main winding 3. The maximum voltage applied between the winding end of the tap winding 4 on the second main winding side is the voltage induced between the tap lead wires b and d, and the voltage induced between the tap lead wires d and f, respectively. The voltage will also be half of the conventional voltage. Although the above explanation has been made regarding the case where the tap voltage is in four stages, the structure of the present invention can be adopted as long as the tap voltage is in two or more stages. Also, the first and second
It is clear that it is also possible to separate the rotating shafts of the voltageless tap changer and operate them separately. As described above, according to the present invention, the maximum voltage applied between the terminals of a voltageless tap changer and the maximum voltage applied between the winding ends is approximately half that of the conventional configuration. Even when the amplitude of voltage oscillation within the tap winding relative to the impulse voltage is large, a non-voltage tap changer with a relatively low withstand voltage can be used, and the insulation size between the ends of the winding can be made small. It becomes possible to manufacture a compact, low-cost, and high-quality non-voltage tap switching transformer. It is clear that the present invention also applies to the case where the tap winding is wound on an insulating cylinder separate from the main winding. Further, in the above embodiment, the case where the tap winding is connected to the main winding has been described, but the present invention can be similarly applied to the case where the tap winding is connected to the end of the line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無電圧タツプ切換変圧器の構成
例を示す結線図、第2図は本発明による無電圧タ
ツプ切換変圧器の1構成例を示す結線図である。 2,3……主巻線、4……タツプ巻線、5,6
……無電圧タツプ切換器、a乃至g……タツプリ
ード線、A乃至F及びA′乃至F′……端子。
FIG. 1 is a wiring diagram showing an example of the configuration of a conventional voltageless tap-changing transformer, and FIG. 2 is a wiring diagram showing an example of the configuration of a voltageless tap-changing transformer according to the present invention. 2, 3... Main winding, 4... Tap winding, 5, 6
... Voltageless tap changer, a to g... Tap lead wires, A to F and A' to F'... terminals.

Claims (1)

【特許請求の範囲】[Claims] 1 回転橋絡式の無電圧タツプ切換器を用いて構
成される無電圧タツプ切換変圧器において、タツ
プ巻線より引出されるリード線のうち、第1の線
路端または第1の主巻線側のリード線を第1の無
電圧タツプ切換器の端子に接続し、第2の線路端
または第2の主巻線側のリード線を第2の無電圧
タツプ切換器の端子にそれぞれ接続し、かつ第1
の無電圧タツプ切換器の端子に接続されるタツプ
リード線のうち、第2の線路端または第2の主巻
線側のリード線の1本を第2の無電圧タツプ切換
器の端子にも接続し、さらに第1の線路端または
第1の主巻線のタツプ側の巻線端を第1の無電圧
タツプ切換器のタツプリードを接続していない端
子の一部またはすべてに接続し、また第2の線路
端または第2の主巻線のタツプ側の巻線端を第2
の無電圧タツプ切換器のタツプリードを接続して
いない端子の一部またはすべてにそれぞれ接続し
たことを特徴とする無電圧タツプ切換変圧器。
1. In a voltageless tap-change transformer configured using a rotating bridging type voltageless tap-changer, the first line end or first main winding side of the lead wire drawn out from the tap winding. Connect the lead wires to the terminals of the first voltageless tap changer, and connect the lead wires at the second line end or the second main winding side to the terminals of the second voltageless tap changer, respectively, and the first
Of the tap lead wires connected to the terminals of the non-voltage tap changer, one of the lead wires on the second line end or second main winding side is also connected to the terminal of the second non-voltage tap changer. Further, the first line end or the winding end on the tap side of the first main winding is connected to some or all of the terminals of the first voltageless tap changer to which the tap lead is not connected, and 2 line end or the tap side winding end of the 2nd main winding.
A non-voltage tap-change transformer characterized in that the tap leads of the non-voltage tap-change transformer are connected to some or all of the unconnected terminals.
JP5873278A 1978-05-19 1978-05-19 No-voltage tap change transformer Granted JPS54150634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5873278A JPS54150634A (en) 1978-05-19 1978-05-19 No-voltage tap change transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5873278A JPS54150634A (en) 1978-05-19 1978-05-19 No-voltage tap change transformer

Publications (2)

Publication Number Publication Date
JPS54150634A JPS54150634A (en) 1979-11-27
JPS6115567B2 true JPS6115567B2 (en) 1986-04-24

Family

ID=13092671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5873278A Granted JPS54150634A (en) 1978-05-19 1978-05-19 No-voltage tap change transformer

Country Status (1)

Country Link
JP (1) JPS54150634A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261306A (en) * 1985-09-11 1987-03-18 Fuji Electric Co Ltd Tap changing transformer with phase-shifting winding

Also Published As

Publication number Publication date
JPS54150634A (en) 1979-11-27

Similar Documents

Publication Publication Date Title
US4694241A (en) Transformer tap changer
US2727205A (en) Variable voltage transformers
US3349320A (en) Tap changing transformer having means to change tap range
JPS6115567B2 (en)
JPS6148766B2 (en)
US2421300A (en) Transformer circuit
US2078688A (en) Variable voltage transformer
JPH023285B2 (en)
JP2571032Y2 (en) Three-phase balanced sliding transformer
JPS6043649B2 (en) Voltage-free tap-changing transformer
JPS5846047B2 (en) On-load tap switching autotransformer
US3717831A (en) Transformer having series-multiple windings
CN219286184U (en) Transformer voltage regulating winding and transformer
US2369038A (en) Electric transformer
US2421299A (en) Transformer connection
JPH0751782Y2 (en) Shunt reactor
JPH0713927B2 (en) Winding with tap switching device
US2247079A (en) Variable ratio transformer
JPS5834740Y2 (en) Three-phase on-load tap-changing transformer
JPS586290B2 (en) On-load tap-changing transformer
JPH0241854Y2 (en)
JPS635887B2 (en)
JPH0739212Y2 (en) Autotransformer
JPS6331928B2 (en)
US1685946A (en) Electrical transformer