JPS61155061A - Steering power control unit for power steering device - Google Patents

Steering power control unit for power steering device

Info

Publication number
JPS61155061A
JPS61155061A JP27416484A JP27416484A JPS61155061A JP S61155061 A JPS61155061 A JP S61155061A JP 27416484 A JP27416484 A JP 27416484A JP 27416484 A JP27416484 A JP 27416484A JP S61155061 A JPS61155061 A JP S61155061A
Authority
JP
Japan
Prior art keywords
steering
pressure
shaft
reaction force
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27416484A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹夫 鈴木
Shigeo Tanooka
田ノ岡 茂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP27416484A priority Critical patent/JPS61155061A/en
Publication of JPS61155061A publication Critical patent/JPS61155061A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To improve a direct feeling by providing a reaction force control means that controls pressure actuated on the pressure chamber of a reaction force mechanism based on the signals of a handle steering angle in addition to the control of the steering power that corresponds to the car speed. CONSTITUTION:A power steering device is provided with a servo valve 30 that controls the supply and exhaust of pressurized oil into a power cylinder according to the relative rotation between an input shaft 23 as the steering shaft and an output shaft 21 as the pinion shaft 23 as the steering shaft and an output shaft 21 as the pinion shaft 23 as the steering shaft and an output shaft 21 as the pinion shaft. In addition, the device is provided with a reaction force mechanism including a moving plunger 54 in the radial direction, that introduces the pressurized oil exhausted from a supply pump 60 and passing through first and second flowrate control valves 61 and 65 operated so as to constantly keep the pressure before and behind metering orifices 62 and 66, from an introduction port 58 and is varied into the handle torque corresponding to the car speed and such. In this case, the introduction port 58 can be connected to a reservoir through a pressure control valve 70 and the pressure control valve 70 can be controlled based on the signals of the handle steering angle.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、車速等に応じた制御圧!供給し、ハンドルト
ルクZ車速等に応じて変化させる反力機Sン備えた動力
舵取装置の操舵力制御装置に関するものである。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention provides control pressure according to vehicle speed, etc.! The present invention relates to a steering force control device for a power steering device equipped with a reaction force machine S which supplies a steering torque Z and changes it according to vehicle speed, etc.

〈従来の技術〉 車速等に比例した制御圧を反力機構に導入し、動力舵取
装置の操舵力を車速等に応じて制御するものは公知であ
る。この種の動力舵取後[GX。
<Prior Art> It is known that a control pressure proportional to the vehicle speed or the like is introduced into a reaction force mechanism to control the steering force of the power steering device according to the vehicle speed or the like. After this kind of power steering [GX.

パワーシリンダへの圧油の給排?制御するサーボ弁構成
部品として、入力軸と出力軸とY)−ジョンバーを介し
て可撓的に連結されているのが一般的である。
Supplying and discharging pressure oil to the power cylinder? Generally, the servo valve components to be controlled are flexibly connected to the input shaft and the output shaft via a Y-version.

〈発明が解決しようとする問題点〉 ところで、近時、ユーザにおいては、動力舵取装置にお
ける操舵に関しダイレクトフィーリングの向上が要求さ
れるので、ステアリングギヤの剛性を高める必要がある
。そのために、トーションバーのバネ定数を上げると、
バルブ検出角が小さくなり、中立圧力が増加することと
、加工が非常に困難である。従って、トーションバーを
待った構造でに、バネ定数に限界があって要求ン満足さ
せることに難点がある。
<Problems to be Solved by the Invention> Nowadays, users are required to improve the direct feeling of steering in a power steering device, so it is necessary to increase the rigidity of the steering gear. To achieve this, by increasing the spring constant of the torsion bar,
The valve detection angle becomes small, the neutral pressure increases, and the processing is very difficult. Therefore, even with a structure that includes a torsion bar, there is a limit to the spring constant, making it difficult to meet the requirements.

本発明(工、動力舵取装置の操舵カケ制御する反力機構
χ利用してトーションバーの剛性に見合ったギヤ剛性を
高め、ダイレクトフィーリングY向上させるものである
The present invention utilizes a reaction force mechanism χ that controls the steering angle of a power steering device to increase the gear rigidity commensurate with the rigidity of the torsion bar, thereby improving the direct feeling Y.

〈問題点?解決するための手段〉 本発明は、入力軸と出力軸との相対回転に基づいて作動
されパワーシリンダへの圧油の給排を制御するサーボ弁
と、車速等に応じて制御されたポンプからの圧油を導入
して車速等に応じたハンドルトルクに変化させる反力機
構Y備えた動力舵取装置の操舵力制御装置において、前
記入力軸と出力軸間を相対回転自在に叉持し、前記反力
機構に導入する制御圧tハンドル中立時においてトーシ
ョンバーの剛性あるいはその不足分に見合った油圧力を
付与するとともにハンドル操舵角の変化に伴いその油圧
力を変化させる反力制御手段Z備えて成るものである。
<problem? Means for Solving> The present invention provides a servo valve that is operated based on relative rotation between an input shaft and an output shaft to control supply and discharge of pressure oil to a power cylinder, and a pump that is controlled according to vehicle speed, etc. In a steering force control device for a power steering device equipped with a reaction force mechanism Y that introduces pressure oil and changes the steering torque according to vehicle speed, etc., the input shaft and the output shaft are held relatively rotatably, A reaction force control means Z is provided which applies a hydraulic pressure commensurate with the rigidity of the torsion bar or its insufficiency when the steering wheel is in a neutral state, and changes the hydraulic pressure as the steering angle changes. It consists of

く作 用〉 上記本発明は、反力機構の反力室に作用させる制御圧ど
、車速に応じて制御するとともに、ハンドル操舵角に基
づいてトーションバーの剛性あるいはその不足分に見合
った油圧力に制御し、反力機構によりギヤ剛性を任意に
、かつ大きく設定するものである。
Function> The above-mentioned present invention controls the control pressure applied to the reaction force chamber of the reaction force mechanism according to the vehicle speed, and also adjusts the hydraulic pressure commensurate with the stiffness of the torsion bar or the lack thereof based on the steering angle of the steering wheel. The gear rigidity can be arbitrarily set to a large value using a reaction force mechanism.

〈実施例〉 以下本発明の実施例〉図面に基づいて説明する。第1図
において、11は動力舵取装置の本体χなすハウジング
本体、12はハウジング本体11に固着されている弁ハ
ウジングである。このハウジング本体11及び弁ハウジ
ング12内には一対の軸受13.14”k介してピニオ
ン軸(出力軸)21が回転自在に軸承されており、この
ピニオン軸21にはこれと交差する方向に摺動可能なラ
ック軸向のラック歯nαが噛合している。このラック軸
22ハ、図示しないパワーシリンダのピストンと連結さ
れ、その両端は所要の操縦リンク機構を介して操向車輪
に連結されている。
<Example> Hereinafter, an example of the present invention will be described based on the drawings. In FIG. 1, reference numeral 11 indicates a housing main body χ of the power steering device, and reference numeral 12 indicates a valve housing fixed to the housing main body 11. As shown in FIG. A pinion shaft (output shaft) 21 is rotatably supported in the housing body 11 and the valve housing 12 via a pair of bearings 13.14''k, and a pinion shaft 21 is slidable in a direction crossing the pinion shaft 21. Rack teeth nα of a movable rack axis are in mesh with each other.This rack shaft 22 is connected to a piston of a power cylinder (not shown), and both ends thereof are connected to steering wheels via a required steering link mechanism. There is.

弁ハウジング12の大円には、制御弁機構間が収納され
ている。制御弁機構(サーボ弁)30は、操舵軸として
の入力軸nと一体的に形成したロータリ弁部材31と、
このロータリ弁部材31の外周に同心的かつ相対的回転
可能に嵌合したスリーブ弁部材32a’主要構成部材と
している。ロータリ弁部材31ハ、ベアリング91介し
てピニオン軸21に相対回転自在に支持されている。ま
たロータリ弁部材31の外周にを工、図示しないがその
軸方向に伸びる複数のランド部と溝部とが等間隔にて形
成されており、これの溝底部より内周部に連通ずる連通
路37が穿設されている。入力軸乙に前記内周部と弁ハ
ウジング12内の低圧室間とを連通する通路39が設け
られている。一方スリーブ弁部材32の内周にも、その
軸方向に延びる複数のランド部と溝部が等間隔に℃形成
され、各溝部よりスリーブ弁部材32の外周に開口する
分配穴40.41が設けられている。供給ボート35よ
り供給される圧力流体は、制御弁が中立状態であればラ
ンド部両側の溝部に均等に流れ、連通路37及び通路3
9乞経て低圧室38より排出ボー)36に流出する。こ
の場合、両分配ボート33.34ハ低圧で等しい圧力と
なっているためパワーシリンダを工作動されない。制御
弁が中立状態から偏位すれば、一方の分配穴伯又ハ41
にはパワーシリンダから排出された流体が流入し、連通
路a、通路39、低圧室387a’経て排出ボートIに
放出されるようになっている。
The large circle of the valve housing 12 accommodates a control valve mechanism. The control valve mechanism (servo valve) 30 includes a rotary valve member 31 integrally formed with an input shaft n as a steering shaft;
A sleeve valve member 32a' is a main component that fits concentrically and relatively rotatably around the outer periphery of the rotary valve member 31. The rotary valve member 31 is supported by the pinion shaft 21 via a bearing 91 so as to be relatively rotatable. Further, a plurality of lands and grooves (not shown) extending in the axial direction are formed at equal intervals on the outer periphery of the rotary valve member 31, and a communication path 37 is formed in which the bottom of the groove communicates with the inner circumference. is drilled. A passage 39 is provided in the input shaft B, which communicates the inner peripheral portion with the low pressure chamber in the valve housing 12. On the other hand, a plurality of lands and grooves extending in the axial direction are formed at equal intervals on the inner circumference of the sleeve valve member 32, and distribution holes 40, 41 are provided that open from each groove to the outer circumference of the sleeve valve member 32. ing. When the control valve is in the neutral state, the pressure fluid supplied from the supply boat 35 flows evenly into the grooves on both sides of the land portion, and flows through the communication passage 37 and the passage 3.
After 9 hours, it flows out from the low pressure chamber 38 to the exhaust port 36. In this case, the power cylinders cannot be operated because both distribution boats 33 and 34 are at low and equal pressure. If the control valve deviates from the neutral state, one distribution hole
The fluid discharged from the power cylinder flows into and is discharged to the discharge boat I through the communication passage a, the passage 39, and the low pressure chamber 387a'.

反力機構は次の通りである。第2図でも示すようにロー
タリ弁部材31のピニオン軸21側の端部に半径方向に
両側に突起した突起部■が形成されており、この突起部
間と対応するピニオン軸21には突起部50’Y入力軸
乙の軸線回りに数角度旋回可能に遊嵌する弐合溝51が
形成されている。突起部間の外周面にはテーパ状の係合
溝52が形成されており、制御弁の中立状態で、ピニオ
ン軸21には係合溝52と対応する位置で半径方向に挿
通入団が形成されている。挿通穴53にプランジャ舅が
半径方向に摺動可能に挿入され、プランジャ舅の後部へ
作動油を導くべく環状溝間が形成されている。この挿通
穴53と環状溝おとで反力室間が構成されている。58
は車速等に応じて制御されたポンプからの圧力流体の制
御圧乞導入するボート、57(工前記ボー)58と環状
溝55Y連通する通路である。
The reaction force mechanism is as follows. As shown in FIG. 2, protrusions (2) protruding from both sides in the radial direction are formed at the end of the rotary valve member 31 on the pinion shaft 21 side. A fitting groove 51 is formed to be loosely fitted around the axis of the 50'Y input shaft B so as to be rotatable through several angles. A tapered engagement groove 52 is formed on the outer peripheral surface between the protrusions, and when the control valve is in a neutral state, an insertion groove is formed in the pinion shaft 21 in the radial direction at a position corresponding to the engagement groove 52. ing. A plunger leg is slidably inserted in the insertion hole 53 in the radial direction, and an annular groove is formed to guide hydraulic oil to the rear part of the plunger leg. The insertion hole 53 and the annular groove define a reaction force chamber. 58
is a passage communicating with an annular groove 55Y, a boat 57 (worker's boat) 58 through which pressure fluid is introduced under controlled pressure from a pump controlled according to vehicle speed, etc.

上記構成の反力機構は、いわゆるラジアル方式であるが
、軸線方向に反力を作用させる構成のスラスト方式でも
よい。
The reaction force mechanism configured as described above is of a so-called radial type, but may also be a thrust type configured to apply a reaction force in the axial direction.

60は自動車エンジンによって駆動される供給ポンプを
示し、この供給ポンプωの吐出ボートは第1の流量制御
弁61ヲ介して前記供給ボートあに接続されている。か
かる流量制御弁61は、供給ポンプ(イ)の吐出ボート
と供給ボートあとt接続する通路お中に設けられたメー
タリングオリフィス62と、このメータリングオリフィ
ス62の前後圧に応じて作動されこの前後圧を常に一定
に保持するよ5にバイパス通路63 ′5に:開ロ制御
するバイパス丹前とによって構成され、この流量制御弁
61によって供給ボート35には動力舵取装置に必要な
一定流量が供給され、余剰流がバイパス通路63にバイ
パスされる。第1の流量制御弁61のバイパス通路63
ヲ工第2の流量制御弁65?介して前記反力室間の導入
ボート沼に接続されている。かかる第2の流量制御弁6
5は、前記バイパス通路63と導入ボー)58とt接続
する通路46中に設けられたメータリングオリフィス6
6と、このメータリングオリフィス66の前後圧に応じ
て作動されこの前後圧を常に一定に保持するように、リ
ザーバに接続されたバイパス通路67ヲ開口制御するバ
イパス弁68とによって構成され、この第2の流量制御
弁65によって前記導入ボート郭に導入する流1tya
−一定に制御し、余剰流ンバイパス通路67ヲ介してリ
ザーバにバイパスする。しかして前記導入ボート58は
後述する構成の圧力制御弁70Yf:介してリザーバに
接続されている。
Reference numeral 60 indicates a supply pump driven by an automobile engine, and the discharge boat of this supply pump ω is connected to the supply boat through a first flow control valve 61. The flow rate control valve 61 is operated according to a metering orifice 62 provided in a passage connecting the discharge boat of the supply pump (a) and the supply boat, and the pressure before and after this metering orifice 62. In order to keep the pressure constant at all times, the supply boat 35 is configured with a bypass passage 63 '5: a bypass valve which controls the opening of the valve, and a constant flow rate necessary for the power steering device is supplied to the supply boat 35 by this flow rate control valve 61. excess flow is bypassed to the bypass passage 63. Bypass passage 63 of first flow control valve 61
Second flow control valve 65? The introduction boat between the reaction force chambers is connected to the swamp via. Such second flow control valve 6
5 is a metering orifice 6 provided in the passage 46 which is connected to the bypass passage 63 and the introduction bow 58.
6, and a bypass valve 68 that is operated according to the longitudinal pressure of this metering orifice 66 and controls the opening of a bypass passage 67 connected to the reservoir so as to keep this longitudinal pressure constant. The flow 1tya introduced into the introduction boat enclosure by the flow control valve 65 of No. 2
- constant control and bypassing of the surplus flow to the reservoir via the bypass passage 67; The introduction boat 58 is connected to the reservoir via a pressure control valve 70Yf, which will be described later.

次に前記圧力制御弁70の構成?第3図に基づいて説明
するっかかる圧力制御弁70(工、ハウジング71に固
定された弁本体72と、この弁本体72に取付けられた
ソレノイド73と、このソレノイド73への通電によっ
て変化する可動スプール74と、前記導入ボー)58に
連通されたレリーフ通路71’形成した弁座部材76と
、この弁座部材76のレリーフ通路75′f!:開閉す
るボール弁77ト、このボール弁77と前記可動スプー
ル74との間に介挿されたレリーフ圧設定用のスプリン
グ78及びバランス用スプリング79とによって構成さ
れている。可動スプール74は通常スプリング78,7
9のバランスによって図の状態に保持され、レリーフ圧
設定用スプリング78のバネ荷重Z最太に設定している
。しかるにソレノイド73による吸引作用によって可動
スプール74がバランス用スプリング79に抗して右方
向に変位するに従い、スプリング78のバネ荷重を低下
させるようになっている。前記ソレノイドBにはコンピ
ュータ(資)によって制御されるソレノイド駆動回路8
1から車速信号Vとハンドル操舵角e()−ジョンバー
の剛性?加味した入力信号)に応じた電流値が供給され
、この電流値に応じて制御圧力(レリーフ圧)PCが変
化する。
Next, what is the configuration of the pressure control valve 70? The pressure control valve 70 (engineering), which will be explained based on FIG. The spool 74, the valve seat member 76 formed with a relief passage 71' communicating with the introduction bow 58, and the relief passage 75'f of the valve seat member 76! : Consists of a ball valve 77 that opens and closes, a relief pressure setting spring 78 and a balance spring 79 inserted between the ball valve 77 and the movable spool 74. The movable spool 74 usually has springs 78,7
9 is maintained in the state shown in the figure, and the spring load Z of the relief pressure setting spring 78 is set to the maximum thickness. However, as the movable spool 74 is displaced to the right against the balance spring 79 due to the suction action of the solenoid 73, the spring load of the spring 78 is reduced. The solenoid B has a solenoid drive circuit 8 controlled by a computer.
1 to vehicle speed signal V and steering wheel steering angle e() - rigidity of the steering wheel? A current value corresponding to the input signal taken into consideration is supplied, and the control pressure (relief pressure) PC changes according to this current value.

この場合、供給される電流値に応じて可変絞り面積Z変
化させる電磁制御弁であってもよい。
In this case, it may be an electromagnetic control valve that changes the variable aperture area Z according to the supplied current value.

また、反力機構に制御圧ン供給する手段としては上記実
施例のようなダブル流量制御弁方式に限らず、70−デ
バイダ方式等であってもよ〜・。
Further, the means for supplying control pressure to the reaction force mechanism is not limited to the double flow rate control valve system as in the above embodiment, but may also be a 70-divider system or the like.

次に上記構成における動作について説明する。Next, the operation in the above configuration will be explained.

供給ポンプ60より吐出された圧油は第1の流量制御弁
61によって所定流量に制御され、動力舵取装置の供給
ボー)35に供給される。同時に第1の流量制御弁61
からの余剰流は第2の流量制御弁65によって一定流量
に制御され、圧力制御弁70χ介してリザーバにドレン
される。車速が低い状態においては、圧力制御弁70の
ソレノイド73に最大電流が供給され、これによりレリ
ーフ圧設定用スプリング78のバネ荷重は実質的に0と
なり、制御圧力PC&工0に保持される。従って、ハン
ドル操作により操舵軸冴が回転されると、プランジャ5
4ヲ工容易に押し上げられ、これによりスリーブ弁部材
32とロータ弁部材31とが相対回転され、通常の動力
舵取作用が行われる。
The pressure oil discharged from the supply pump 60 is controlled to a predetermined flow rate by a first flow control valve 61, and is supplied to the supply bow 35 of the power steering device. At the same time, the first flow control valve 61
The surplus flow is controlled to a constant flow rate by the second flow control valve 65 and drained into the reservoir via the pressure control valve 70χ. When the vehicle speed is low, the maximum current is supplied to the solenoid 73 of the pressure control valve 70, so that the spring load of the relief pressure setting spring 78 becomes substantially 0, and the control pressure PC & pressure is maintained at 0. Therefore, when the steering shaft is rotated by operating the handle, the plunger 5
The sleeve valve member 32 and the rotor valve member 31 are thereby rotated relative to each other, and a normal power steering action is performed.

車速が所定値を越えると、コンピュータ8(1:入力さ
れる車速信号Vに応じてソレノイド駆動回路&が制御さ
れ、圧力制御弁70のソレノイド′73に供給される電
流値が車速の上昇に応じて低下される。これによりレリ
ーフ圧設定用スプリング78のバネ荷重が車速の上昇に
応じて増大され、その結果導入ボート58ン介して反力
室56に導入される制御圧力PCが車速の上昇に応じて
高められるっこれに工りプランジャ54&X制御圧力犯
に応じた力で係合溝52に押付けられ、スIJ−ブ弁部
材32とロータ弁部材31とを相対回転させるマニアル
トルク乞増大させる。
When the vehicle speed exceeds a predetermined value, the computer 8 (1: solenoid drive circuit & is controlled according to the input vehicle speed signal V, and the current value supplied to the solenoid '73 of the pressure control valve 70 is adjusted according to the increase in vehicle speed. As a result, the spring load of the relief pressure setting spring 78 increases as the vehicle speed increases, and as a result, the control pressure PC introduced into the reaction force chamber 56 via the introduction boat 58 increases as the vehicle speed increases. In response to this, the plunger 54 is pressed against the engagement groove 52 with a force corresponding to the X control pressure, and the manual torque for relative rotation of the valve member 32 and the rotor valve member 31 is increased.

本発明を工上記のよっな車速に応じた操舵力の制御に加
えて、ハンドル操舵角ρの信号に基づいて圧力制御弁7
0により反力機構の反力室間に作用させる制御圧ン制御
し、第4図の実線で示すように油圧反力PCg点線で示
すトーションバー’Y使用したものより、そのトーショ
ンバーの特性に切換えて反力制御を行うものである。こ
れによりハンドル中立時において、第5因に示す工うに
ギヤ発生圧力Pk高めた状態(ギヤ剛性を太き(シタ状
態)となり、トーションバーなしで、必要なギヤ剛性が
得られると共に低速と高速とで特性り、Hg選択するこ
とでマニアルトルクを変化させるものである。しかも、
前記ハンドル中立時におけるギヤ剛性?決定する油圧反
力PCの大きさは圧力制御弁7oのソレノイド73への
印加電流ンかえることで任意に、かつ太き(設定するこ
とができるのである。
In addition to controlling the steering force according to the vehicle speed as described above, the present invention also provides a pressure control valve 7 based on the signal of the steering wheel steering angle ρ.
The control pressure applied between the reaction force chambers of the reaction force mechanism is controlled by 0, and as shown by the solid line in Fig. 4, the hydraulic reaction force PCg is shown by the dotted line. The reaction force is controlled by switching. As a result, when the steering wheel is in the neutral position, the gear generation pressure Pk shown in the fifth factor is increased (the gear rigidity is thickened (shifted state)), and the necessary gear rigidity can be obtained without a torsion bar and the gear can be adjusted at low and high speeds. The manual torque can be changed by selecting Hg.Moreover,
Gear rigidity when the steering wheel is in neutral? The magnitude of the determined hydraulic reaction force PC can be set arbitrarily and thickly by changing the current applied to the solenoid 73 of the pressure control valve 7o.

ナオ、上記実施例ではトーションバーtなくしてそのト
ーションバーに見合う剛性を反力制御で行うようにして
いるが、これに限定されるものではなく、はね定数の弱
いトーションバーを用いた場合、このばね定数の不足分
7反力制御・で補うように油圧力?制御する。J:5に
してもよい。
Nao, in the above embodiment, the torsion bar t is omitted and the rigidity corresponding to the torsion bar is controlled by reaction force, but the invention is not limited to this, and if a torsion bar with a weak spring constant is used, Hydraulic pressure to compensate for this lack of spring constant with 7 reaction force control? Control. J: You may set it to 5.

〈発明の効果〉 以上のように本発明は、車速に応じてハンドトルク?変
化させる反力機械に裏ってハンドル操舵角に基づいて反
力室に導入する制御圧を制御し、油圧反力を任意に太き
(してトーションバー剛性に対応するギヤ剛性あるいは
トーションバーでは不足するギヤ剛性を補って大きく設
定することができ、しかも微小角度でのギヤ剛性?任意
に太き(設定することができる効果がある。
<Effects of the Invention> As described above, the present invention can adjust the hand torque depending on the vehicle speed. The control pressure introduced into the reaction force chamber is controlled based on the steering angle of the steering wheel behind the machine that changes the reaction force, and the hydraulic reaction force is arbitrarily thickened (by adjusting the gear rigidity corresponding to the torsion bar rigidity or the torsion bar). It is possible to compensate for the lack of gear rigidity and increase the gear rigidity, and the gear rigidity at minute angles can be set arbitrarily thick.

【図面の簡単な説明】[Brief explanation of drawings]

第1図シエ本発明の実施例を示す動力舵取装置の断面図
に油圧系統図を掛図した図、第2図は第1図の■−■線
拡太断面図、第3図1工圧力制御弁の要部断面図、第4
図は油圧反力特性を示す線図、第5図はギヤ発生圧力特
性ン示す図である。 21・・拳ビニオン軸、2311・・入力軸、3011
・番制御弁機構、泌・・・反力室、ω・・・供給ポンプ
、70・・・圧力制御弁。
Fig. 1 is a sectional view of a power steering device showing an embodiment of the present invention, with a hydraulic system diagram drawn over it, Fig. 2 is an enlarged sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a diagram showing the working pressure Main part sectional view of control valve, No. 4
The figure is a diagram showing hydraulic reaction force characteristics, and FIG. 5 is a diagram showing gear generated pressure characteristics. 21...Fist pinion shaft, 2311...Input shaft, 3011
・Number control valve mechanism, secretion...reaction force chamber, ω...supply pump, 70...pressure control valve.

Claims (1)

【特許請求の範囲】[Claims] 入力軸と出力軸との相対回転に基づいて作動されパワー
シリンダへの圧油の給排を制御するサーボ弁と、車速等
に応じて制御されたポンプからの圧油を導入して車速等
に応じたハンドルトルクに変化させる反力機構を備えた
動力舵取装置の操舵力制御装置において、前記入力軸と
出力軸を相対回転自在に連結支持し、前記反力機構に導
入する制御圧を停止時のハンドル中立時には入力軸を中
立に保持するに十分な圧力にするとともにハンドル操舵
角の変化に伴い油圧力を変化する反力制御手段を備えて
成る動力舵取装置の操舵力制御装置。
A servo valve operates based on the relative rotation of the input shaft and output shaft to control the supply and discharge of pressure oil to the power cylinder, and a pump controls the pressure oil according to the vehicle speed, etc. by introducing pressure oil from the pump. In a steering force control device for a power steering device, the input shaft and the output shaft are connected and supported so as to be relatively rotatable, and the control pressure introduced into the reaction force mechanism is stopped. A steering force control device for a power steering device, comprising a reaction force control means that generates sufficient pressure to maintain an input shaft in the neutral state when the steering wheel is in the neutral state, and changes the hydraulic pressure as the steering angle changes.
JP27416484A 1984-12-27 1984-12-27 Steering power control unit for power steering device Pending JPS61155061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27416484A JPS61155061A (en) 1984-12-27 1984-12-27 Steering power control unit for power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27416484A JPS61155061A (en) 1984-12-27 1984-12-27 Steering power control unit for power steering device

Publications (1)

Publication Number Publication Date
JPS61155061A true JPS61155061A (en) 1986-07-14

Family

ID=17537923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27416484A Pending JPS61155061A (en) 1984-12-27 1984-12-27 Steering power control unit for power steering device

Country Status (1)

Country Link
JP (1) JPS61155061A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278468A (en) * 1985-05-31 1986-12-09 Kayaba Ind Co Ltd Power steering device
JPS63112271A (en) * 1986-10-30 1988-05-17 Jidosha Kiki Co Ltd Hydraulic pressure reaction force device for power steering device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840131A (en) * 1971-09-29 1973-06-13
JPS5929569A (en) * 1982-08-13 1984-02-16 Kayaba Ind Co Ltd Power steeering gear
JPS59118574A (en) * 1982-12-25 1984-07-09 Hino Motors Ltd Power steering gear for vehicle
JPS61125969A (en) * 1984-11-22 1986-06-13 Kayaba Ind Co Ltd Car speed reponse type power steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840131A (en) * 1971-09-29 1973-06-13
JPS5929569A (en) * 1982-08-13 1984-02-16 Kayaba Ind Co Ltd Power steeering gear
JPS59118574A (en) * 1982-12-25 1984-07-09 Hino Motors Ltd Power steering gear for vehicle
JPS61125969A (en) * 1984-11-22 1986-06-13 Kayaba Ind Co Ltd Car speed reponse type power steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278468A (en) * 1985-05-31 1986-12-09 Kayaba Ind Co Ltd Power steering device
JPS63112271A (en) * 1986-10-30 1988-05-17 Jidosha Kiki Co Ltd Hydraulic pressure reaction force device for power steering device

Similar Documents

Publication Publication Date Title
JPH0645343B2 (en) Steering force control device for power steering device
JPS61155061A (en) Steering power control unit for power steering device
JPS61275062A (en) Steerability control device for power steering device
JPH0624959B2 (en) Steering force control device for power steering device
JPH0232543Y2 (en)
JPS61155062A (en) Steering power control unit for power steering device
JPS60226368A (en) Steering-force controller for power steering apparatus
JPS6112469A (en) Steering force control device in power steering unit
JPS61211166A (en) Controller for power steering device
JPS638073A (en) Steering force controlling unit of power steering device
JPS62139755A (en) Steering force control device for power steering apparatus
JPS61155064A (en) Steering power control unit for power steering device
JPS61155065A (en) Steering power control unit for power steering device
JPH0628378Y2 (en) Steering force control device for power steering device
JPS61102382A (en) Steering force controller of power steering unit
JPS60229871A (en) Steering force control device in power steering device
JPS61155063A (en) Steering power control unit for power steering device
JPS60226369A (en) Steering-force controller for power steering apparatus
JPS61191470A (en) Steering force control device of power steering gear
JPH0619426Y2 (en) Steering force control device for power steering device
JPH036546Y2 (en)
JP2631984B2 (en) Vane pump
JPS60128079A (en) Steering force control device in power control device
JPS61155069A (en) Steering power control unit for power steering device
JPS61202976A (en) Steering force control device of power steering device