JPS6115342B2 - - Google Patents

Info

Publication number
JPS6115342B2
JPS6115342B2 JP13731879A JP13731879A JPS6115342B2 JP S6115342 B2 JPS6115342 B2 JP S6115342B2 JP 13731879 A JP13731879 A JP 13731879A JP 13731879 A JP13731879 A JP 13731879A JP S6115342 B2 JPS6115342 B2 JP S6115342B2
Authority
JP
Japan
Prior art keywords
specific gravity
solution
refrigerant
evaporator
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13731879A
Other languages
Japanese (ja)
Other versions
JPS5661557A (en
Inventor
Osayuki Inoe
Toshio Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP13731879A priority Critical patent/JPS5661557A/en
Publication of JPS5661557A publication Critical patent/JPS5661557A/en
Publication of JPS6115342B2 publication Critical patent/JPS6115342B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は水あるいはアルコールなどを冷媒と
し、臭化リチウム溶液などの塩類溶液を吸収溶液
として冷凍サイクルを構成する吸収冷凍機に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerator that configures a refrigeration cycle using water or alcohol as a refrigerant and a salt solution such as a lithium bromide solution as an absorption solution.

従来、この種の冷凍機は、吸収器、発生器、凝
縮器、蒸発器、溶液熱交換器、溶液ポンプ、冷媒
ポンプ、及びこられの機器を溶液系路及び冷媒系
路にて接続し、外部との熱の授受を行なつて冷凍
サイクルを形成する。
Conventionally, this type of refrigerator has an absorber, a generator, a condenser, an evaporator, a solution heat exchanger, a solution pump, a refrigerant pump, and these devices connected through a solution line and a refrigerant line. A refrigeration cycle is formed by exchanging heat with the outside.

このような吸収冷凍機においては、負荷の低
下、冷却水温度の低下などの条件変化により溶液
の濃度が稀くなり、蒸発器内の冷媒液面が下が
り、場合によつては冷媒ポンプのキヤビテーシヨ
ン、無潤滑運転などの事故をひき起こすこともあ
る。この事故を防ぐために、吸収器内の溶液を蒸
発器内に導く溶液導入系路を設け、蒸発器内の冷
媒液面が所定の高さより低くなつた場合に溶液導
入系路により溶液を蒸発器内に流入せしめ、溶液
と溶媒液との混合液の液面を上昇せしめ、キヤビ
テーシヨンなどが起きないようにする。
In such an absorption refrigerator, the concentration of the solution becomes diluted due to changes in conditions such as a decrease in load or a decrease in cooling water temperature, which causes the refrigerant level in the evaporator to drop, and in some cases, cavitation of the refrigerant pump. This can lead to accidents such as operation without lubrication. In order to prevent this accident, a solution introduction system is installed to guide the solution in the absorber into the evaporator, and when the refrigerant liquid level in the evaporator becomes lower than a predetermined height, the solution is introduced into the evaporator via the solution introduction system. This causes the mixture of solution and solvent to rise in the liquid level, thereby preventing cavitation or the like from occurring.

このように、蒸発器内の冷媒中に吸収溶液を混
入して運転することのある構造の吸収冷凍機にお
いては、蒸発器中の冷媒液中の吸収剤濃度は、冷
凍機運転期間の殆んどの間は稀い状態である。濃
度が大となるのは、外気温が低い場合、冷却水温
が低い場合、低負荷の場合などであり、比較的短
時間である。特に濃度が大となるのは冷却水低温
時、低負荷時に吸収溶液を混入した直後の極めて
短時間の間のみである。
In this way, in absorption refrigerators that are operated with an absorption solution mixed into the refrigerant in the evaporator, the concentration of absorbent in the refrigerant liquid in the evaporator remains constant for most of the operating period of the refrigerator. This is a rare condition. Concentrations become high when the outside temperature is low, when the cooling water temperature is low, when the load is low, and for a relatively short period of time. In particular, the concentration becomes high only during a very short period of time immediately after the absorption solution is mixed in when the cooling water is at low temperature or when the load is low.

一方、この蒸発器内の混合液の比重は、吸収剤
がLiBr溶液、冷媒が水である場合、通常1.0〜1.1
程度であるが最高は1.6程度となる。しかして、
冷媒ポンプの動力としては、たとえその期間が短
かくとも冷媒の最高比重(吸収剤濃度が最高濃度
のとき最高比重となる)を考慮してポンプモータ
の出力を選定していた。従つて通常運転点はモー
タの定格出力点から大幅に離れ、モータ効率の悪
い点で使用することになり、消費動力が大とな
り、また、モータの出力も大となり設備費もかさ
む、などの欠点があつた。
On the other hand, when the absorbent is a LiBr solution and the refrigerant is water, the specific gravity of the mixed liquid in this evaporator is usually 1.0 to 1.1.
The maximum value is about 1.6. However,
As for the power of the refrigerant pump, the output of the pump motor was selected in consideration of the maximum specific gravity of the refrigerant (the highest specific gravity occurs when the absorbent concentration is at its highest concentration) even if the period is short. Therefore, the normal operating point is far away from the motor's rated output point, and the motor is used at a point where its efficiency is poor, resulting in large power consumption.Moreover, the motor's output is also large, which increases equipment costs. It was hot.

本発明は、蒸発器内の冷媒液の比重を直接又は
間接的に検出し、所定値を越えた場合には蒸発器
内の冷媒液の散布流量を低下せしめるよう制御す
ることにより、従来のものの上記の欠点を除き、
冷媒ポンプの軸動力を通常運転時の動力に近い値
に選定することを可能となし、高効率での運転が
でき、またモータ出力も過大とせずに済む吸収冷
凍機を提供することを目的とするものである。
The present invention directly or indirectly detects the specific gravity of the refrigerant liquid in the evaporator, and when the specific gravity exceeds a predetermined value, the flow rate of the refrigerant liquid in the evaporator is controlled to be reduced. Except for the above drawbacks,
The purpose of the present invention is to provide an absorption chiller that allows the shaft power of the refrigerant pump to be selected to a value close to the power during normal operation, and that can be operated with high efficiency and that does not require excessive motor output. It is something to do.

本発明は、吸収器、発生器、凝縮器、蒸発器、
溶液熱交換器、溶液ポンプ、冷媒ポンプ及びこれ
らと接続する溶液経路、冷媒経路を備えて冷凍サ
イクルを形成する吸収冷凍機において、前記吸収
器内、発生器内又は溶液経路内の溶液を前記蒸発
器に導く溶液導入系路を備え、前記蒸発器内の冷
媒液の比重変動に関連する冷媒液比重変動要素を
検出する比重検知機構を備え、該比重検知機構か
らの信号により、前記蒸発器内の冷水管に散布さ
れる冷媒液の流量を制御する流量制御機構を備え
たことを特徴とする吸収冷凍機である。
The present invention provides absorbers, generators, condensers, evaporators,
In an absorption refrigerator which forms a refrigeration cycle by including a solution heat exchanger, a solution pump, a refrigerant pump, and a solution path and a refrigerant path connected thereto, the solution in the absorber, the generator, or the solution path is evaporated. a specific gravity detection mechanism for detecting a refrigerant liquid specific gravity variation element related to a specific gravity variation of the refrigerant liquid in the evaporator; The absorption refrigerator is characterized in that it is equipped with a flow rate control mechanism that controls the flow rate of refrigerant liquid sprayed into the cold water pipes.

本発明を実施例につき図面を用いて説明すれ
ば、第1図に示す如く、吸収器A、発生器G、凝
縮器C、蒸発器E、溶液熱交換器X、溶液ポンプ
PS、冷媒ポンプPMが備えられ、溶液経路として
配管1,2,3,4,5,スプレー管6、オーバ
ーフロー管7を備え、冷媒経路として配管8,
9、スプレー管10、配管11が上述の器機を接
続して冷凍サイクルを形成している。
The present invention will be explained with reference to the drawings in accordance with embodiments. As shown in FIG. 1, an absorber A, a generator G, a condenser C, an evaporator E, a solution heat exchanger X, a solution pump
PS, a refrigerant pump PM are provided, and pipes 1, 2, 3, 4, 5, a spray pipe 6, and an overflow pipe 7 are provided as a solution path, and pipes 8 and 7 are provided as a refrigerant path.
9, a spray pipe 10, and a pipe 11 connect the above-mentioned devices to form a refrigeration cycle.

12は加熱管、13は熱源熱量調節弁である。
冷却水系統としては、冷却水ポンプ14、配管1
5、冷却水管16、配管17、冷却水管18、配
管19が備えられ、吸収器A及び凝縮器Cを冷却
するようになつている。20は冷水管で、配管2
1,22により蒸発器Eに冷水を導くものであ
る。
12 is a heating tube, and 13 is a heat source heat amount control valve.
The cooling water system includes a cooling water pump 14, piping 1
5, a cooling water pipe 16, a pipe 17, a cooling water pipe 18, and a pipe 19 are provided to cool the absorber A and the condenser C. 20 is a cold water pipe, pipe 2
1 and 22 lead cold water to the evaporator E.

41は、吸収器Aの中の溶液を、キヤビテーシ
ヨン防止のために、蒸発器Eの中に導くように、
溶液ポンプPSの出口と、冷媒ポンプPMの入口と
を接続した溶液導入管であり、制御弁42により
溶液の導入が操作される。制御弁42は、蒸発器
E内の冷媒液面高さを直接又は間接的に検出する
検出機構(例えば、蒸発器E内の液面計50、冷
却水温度、冷却水出口温度の温度計など)の信号
により制御機構51を介して操作される。
41 is for guiding the solution in the absorber A into the evaporator E to prevent cavitation.
This is a solution introduction pipe that connects the outlet of the solution pump PS and the inlet of the refrigerant pump PM, and the introduction of the solution is operated by the control valve 42. The control valve 42 includes a detection mechanism that directly or indirectly detects the height of the refrigerant liquid level in the evaporator E (for example, a liquid level gauge 50 in the evaporator E, a thermometer for cooling water temperature, a cooling water outlet temperature, etc.). ) is operated via the control mechanism 51.

43は、蒸発器Eの中の冷媒液を溶液系路の中
に導くために、冷媒ポンプPMの出口と溶液ポン
プPSの入口とを接続した冷媒液導入管であり、
制御弁44により冷媒液の導入が操作される。冷
媒液導入管43は、濃度増大による溶液の結晶化
の危険を防止するために、溶液を稀釈するように
設けられたもので、制御弁44は、溶液の濃度を
直接又は間接的に検出する検出機構又は、装置の
運転停止の直前に出される信号などにより操作さ
れる。
43 is a refrigerant liquid introduction pipe connecting the outlet of the refrigerant pump PM and the inlet of the solution pump PS in order to introduce the refrigerant liquid in the evaporator E into the solution line;
The control valve 44 controls the introduction of the refrigerant liquid. The refrigerant liquid introduction pipe 43 is provided to dilute the solution in order to prevent the risk of crystallization of the solution due to an increase in concentration, and the control valve 44 directly or indirectly detects the concentration of the solution. It is operated by a detection mechanism or a signal issued immediately before the device stops operating.

冷媒ポンプPMの出口側の配管9には、オリフ
イス45及び該オリフイス45に並列に、バイパ
ス46に制御弁47が設けられている。蒸発器E
の冷媒液中には比重検出機構48が設けられ、比
重が設定値を越えたらその信号により制御機構4
9が制御弁47を閉じて冷媒液の散布流量を減少
せしめるようになつている。
The piping 9 on the outlet side of the refrigerant pump PM is provided with an orifice 45 and a control valve 47 in a bypass 46 in parallel with the orifice 45. Evaporator E
A specific gravity detection mechanism 48 is provided in the refrigerant liquid, and when the specific gravity exceeds a set value, the control mechanism 4 is activated by the signal.
9 closes the control valve 47 to reduce the spray flow rate of the refrigerant liquid.

第2図は比重検出機構48の実施例を示す。蒸
発器Eの底部を貫通して設けられた非磁性体の管
52の中に、適当な高さにリードスイツチ53が
備えられている。管52の外側には円環状のフロ
ート54が昇降可能に装着されている。フロート
54の一部には磁石55が設けられている。管5
2にはフロート54の上限位置及び下限位置を定
めるストツパ56,57が設けられ、上限位置で
は磁石55がリードスイツチ53を作動せしめ、
下限位置では磁石55はリードスイツチ53から
離れて作動せしめないようになつている。フロー
ト54の材料の比重は、設定比重と等しく選ばれ
る。フロート54は全体を設定比重に等しい均一
の比重の材料を選んでもよく、異なる比重の材料
のものを適宜組み合わせて全体として設定比重と
なしてもよい。
FIG. 2 shows an embodiment of the specific gravity detection mechanism 48. A reed switch 53 is provided at an appropriate height in a non-magnetic tube 52 extending through the bottom of the evaporator E. An annular float 54 is attached to the outside of the tube 52 so as to be movable up and down. A magnet 55 is provided on a part of the float 54. tube 5
2 is provided with stoppers 56 and 57 that determine the upper and lower limit positions of the float 54, and at the upper limit position, a magnet 55 activates the reed switch 53,
At the lower limit position, the magnet 55 is separated from the reed switch 53 and is not activated. The specific gravity of the material of the float 54 is chosen to be equal to the set specific gravity. For the float 54, a material having a uniform specific gravity equal to the set specific gravity may be selected as a whole, or materials having different specific gravity may be appropriately combined to form the set specific gravity as a whole.

通常運転時には、制御弁47は全開されてお
り、冷水管20に散布される冷媒液流量は最大値
となつている。この場合蒸発器E内には溶液が流
入していないか、又は極めて少量の残量しかない
ので、冷媒液の比重は最低又はそれに近く(例え
ば1.0〜1.1)は比重検出機構48のフロート54
は最低位置にあり、リードスイツチ53は作動せ
ず、制御弁47は開いたままであり、冷媒液散布
量は最大値となる。
During normal operation, the control valve 47 is fully opened, and the flow rate of the refrigerant liquid sprayed into the cold water pipe 20 is at its maximum value. In this case, since no solution has flowed into the evaporator E or there is only a very small amount remaining, the specific gravity of the refrigerant liquid is at the minimum or close to it (for example, 1.0 to 1.1) and the float 54 of the specific gravity detection mechanism 48
is at the lowest position, the reed switch 53 is not operated, the control valve 47 remains open, and the amount of refrigerant sprayed is at its maximum value.

負荷の減少、冷却水温度の低下が見られる場合
は、溶液中に吸収される冷媒量が増大し、蒸発器
E内の冷媒液面が設定値以下になつた場合、これ
を液面計50により検出し、制御機構51により
制御弁42が開かれ溶液導入管41を通つて溶液
の一部が配管8に導入され、蒸発器Eの下部に入
り、冷媒液面を上昇せしめ、かつ冷媒ポンプPM
により配管9に送り込まれる。
If the load decreases or the cooling water temperature decreases, the amount of refrigerant absorbed into the solution increases, and if the refrigerant liquid level in the evaporator E falls below the set value, this is detected by the liquid level gauge 50. is detected, the control valve 42 is opened by the control mechanism 51, a part of the solution is introduced into the pipe 8 through the solution introduction pipe 41, enters the lower part of the evaporator E, raises the refrigerant liquid level, and the refrigerant pump PM
It is sent into the piping 9 by.

冷媒液中に溶液が混入すると比重が増大し、最
高1.6程度に達することもある。予め設定された
比重設定値(例えば1.2)を越えると、フロート
54は浮上し最高位置に達しリードスイツチ53
を作動せしめて制御弁47を閉じ、冷媒液はオリ
フイス45に絞られて低流量となり、ポンプの所
要動力も設定値以内におさまる。一方冷媒比重が
設定値まで上昇することにより、又は冷媒スプレ
ー量の減少により蒸発器Eの伝熱低下により溶液
サイクルは濃い方に移動するので過度に冷媒液面
が低下することもなく、従つて冷媒濃度がこれ以
上濃くなることもない。冷水負荷の上昇又は冷却
水温度の上昇により溶液サイクルは高濃度とな
り、冷媒液面が上昇し冷媒比重が低下するので制
御弁47が再び開く。
When the solution is mixed into the refrigerant liquid, the specific gravity increases and can reach a maximum of about 1.6. When the specific gravity exceeds a preset specific gravity setting value (for example, 1.2), the float 54 rises to the top and reaches the highest position, and the reed switch 53 is activated.
is activated to close the control valve 47, and the refrigerant liquid is throttled by the orifice 45 to a low flow rate, and the required power of the pump also falls within the set value. On the other hand, as the specific gravity of the refrigerant increases to the set value, or as the amount of refrigerant spray decreases, the heat transfer of the evaporator E decreases, and the solution cycle moves to the rich side, so the refrigerant liquid level does not drop excessively, and therefore The refrigerant concentration will not become any higher. The solution cycle becomes highly concentrated due to an increase in the chilled water load or a rise in the temperature of the coolant, and the refrigerant liquid level rises and the refrigerant specific gravity decreases, so that the control valve 47 opens again.

本実施例は上記の如く構成され作用するので、
蒸発器Eの中の冷媒液の比重が一時的に大きくな
つた場合に、冷媒ポンプPMの流量を減少せしめ
て所要動力が過大となるのを防ぎ、通常運転時の
動力に近い出力のモータ及び冷媒ポンプPMを選
定することができ通常運転時の効率を高めて消費
動力を低減し、またモータ、冷媒ポンプPMの出
力を小さく選択して設備品を低減することが可能
となる。
Since this embodiment is configured and operates as described above,
When the specific gravity of the refrigerant liquid in the evaporator E temporarily increases, the flow rate of the refrigerant pump PM is reduced to prevent the required power from becoming excessive, and a motor with an output close to the power during normal operation is used. The refrigerant pump PM can be selected to increase efficiency during normal operation and reduce power consumption, and the output of the motor and refrigerant pump PM can be selected to be small, reducing the number of equipment.

冷媒液の比重が大となるのは、冷凍能力に対し
て負荷が相対的に小なる場合であるので、散布量
を減少せしめても差し支えない。
Since the specific gravity of the refrigerant liquid becomes large when the load is relatively small with respect to the refrigerating capacity, there is no problem in reducing the amount of spraying.

第3図は制御弁47が配管9に直接設けられた
ものである。この場合制御弁47は段階的又は連
続的な流量制御弁とし、比重検出機構48は比重
を段階的又は連続的に検出する機構とする。
In FIG. 3, the control valve 47 is provided directly in the pipe 9. In FIG. In this case, the control valve 47 is a stepwise or continuous flow rate control valve, and the specific gravity detection mechanism 48 is a mechanism that detects specific gravity stepwise or continuously.

段階的比重検出機構の例を第4図に示す。管5
2には内部に3個のリードスイツチ58,59,
60が設けられ、外側にはストツパ56,57,
61,62の間にフロート63,64,65が昇
降可能に装着されている。フロート63,64,
65の比重S1,S2,S3はそれぞれ異なり例えばS1
<S2<S3となつている。66,67,68は磁石
である。
An example of a stepwise specific gravity detection mechanism is shown in FIG. tube 5
2 has three reed switches 58, 59,
60 is provided, and stoppers 56, 57,
Floats 63, 64, 65 are mounted between 61, 62 so as to be movable up and down. Float 63, 64,
The specific gravity S 1 , S 2 , and S 3 of 65 are different, for example, S 1
<S 2 <S 3 . 66, 67, and 68 are magnets.

冷媒液の比重SRがSR<S1なる場合には全ての
フロート63,64,65は下降していてリード
スイツチ58,59,60は作用しないが、S1
R<S2になるとフロート54のみが浮上してリ
ードスイツチ58を作動せしめて信号を発する。
同様にしてS2<SR<S3,S3<SRなる状態の検出
が行なわれる。
When the specific gravity S R of the refrigerant liquid becomes S R <S 1 , all the floats 63, 64, 65 are lowered and the reed switches 58, 59, 60 do not operate, but S 1 <
When S R <S 2 , only the float 54 floats up, actuating the reed switch 58 and emitting a signal.
In the same way, the states S 2 <S R <S 3 and S 3 <S R are detected.

流量制御としては弁を用いずに冷媒ポンプPM
の軸回転数を制御して行なつてもよい。回転数制
御としては、モータの回転数制御、中間の動力伝
達機構中の変速比の制御などが行なわれる。
Refrigerant pump PM is used for flow control without using a valve.
This may also be done by controlling the rotational speed of the shaft. The rotation speed control includes control of the rotation speed of the motor, control of the gear ratio in the intermediate power transmission mechanism, and the like.

弁を用いる場合でも、冷媒ポンプPMの回転数
制御を併用することができる。併用、単独何れの
場合でも冷媒液比重が高い場合に冷媒ポンプPM
を停止するよう制御してもよい。
Even when a valve is used, rotation speed control of the refrigerant pump PM can be used in combination. Refrigerant pump PM when the specific gravity of the refrigerant liquid is high, whether used in combination or alone.
may be controlled to stop.

冷媒液の比重変動に関与する冷媒液比重変動要
素の検出としては溶液濃度を直接又は間接的に検
出してもよい。また冷媒液面は一定でも、冷媒ポ
ンプPMの吐出圧又は差圧は比重により変化する
ので、この吐出圧又は差圧を検出してもよい。
To detect the refrigerant liquid specific gravity variation element that is involved in the specific gravity variation of the refrigerant liquid, the solution concentration may be detected directly or indirectly. Further, even if the refrigerant liquid level is constant, the discharge pressure or differential pressure of the refrigerant pump PM changes depending on the specific gravity, so this discharge pressure or differential pressure may be detected.

本発明は、吸収器、発生器、凝縮器、蒸発器、
溶液熱交換器、溶液ポンプ、冷媒ポンプ及びこれ
らを接続する溶液経路、冷媒経路を備えて冷凍サ
イクルを形成する吸収冷凍機において、前記吸収
器内、発生器内又は溶液経路内の溶液を前記蒸発
器に導く溶液導入系路を備え、前記蒸発器内の冷
媒液の比重変動に関連する冷媒液比重変動要素を
検出する比重検知機構を備え、該比重検知機構か
らの信号により、前記蒸発器内の冷水管に散布さ
れる冷媒液の流量を制御する流量制御機構を備え
たことにより、冷媒ポンプの出力を過大ならざる
ように適正に選ぶことができ、通常運転時におけ
る効率を向上せしめて動力消費量を低減し、また
モータの出力を小さく選定することができて設備
費を低減することが可能な吸収冷凍機を提供する
ことができ、実用上、省エネルギ上極めて大なる
効果を有するものである。
The present invention provides absorbers, generators, condensers, evaporators,
In an absorption refrigerator that forms a refrigeration cycle by including a solution heat exchanger, a solution pump, a refrigerant pump, and a solution path and a refrigerant path that connect these, the solution in the absorber, generator, or solution path is evaporated. a specific gravity detection mechanism for detecting a refrigerant liquid specific gravity variation element related to a specific gravity variation of the refrigerant liquid in the evaporator; Equipped with a flow rate control mechanism that controls the flow rate of refrigerant liquid sprayed into the cold water pipes, the output of the refrigerant pump can be appropriately selected to avoid excessive output, improving efficiency during normal operation and reducing power consumption. It is possible to provide an absorption chiller that can reduce consumption and reduce equipment costs by selecting a small motor output, and has an extremely large effect in terms of practical and energy saving. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に関するもので、第1図
はフロー図、第2図は比重検出機構の実施例の説
明図、第3図は別の実施例の蒸発器付近のフロー
図、第4図は比重検出機構の別の実施例の説明図
である。 A……吸収器、G……発生器、C……凝縮器、
E……蒸発器、X……溶液熱交換器、PS……溶
液ポンプ、PM……冷媒ポンプ、1,2,3,
4,5……配管、6……スプレー管、7……オー
バーフロー管、8,9……配管、10……スプレ
ー管、11……配管、12……加熱管、13……
熱源熱量調節弁、14……冷却水ポンプ、15…
…配管、16……冷却水管、17……配管、18
……冷却水管、19……配管、20……冷水管、
21,22……配管、41……溶液導入管、42
……制御弁、43……冷媒液導入管、44……制
御弁、45……オリフイス、46……バイパス、
47……制御弁、48……比重検出機構、49…
…制御機構、50……液面計、51……制御機
構、52……管、53……リードスイツチ、54
……フロート、55……磁石、56,57……ス
トツパ、58,59,60……リードスイツチ、
61,62……ストツパ、63,64,65……
フロート、66,67,68……磁石。
The drawings relate to embodiments of the present invention; FIG. 1 is a flow diagram, FIG. 2 is an explanatory diagram of an embodiment of the specific gravity detection mechanism, FIG. 3 is a flow diagram of another embodiment near the evaporator, and FIG. The figure is an explanatory diagram of another embodiment of the specific gravity detection mechanism. A...absorber, G...generator, C...condenser,
E... Evaporator, X... Solution heat exchanger, PS... Solution pump, PM... Refrigerant pump, 1, 2, 3,
4, 5... Piping, 6... Spray pipe, 7... Overflow pipe, 8, 9... Piping, 10... Spray pipe, 11... Piping, 12... Heating pipe, 13...
Heat source heat amount control valve, 14...Cooling water pump, 15...
...Piping, 16...Cooling water pipe, 17...Piping, 18
...Cooling water pipe, 19...Piping, 20...Cold water pipe,
21, 22...Piping, 41...Solution introduction pipe, 42
... Control valve, 43 ... Refrigerant liquid introduction pipe, 44 ... Control valve, 45 ... Orifice, 46 ... Bypass,
47... Control valve, 48... Specific gravity detection mechanism, 49...
...Control mechanism, 50...Liquid level gauge, 51...Control mechanism, 52...Pipe, 53...Reed switch, 54
...Float, 55...Magnet, 56,57...Stopper, 58,59,60...Reed switch,
61, 62... Stoppa, 63, 64, 65...
Float, 66, 67, 68... magnet.

Claims (1)

【特許請求の範囲】 1 吸収器、発生器、凝縮器、蒸発器、溶液熱交
換器、溶液ポンプ、冷媒ポンプ及びこれらと接続
する溶液経路、冷媒経路を備えて冷凍サイクルを
形成する吸収冷凍機において、前記吸収器内、発
生器又は溶液経路内の溶液を前記蒸発器に導く溶
液導入系路を備え、前記蒸発器内の冷媒液の比重
変動に関連する冷媒液比重変動要素を検出する比
重検知機構を備え、該比重検知機構からの信号に
より、前記蒸発器内の冷水管に散布される冷媒液
の流量を制御する流量制御機構を備えたことを特
徴とする吸収冷凍機。 2 前記冷媒液比重変動要素の検出が、前記蒸発
器内の冷媒液の比重検出により行なわれる特許請
求の範囲第1項記載の吸収冷凍機。 3 前記比重検知機構が、所定の比重を有し、磁
石を組み込んだフロートを昇降可能に保持し、該
フロートの動きを検出するリードスイツチを備え
た検知機構である特許請求の範囲第2項記載の吸
収冷凍機。 4 前記流量制御機構が、前記冷媒ポンプの吐出
側流路に設けた流量制御弁である特許請求の範囲
第1項記載の吸収冷凍機。 5 前記流量制御機構が、前記冷媒ポンプの回転
数を制御する機構である特許請求の範囲第1項記
載の吸収冷凍機。
[Claims] 1. An absorption refrigerating machine comprising an absorber, a generator, a condenser, an evaporator, a solution heat exchanger, a solution pump, a refrigerant pump, and a solution path and a refrigerant path connected thereto to form a refrigeration cycle. A specific gravity system comprising: a solution introduction system for guiding a solution in the absorber, the generator, or the solution path to the evaporator, and detecting a refrigerant liquid specific gravity variation element related to specific gravity variation of the refrigerant liquid in the evaporator; An absorption refrigerator comprising: a detection mechanism; and a flow rate control mechanism that controls the flow rate of refrigerant liquid sprayed into cold water pipes in the evaporator based on a signal from the specific gravity detection mechanism. 2. The absorption refrigerator according to claim 1, wherein the refrigerant liquid specific gravity variation element is detected by detecting the specific gravity of the refrigerant liquid in the evaporator. 3. The specific gravity detection mechanism is a detection mechanism that holds a float that has a predetermined specific gravity and incorporates a magnet so as to be able to rise and fall, and is equipped with a reed switch that detects movement of the float. absorption refrigerator. 4. The absorption refrigerator according to claim 1, wherein the flow rate control mechanism is a flow rate control valve provided in the discharge side flow path of the refrigerant pump. 5. The absorption refrigerator according to claim 1, wherein the flow rate control mechanism is a mechanism for controlling the rotation speed of the refrigerant pump.
JP13731879A 1979-10-24 1979-10-24 Absorption refrigerating machine Granted JPS5661557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13731879A JPS5661557A (en) 1979-10-24 1979-10-24 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13731879A JPS5661557A (en) 1979-10-24 1979-10-24 Absorption refrigerating machine

Publications (2)

Publication Number Publication Date
JPS5661557A JPS5661557A (en) 1981-05-27
JPS6115342B2 true JPS6115342B2 (en) 1986-04-23

Family

ID=15195872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13731879A Granted JPS5661557A (en) 1979-10-24 1979-10-24 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JPS5661557A (en)

Also Published As

Publication number Publication date
JPS5661557A (en) 1981-05-27

Similar Documents

Publication Publication Date Title
US3296814A (en) Absorption refrigeration systems, methods, and absorbent compositions
JPS6148062B2 (en)
US4454726A (en) Control device of absorption type cold and warm water system
JPS6115342B2 (en)
JPH08114360A (en) Double effective absorption type water cooler/heater
JP3602505B2 (en) Triple effect absorption chiller / heater with liquid level control function
CN212457500U (en) Absorption type refrigerating unit
JPS62186178A (en) Absorption refrigerator
JP2538280B2 (en) Absorption refrigerator
JPH0447226B2 (en)
US3555839A (en) Variable vapor pressure absorption refrigeration systems
JPS6115985B2 (en)
US2146077A (en) Refrigeration
JP3182233B2 (en) Operation control method in absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
KR100423817B1 (en) Control method of absorption chiller
JPH0379631B2 (en)
JPH07218026A (en) Absorption type cooling and heating machine
KR20000006027A (en) Absorptive refrigerator
JPH0635905B2 (en) Absorption refrigerator
JPH02203166A (en) Absorption type refrigerator
JP2001317837A (en) Absorption refrigerator and method for controlling absorption refrigerator
JPS6138786B2 (en)
JPS62138663A (en) Absorption refrigerator
JPS62162859A (en) Absorption refrigerator