JPS61152645A - Optical resolution of beta-chloro-dl-alanine - Google Patents

Optical resolution of beta-chloro-dl-alanine

Info

Publication number
JPS61152645A
JPS61152645A JP27358084A JP27358084A JPS61152645A JP S61152645 A JPS61152645 A JP S61152645A JP 27358084 A JP27358084 A JP 27358084A JP 27358084 A JP27358084 A JP 27358084A JP S61152645 A JPS61152645 A JP S61152645A
Authority
JP
Japan
Prior art keywords
monohydrochloride
alanine
chloro
solution
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27358084A
Other languages
Japanese (ja)
Inventor
Osami Inoue
長三 井上
Atsuko Murayama
村山 敦子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP27358084A priority Critical patent/JPS61152645A/en
Publication of JPS61152645A publication Critical patent/JPS61152645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To carry out the optical resolution of the titled compound useful as synthetic intermediate of various pharmaceuticals and agricultural chemicals, etc., by dissolving beta-chloro-DL-alanine in an aqueous solution of hydrochloric acid, and crystallizing the compound from the solution as a monohydrochloride under specific condition. CONSTITUTION:beta-Chloro-DL-alanine (abbreviated as DL-ClAla) is dissolved in an aqueous solution of hydrochloric acid, and the objective optically active beta-chloroalanine monohydrochloride is crystallized from the solution under the condition to attain the solution saturated or supersaturated with DL-ClAla monohydrochloride (e.g. by cooling the solution). Concretely, a saturated or supersaturated hydrochloric acid solution of DL-ClAla monohydrochloride is inoculated with a crystal of optically active beta-chloroalanine monohydrochloride as a seed crystal to effect the preferential crystallization of the same kind of optically active isomer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、β−クロロ−DL−アラニン(以下。[Detailed description of the invention] [Industrial application field] The present invention is directed to β-chloro-DL-alanine (hereinafter referred to as β-chloro-DL-alanine).

単にD L −0LALa  と略記する。)の光学分
割方法に関する。更に詳しく言えば、不発#JはDL−
cthtat”一塩酸塩として光学分割する方法に関す
る。
It is simply abbreviated as DL-0LALa. ) regarding the optical separation method. To be more specific, unexploded #J is DL-
cthtat” monohydrochloride.

〔従来の技術〕[Conventional technology]

β−クロロアラニン(OLA/a ) Ldそれ自身で
生理活性を有するアミノ酸でl) j) (J、Bio
l、 Ohem、。
β-chloroalanine (OLA/a) Ld is an amino acid that has physiological activity by itself l) j) (J, Bio
l, Ohem,.

第252巻、3170頁)、例えば、β−クロロ−L−
アラニン(以下、L −CtAta と略記する。)は
酵素的にβ−置換アミノ酸を製造する際の前駆体でろり
、一方β−クロロ−D−アラニン(以下、D −02A
ta と略記する。)はめる棟の酵素の阻害剤として知
られ、酵素メカニズムの研究に用いられている。
252, p. 3170), for example, β-chloro-L-
Alanine (hereinafter abbreviated as L-CtAta) is a precursor for enzymatically producing β-substituted amino acids, while β-chloro-D-alanine (hereinafter abbreviated as D-02A
It is abbreviated as ta. ) It is known as an inhibitor of the enzyme in the ridge, and is used in research on enzyme mechanisms.

β−クロロアラニンは更に抗生物質サイクロセリンや含
硫黄アミノ酸システィン、その他の医薬品、農薬等の合
成中間体としても有用な化合物である。
β-chloroalanine is also a compound useful as a synthetic intermediate for the antibiotic cycloserine, the sulfur-containing amino acid cysteine, and other pharmaceuticals and agricultural chemicals.

β−クロロアラニンは、クロロアセトアルデヒドを原料
として水溶液中で重亜硫酸塩又は亜硫酸塩付加物とし、
これをアンモニア、次いで青酸若しくはその塩と反応さ
せてα−アミノニβ−クロロプロピオニトリルとし念後
酸性加水分解することによって工業的に合成することが
できるが(特公昭5a −2214oi)、D L −
czAza k光学活性体に分割する方法については従
来全く報告されておらず、従って工業製品としてのβ−
クロロアラニンの利用に限られたものであり、L−C2
At&およびD −C6ALa  を必要とするときに
はL−セリンやD−セリンから化学的に誘導しているの
が実情である。しかし、セリンは原料として高価なだけ
でなく、セリンのβ−ヒドロ−?7基の塩素置換反応は
収率が低く、工業的に有利な方法とは言いがたい。
β-Chloroalanine is produced by converting chloroacetaldehyde into bisulfite or sulfite adduct in an aqueous solution using chloroacetaldehyde as a raw material.
This can be industrially synthesized by reacting it with ammonia and then with hydrocyanic acid or its salt to give α-aminoniβ-chloropropionitrile, followed by acidic hydrolysis (Japanese Patent Publication No. 5a-2214oi), but D L −
There have been no reports on the method of dividing czAzak into optically active substances, and therefore β-
It is limited to the use of chloroalanine, and L-C2
In reality, when At& and D -C6ALa are required, they are chemically derived from L-serine or D-serine. However, serine is not only expensive as a raw material, but also serine's β-hydro-? The 7-group chlorination reaction has a low yield and cannot be said to be an industrially advantageous method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、D L −01Atat光学分割する
方法を提供し、光学活性なβ−クロロアラニンから種々
の誘導体t−製造する道を拓かんとするものである。す
なわち、光学活性なβ−クロロアラニンからラセミ化を
伴うことなく光学活性なセリン、システィン、S−カル
ボキシメチルシスティンなどを合成する方法は既に知ら
れており、本発明の目的を達成することには極めて大き
な意義がある。
An object of the present invention is to provide a method for optically resolving DL-01Atat, thereby opening the way to the production of various derivatives from optically active β-chloroalanine. That is, methods for synthesizing optically active serine, cysteine, S-carboxymethyl cysteine, etc. from optically active β-chloroalanine without racemization are already known, and in order to achieve the object of the present invention, It is extremely significant.

〔問題点を解決するための手段および作用コα−アミノ
酸の光学的分割方法としては(1)物理的方法、(2)
生化学的方法および(3)化学的方法が多数知られてい
る。
[Means for solving the problem and methods for optically resolving functional α-amino acids include (1) physical methods; (2)
A number of biochemical and (3) chemical methods are known.

本発明者等はC1,ALaが天然には存在しないα−ア
ミノ酸であることから、微生物的るるいに酵素的に分割
する(2)の生化学的方法では困難が予想されるので、
物理化学的方法による分割を検討した。
Since C1 and ALa are α-amino acids that do not exist in nature, the biochemical method (2) of enzymatic resolution using microbial sieves is expected to be difficult.
Partitioning using physicochemical methods was investigated.

まず、CjtALth  ラセミ体の溶液から0体と5
体とが別個の結晶(ラセミ混合物)として晶出し。
First, from a solution of CjtALth racemic body, 0 body and 5 body are
crystallizes as separate crystals (racemic mixture).

かついずれか一方が優先晶出する条件を求めて検討を重
ねた。
Further, repeated studies were conducted to find the conditions under which one of the two preferentially crystallizes.

D L −CIALa の水溶液から生底する結晶は、
いわゆるラセミ化合物の結晶でロタ、水溶液からの優先
晶出は不可能でろることが判明した。
The raw bottom crystals from the aqueous solution of D L -CIALa are
It has been found that preferential crystallization from an aqueous solution is impossible for crystals of so-called racemic compounds.

次に水溶液についてpHや温度を種々変え、更に多種類
の塩を形成させて、ラセミ混合物として晶出する条件を
探策したが、C1Ata 自体が加熱によシ、ま虎特に
アルカリ性条件下で非常に分解しやすく、晶析操作に困
難が伴うことが明らかとなった。
Next, we investigated the conditions under which C1Ata itself would crystallize as a racemic mixture by varying the pH and temperature of the aqueous solution and forming many different types of salts. It was found that the crystallization process was difficult because the crystallization process was difficult.

一方02Ata は塩酸水溶液中では安定であることが
見出され九ので、C1At1a晶の塩酸水溶液中での固
液平衡を測定し友ところ、例えば20Cでは第1図に示
すような固液平衡曲線が得らfL次。
On the other hand, 02Ata was found to be stable in an aqueous hydrochloric acid solution, so the solid-liquid equilibrium of the C1At1a crystal in an aqueous hydrochloric acid solution was measured. Obtain fL order.

すなわち、液底の固体結晶(液底体)框広いrIk度範
囲(図の破線部)にわ之って生塩酸塩(0tAta・9
11C1) t−形成し、Xi@回折の結果このものは
ラセミ化合物であることが判明し友。しかし塩酸濃度が
ある程度以上になると(20℃では24%以上)%液底
体が一塙酸塩(C1At& −HCl )に変わり、こ
の一塩酸mriX線回折の結果ラセミ混合物でろって優
先晶出法の適用が可能でろることが判明し、この知見に
基づいてここに不発明忙完成するに至った。
In other words, raw hydrochloride (0 tAta 9
11C1) t-formed, and as a result of Xi@diffraction, this compound was found to be a racemic compound. However, when the concentration of hydrochloric acid exceeds a certain level (more than 24% at 20°C), the liquid base changes to monohydrochloric acid salt (C1At&-HCl), and the result of monohydrochloric acid mri X-ray diffraction shows that it is a racemic mixture. It turned out that it would be possible to apply the method, and based on this knowledge, the invention was completed.

すなわち、本発明はβ−クロロ−DL−アラニンを塩酸
水溶液とし、この溶液がβ−クロロ−DL  。
That is, in the present invention, β-chloro-DL-alanine is made into a hydrochloric acid aqueous solution, and this solution is β-chloro-DL.

−アラニン塩酸塩について飽和もしくは過飽和となる状
態において光学活性なβ−クロロアラニン・一塩酸mを
晶出せしめることを特徴とするβ−りeICIアラニン
の光学分割方法である。
- A method for optical resolution of β-eICI alanine characterized by crystallizing optically active β-chloroalanine monohydrochloride m in a state where alanine hydrochloride is saturated or supersaturated.

本発明の光学分割方法では、塩酸水溶液中での液底体組
成が一塩盾塩を維持する条件で島田操作を行う心安がめ
るが、一塩酸塩のl1i1iIy、f:維持する曖低限
度の液中1順濃度は実験的に求めることができ1例えば
10℃でに23重搬チ、20℃では前述のように24重
量%でるる。しかしこの値は平衡組成でめり、非平衡状
態を通る実操作では準安定領域を考慮して、確実に一塩
酸塩の結晶を析出させるためにある程度余裕のある塩酸
濃度で晶出操作を行うのが良い。
In the optical resolution method of the present invention, it is safe to perform the Shimada operation under the condition that the liquid bottom composition in the aqueous hydrochloric acid solution is maintained as a monosalt shield salt. The average concentration can be determined experimentally, and for example, at 10°C it is 23% by weight, and at 20°C it is 24% by weight as mentioned above. However, this value varies depending on the equilibrium composition, and in actual operations under non-equilibrium conditions, the metastable region is taken into consideration, and the crystallization operation is performed at a hydrochloric acid concentration with some margin to ensure the precipitation of monohydrochloride crystals. It's good.

塩酸濃度の調整を分割操作中に実施するのは繁雑でろる
ので、一定濃度の塩酸水溶液(例えば5%)に、別途製
造したC1ot&・Hat結晶を溶かすという方法が採
用される。
Since adjusting the hydrochloric acid concentration during the dividing operation is complicated and slow, a method is adopted in which separately produced C1ot&.Hat crystals are dissolved in an aqueous solution of hydrochloric acid of a constant concentration (for example, 5%).

なお、C2AZa−HC6結晶を純水に溶解して、冷却
またに濃縮等によって晶出操作を行うと、ラセミ体でも
光学活性体でも生塩酸塩が析出するので好ましくない。
Note that it is not preferable to dissolve C2AZa-HC6 crystals in pure water and perform crystallization operations such as cooling or concentration, since raw hydrochloride will precipitate, whether it is a racemic form or an optically active form.

D L −CLALe、−HCjl、の塩酸水溶液を過
飽和状態にする方法は、例えば(1)溶液を冷却する方
法、(2)塩酸濃度を上げる方法および(3)一定温度
の飽和溶液に高温の飽和溶液を徐々に供給する方法等通
常の手段でよい。
D Any ordinary means such as a method of gradually supplying the solution may be used.

晶析操作を行う温度は、06Ata が塩酸水浴液中で
も80℃以上になると徐々に分解するので、70℃以下
が望ましい。
The temperature at which the crystallization operation is performed is desirably 70°C or lower, since 06Ata gradually decomposes even in a hydrochloric acid water bath at temperatures above 80°C.

D L −CLALIL の過飽和の程度は、高い光学
純度のものを得るためには、なるべく低いことが望まし
く、結晶の成長速度に見合い、かつ核発生を伴わlい範
囲が必要でめる。
In order to obtain high optical purity, the degree of supersaturation of D L -CLALIL is desirably as low as possible, and a range that is commensurate with the crystal growth rate and that does not involve nucleation is required.

本発明の方法では、具体的にはまず第一にβ−クロロ−
DL−アラニン・一塩酸塩の飽和もしくは過飽和塩酸水
溶液に光学活性なβ−クロロアラニン・一塩酸塩の結晶
を種晶として接種し、これと同種の光学活性体を優先的
に晶出させることにより光学分割を行うことができる。
Specifically, in the method of the present invention, β-chloro-
By inoculating optically active β-chloroalanine monohydrochloride crystals as seed crystals into a saturated or supersaturated aqueous hydrochloric acid solution of DL-alanine monohydrochloride, and preferentially crystallizing the optically active substance of the same type. Optical separation can be performed.

この際、核発生2防ぐためにラセミ体の飽和点で種晶を
接種し九後、過飽和状態に導くことが好ましい。
At this time, in order to prevent nucleation, it is preferable to inoculate seed crystals at the saturation point of the racemate and then bring it to a supersaturated state.

接種する種晶については特に制限になく、光学純度の低
いものでも分割操作は可能であるが操作が繁雑となる。
There are no particular restrictions on the seed crystals to be inoculated, and even those with low optical purity can be divided, but the operation will be complicated.

種晶として乾燥状態の一塩酸塩を投入すると核発生を伴
いやすく、光学純度が低下する原因となる。
When dry monohydrochloride is used as a seed crystal, nucleation tends to occur, which causes a decrease in optical purity.

光学純度の低いものや、乾燥状態の結晶を種晶とする場
合には、まず未飽和状態の溶液中に接種する前処理を行
った後、過飽和状態にする必要がある。
When using crystals with low optical purity or dry crystals as seed crystals, it is necessary to perform a pretreatment of inoculating the seed crystals into an unsaturated solution, and then bring the seed crystals to a supersaturated state.

本発明による優先晶出法は、結晶の成長を基本とするも
のであるが、結晶は一般にそれぞれ独自の晶癖をもつ多
面体でめシ、通常各面の成長速度は異なる。また生成す
る結晶の粒径も溶解度や温度によって異なる。更に、ラ
セミ体の存在する溶液から晶出させるときと、一方の光
学活性体のみの溶液から晶出させるときで光学活性体の
晶癖が異なることがある。
The preferential crystallization method according to the present invention is based on the growth of crystals, but each crystal is generally a polyhedron with its own crystal habit, and the growth rate of each face is usually different. Furthermore, the particle size of the formed crystals also varies depending on the solubility and temperature. Furthermore, the crystal habit of the optically active form may differ depending on whether it is crystallized from a solution containing the racemic form or when it is crystallized from a solution containing only one of the optically active forms.

別個に製造した光学活性体t−篩分けして粒径を揃えて
種晶としても前記の諸条件に合致しない場合には、初期
の晶析がスムースに進行しないことがある。
If the separately produced optically active material is t-sieved to have a uniform particle size and the seed crystals do not meet the above conditions, the initial crystallization may not proceed smoothly.

従って塩酸水溶液中に直接種晶を晶出せしめることが好
ましい。すなわち分割すべきラセミ体溶液中に光学活性
体を溶かしておき、冷却等によって最初に光学活性体の
みを晶出させて、これを種晶とすると晶癖と粒径が揃い
、また初期に他の光学活性体の核発生が防止でき、スム
ースに分割晶析操作を進めることができる。
Therefore, it is preferable to directly crystallize the seed crystals in an aqueous hydrochloric acid solution. In other words, the optically active substance is dissolved in a solution of the racemate to be separated, and only the optically active substance is first crystallized by cooling, etc. If this is used as a seed crystal, the crystal habit and particle size are uniform, and the other crystals are initially separated. Nucleation of the optically active substance can be prevented, and the split crystallization operation can proceed smoothly.

このように、本発明の具体的な第二の方法ではβ−クロ
ロ−DL−アラニン・一塩酸塩の過飽和塩酸水溶液から
β−クロロ−D−アラニンもしくはβ−りoローL−ア
ラニンのいずれか一方の過量に存在する光学活性な一塩
酸塩を晶出させて種晶とし、これを成長させることによ
って光学分割が行われる。
As described above, in the second specific method of the present invention, either β-chloro-D-alanine or β-riol-L-alanine is obtained from a supersaturated aqueous hydrochloric acid solution of β-chloro-DL-alanine monohydrochloride. Optical resolution is performed by crystallizing the optically active monohydrochloride salt present in excess of one of the two and using it as a seed crystal, and growing this crystal.

本発明の方法によりラセミ体の溶液から、一方の光学活
性体のみを晶出させ、その結晶5c成長させると、他方
の活性体が溶液中で過剰となシ過飽和状態となっていく
。A飽和度が大きくなシすざると、他方の光学活性体の
核発生が生じ、光学分割に失敗に終るので注意を要する
。実際に過飽和がどの程度まで許さ几るかに、晶析槽の
形状、攪拌状態、種晶の粒径分布等によっても異なり、
実験的に決める必要がめる。
When only one optically active form is crystallized from a racemic solution by the method of the present invention and its crystal 5c is grown, the other active form becomes excessive in the solution and becomes supersaturated. If the degree of A saturation is too high, nucleation of the other optically active substance will occur, resulting in failure of optical resolution, so care must be taken. The extent to which supersaturation is actually allowed varies depending on the shape of the crystallization tank, stirring conditions, particle size distribution of seed crystals, etc.
It is necessary to determine this experimentally.

本発明の光学分割方法の場合、完全混合槽型の晶析槽を
用い、翼径の大きいアンカー型の攪拌翼で粒子基準レイ
ノルズ数が充分大きくなるように注意して晶析を行えば
5℃の温度過飽和度が可能であり、固液分離に際しても
十分安定で、他方の光学活性体が起晶することなく操作
できる。
In the case of the optical separation method of the present invention, if crystallization is performed using a complete mixing tank type crystallization tank and using an anchor type stirring blade with a large blade diameter to ensure that the particle-based Reynolds number is sufficiently large, the crystallization can be carried out at 5°C. It is possible to achieve a temperature supersaturation degree of , is sufficiently stable even during solid-liquid separation, and can be operated without crystallization of the other optically active substance.

一方の光学活性ftp別した母液には他方の光学活性体
が過剰に存在するので、D L −CIAta・HO4
tO4中るかまたは補給せずに、また過剰に存在する方
の種晶を接種するかまたは溶液中で種晶を晶出せしめて
同様にして分割操作を行うことができる。
Since the mother liquor separated from one optically active ftp contains an excess of the other optically active substance, D L -CIAta・HO4
The splitting operation can be carried out in a similar manner either in tO4 or without supplementation, by inoculating the seed crystals present in excess, or by crystallizing the seed crystals in solution.

なお、本発明では第三の具体的方法としてβ−クロロ−
DL−アラニン・一塩酸塩の飽和もしくは過飽和塩酸水
溶液に、粒度の大きく異なる、β−クロロ−L−アラニ
ン・−[[トβ−/ 00−D−アラニン・一塩酸塩と
を同時に種晶として接種し、それぞれの結晶を成長せし
めた後戸別した結晶を篩分けして光学分割することも可
能でるる。
In addition, in the present invention, as a third specific method, β-chloro-
Into a saturated or supersaturated aqueous hydrochloric acid solution of DL-alanine monohydrochloride, β-chloro-L-alanine monohydrochloride with significantly different particle sizes was simultaneously added as seed crystals. It is also possible to inoculate, grow each crystal, and then separate the crystals for optical resolution by sieving.

本発明の方法で分割てれた光学活性体の一塩酸塩に、こ
n2常法によって水に浴かしてアルカリでpas、sに
調整すれば光学活性なβ−クロロアラニンとすることが
できるが、他の誘導体の台底原料とする場合等に(グ、
一塩酸塩の状態で使用することもできる。
Optically active β-chloroalanine can be obtained by bathing the optically active monohydrochloride separated by the method of the present invention in water and adjusting it to pas and s with an alkali using the conventional method. However, when using it as a base material for other derivatives (G,
It can also be used in the monohydrochloride form.

〔実施例〕 以下、本発明の光学分割方法について代表的な実施例お
よび比較例を示し、更に具体的に説明するが、これらは
本発明についての理解を容易にするためのものでろって
、本発明はこれらの例によって制限されるものでにない
[Examples] Hereinafter, typical examples and comparative examples of the optical separation method of the present invention will be shown and explained in more detail, but these are intended to facilitate understanding of the present invention. The invention is not limited to these examples.

実施例1 アンカー型の攪拌翼を備えた晶析槽(10/、)でD 
L −CjLALa−1101結晶5kgを5%塩酸水
溶液五7kgに溶かし、さらにL −0tAta −F
i01結晶500tを混合して45℃に加温した。結晶
が完全に溶解したのち、かきまぜなから液温t−25℃
まで2時間かけて冷却し、L体を晶析させた。次いで、
攪拌しながら25℃から20℃まで3時間かけて冷却し
たのち、すみやかに戸別してL体の結晶660tt−得
た。比旋光度は〔α]D=4.02(0=:10.  
I NHC/、 )でろフ、光学純度に100チでめっ
た。
Example 1 D in a crystallization tank (10/,) equipped with an anchor-type stirring blade
Dissolve 5 kg of L -CjLALa-1101 crystals in 57 kg of 5% aqueous hydrochloric acid solution, and further dissolve L -0tAta -F.
500 tons of i01 crystals were mixed and heated to 45°C. After the crystals are completely dissolved, do not stir until the liquid temperature is t-25℃.
The mixture was cooled for 2 hours until L-form was crystallized. Then,
The mixture was cooled from 25° C. to 20° C. over 3 hours with stirring, and then immediately separated from each other to obtain 660 tt of L-form crystals. The specific optical rotation is [α]D=4.02 (0=:10.
The optical purity was determined by 100%.

ν液を更に15℃まで冷却し、析出した結晶を戸別した
ところ、9体結晶2091が得られた。
When the ν liquid was further cooled to 15° C. and the precipitated crystals were separated from each other, 9 crystals 2091 were obtained.

このものの比旋光度は〔C3”1=−sq s (c=
10、INHC2)であり、光学純度1j97.7%で
めった。
The specific optical rotation of this substance is [C3”1=-sq s (c=
10, INHC2), and the optical purity was 1j97.7%.

実施例2 実施例1の場合と同一の晶析槽に、DL−C1ALl!
L・Hatの5チ塩酸水溶液(#度5[19%) 9.
9 klilにL −C1Ath−HOl  560 
fを溶かし、液温ヲ45℃とした。45℃から25℃ま
でかきまぜながら2時間かけて冷却し、途中でL体の種
晶を微量添加して核を生ぜしめ、L体の晶析を行った。
Example 2 In the same crystallization tank as in Example 1, DL-C1ALl!
L・Hat's 5-dihydrochloric acid aqueous solution (# degree 5 [19%) 9.
9 klil to L-C1Ath-HOl 560
f was dissolved and the liquid temperature was brought to 45°C. The mixture was cooled from 45° C. to 25° C. over 2 hours with stirring, and a small amount of L-form seed crystals were added midway through to generate nuclei, and the L-form was crystallized.

次に25℃から24℃まで1時間、24℃から20℃ま
で2時間かけて冷却した後、すみやかに濾過してL体の
結晶749tを得念。光学純度は95%でろつ念。
Next, it was cooled from 25°C to 24°C for 1 hour and from 24°C to 20°C for 2 hours, and then immediately filtered to obtain 749t crystals of the L form. Optical purity is 95%.

F液にD L −CIALa−HCL 400 fと若
干の5チ塩酸水溶液とD −C1ALh−HCL  3
80 ?を補給し、45℃に昇温して、同様に晶析操作
を行い、9体698 f5を得た。光学純度は98%で
めつ念。
In the F solution, D L -CIALa-HCL 400 f, some 5-thihydrochloric acid aqueous solution and D -C1ALh-HCL 3
80? was replenished, the temperature was raised to 45°C, and the same crystallization operation was performed to obtain 9 698 f5. Optical purity is 98%.

実施例3 実施例1と同じ晶析槽で、D Xa −CLAla−H
CL結晶5に9t−5%塩酸水溶液五7時に入れ、30
℃に加温して完全に溶解させた。次に25℃まで冷却し
たところでL −CLAta−HOlの40〜60メツ
シユの結晶500?を接種し、25cで30分間かきま
ぜたのち、20℃まで3時間かけて冷却しな。成長した
結晶を濾過して670tのL体結晶を得た。光学純度は
94.1%でめった。
Example 3 In the same crystallization tank as Example 1, D Xa -CLAla-H
Add 9t-5% hydrochloric acid aqueous solution to CL crystal 5 at 7 o'clock, and add 30
It was warmed to ℃ to completely dissolve it. Next, when cooled to 25°C, 500~40~60 mesh crystals of L-CLAta-HOl were obtained. After inoculating and stirring at 25°C for 30 minutes, cool to 20°C over 3 hours. The grown crystals were filtered to obtain 670t L-form crystals. The optical purity was 94.1%.

比較例 D L −CLALh−HOL結晶t−2,0%塩酸水
溶液に45℃で溶解させ、濃度t−65,3チとして溶
液を!L14klJl冷却晶析槽(5t)に入れて、液
温が40℃に達したところで、L −C2Ata−HO
6結晶250 ft−接第1し、355℃まで五5時間
かけて冷却した。成長した結晶t−濾過して350iの
結晶を得たが、このものの光学純度[70%でめった。
Comparative Example D L -CLALh-HOL crystal t-2. Dissolved in 0% hydrochloric acid aqueous solution at 45°C to make a solution with a concentration of t-65.3! When the liquid temperature reaches 40°C, L -C2Ata-HO
6 crystals were placed in 250 ft. and cooled to 355° C. over 55 hours. The grown crystal was t-filtered to obtain a 350i crystal, which had an optical purity of 70%.

晶析操作中溶液の旋光度を測定し次が、ラセミ体のまま
で途中変化ri認めらnず分割は不成功に終つ之。取得
結晶は、元素分析、赤外スペクトルおよびX線回折図か
うD L −C1At −Hacz 2>E混入してい
ることが判明した。
During the crystallization operation, the optical rotation of the solution was measured and the result was that the racemic product remained and no changes were observed during the process, resulting in an unsuccessful resolution. The obtained crystal was found to be contaminated with D L -C1At -Hacz 2>E according to elemental analysis, infrared spectrum and X-ray diffraction pattern.

〔発明の効果〕〔Effect of the invention〕

本発明は、塩酸水溶液中で一塩酸塩として晶出せしめる
ことによってD L −0/、Ata  t−初めて光
学分割する方法分提供したものでろり、光学活性なC6
Ata を各種医薬品、騰薬等の合成中間体として利用
する道を大きく拓いたものである。
The present invention provides a method for optically resolving D L -0/Ata t for the first time by crystallizing it as a monohydrochloride in an aqueous hydrochloric acid solution.
This greatly paved the way for the use of Ata as a synthetic intermediate for various pharmaceuticals and pharmaceuticals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はβ−クロロ−DL−アラニンの20℃における
塩酸水溶液中での固液平衡曲線である。 第i匡
FIG. 1 is a solid-liquid equilibrium curve of β-chloro-DL-alanine in an aqueous hydrochloric acid solution at 20°C. i-th box

Claims (1)

【特許請求の範囲】 1)β−クロロ−DL−アラニンを塩酸水溶液とし、こ
の溶液がβ−クロロ−DL−アラニン・一塩酸塩につい
て飽和もしくは過飽和となる状態において光学活性なβ
−クロロアラニン・一塩酸塩を晶出せしめることを特徴
とするβ−クロロアラニンの光学分割方法。 2)β−クロロ−DL−アラニン・一塩酸塩の飽和もし
くは過飽和塩酸水溶液に光学活性なβ−クロロアラニン
・一塩酸塩の結晶を種晶として接種し、これと同種の光
学活性体を優先的に晶出させる特許請求の範囲第1項に
記載の光学分割方法。 3)β−クロロ−DL−アラニン・一塩酸塩の過飽和塩
酸水溶液からβ−クロロ−D−アラニンもしくはβ−ク
ロロ−L−アラニンのいずれか一方の過量に存在する光
学活性な一塩酸塩を晶出せしめる特許請求の範囲第1項
に記載の光学分割方法。 4)β−クロロ−DL−アラニン・一塩酸塩の飽和もし
くは過飽和塩酸水溶液に、粒度の異なる、β−クロロ−
L−アラニン・一塩酸塩とβ−クロロ−D−アラニン・
一塩酸塩とを同時に種晶として接種し、それぞれの結晶
を成長せしめた後ろ別した結晶を篩分けする特許請求の
範囲第1項に記載の光学分割方法。
[Claims] 1) When β-chloro-DL-alanine is dissolved in hydrochloric acid and the solution is saturated or supersaturated with respect to β-chloro-DL-alanine monohydrochloride, the optically active β
- A method for optical resolution of β-chloroalanine, characterized by crystallizing chloroalanine monohydrochloride. 2) A saturated or supersaturated aqueous hydrochloric acid solution of β-chloro-DL-alanine monohydrochloride is inoculated with crystals of optically active β-chloroalanine monohydrochloride as seed crystals, and the optically active form of the same species is preferentially seeded. The optical separation method according to claim 1, which comprises crystallizing. 3) Crystallizing the optically active monohydrochloride present in excess of either β-chloro-D-alanine or β-chloro-L-alanine from a supersaturated aqueous hydrochloric acid solution of β-chloro-DL-alanine monohydrochloride. An optical separation method according to claim 1. 4) Add β-chloro-DL-alanine monohydrochloride of different particle sizes to a saturated or supersaturated aqueous hydrochloric acid solution.
L-alanine monohydrochloride and β-chloro-D-alanine
2. The optical resolution method according to claim 1, wherein monohydrochloride is simultaneously inoculated as a seed crystal, each crystal is allowed to grow, and then the separated crystals are sieved.
JP27358084A 1984-12-27 1984-12-27 Optical resolution of beta-chloro-dl-alanine Pending JPS61152645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27358084A JPS61152645A (en) 1984-12-27 1984-12-27 Optical resolution of beta-chloro-dl-alanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27358084A JPS61152645A (en) 1984-12-27 1984-12-27 Optical resolution of beta-chloro-dl-alanine

Publications (1)

Publication Number Publication Date
JPS61152645A true JPS61152645A (en) 1986-07-11

Family

ID=17529776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27358084A Pending JPS61152645A (en) 1984-12-27 1984-12-27 Optical resolution of beta-chloro-dl-alanine

Country Status (1)

Country Link
JP (1) JPS61152645A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885523A (en) * 1972-02-03 1973-11-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885523A (en) * 1972-02-03 1973-11-13

Similar Documents

Publication Publication Date Title
JP4719471B2 (en) Preparation method and crystal form of optical isomers of modafinil
Beilles et al. Preferential crystallisation and comparative crystal growth study between pure enantiomer and racemic mixture of a chiral molecule: 5-ethyl-5-methylhydantoin
Zhou et al. Chiral separation of DL-glutamic acid by ultrasonic field
JPS61152645A (en) Optical resolution of beta-chloro-dl-alanine
KR100375957B1 (en) D4t polymorphic form i process
US4613688A (en) Optical resolution process for DL-cysteine
US3527776A (en) Optical resolution of dl-lysine
CA2418966A1 (en) Method for producing tagatose crystals
US6759551B1 (en) Chiral (s- or r-methylphenylglycine) amino acid crystal and method for preparing same
EP0090866B1 (en) Optical resolution process for dl-cysteine
JPH052665B2 (en)
JP2940044B2 (en) Method for producing mixed crystals of 5'-disodium guanylate / 5'-disodium inosinate
ES2214254T3 (en) RESOLUTION OF RACEMICAL BLENDS DL.
US2331948A (en) Method for the purification of lactic acid
EP0239146B1 (en) Method of producing crystals of l-arginine phosphate monohydrate
JPS5830301B2 (en) N-benzoyl-tracis-2-aminocyclohexanecarboxylic acid
JP3525223B2 (en) Method for selective crystallization of guanosine monosodium salt dihydrate
US3149122A (en) Resolution of ammonium nu-acyl-dltryptophanates
JPS58188853A (en) Process for optical resolution of dl-cysteine hydrochloride
JP2008156282A (en) SALT OF alpha-LIPOIC ACID AND L-ORNITHINE, AND METHOD FOR PREPARING THE SAME
Yamada et al. A Facile Method of Preparing l-α-Methyl DOPA (l-3-(3, 4-Dihydroxyphenyl)-2-methylalanine)
EA011409B1 (en) Process for the preparation of chirally pure “h” nateglinide
JP2505487B2 (en) Racemization of optically active lysine
JPS61148156A (en) Method of optical resolution of n-carbamoylphenylalanine
JP3541440B2 (en) Crystallization method of L-cystine and novel crystal