JPS6115256B2 - - Google Patents

Info

Publication number
JPS6115256B2
JPS6115256B2 JP4300879A JP4300879A JPS6115256B2 JP S6115256 B2 JPS6115256 B2 JP S6115256B2 JP 4300879 A JP4300879 A JP 4300879A JP 4300879 A JP4300879 A JP 4300879A JP S6115256 B2 JPS6115256 B2 JP S6115256B2
Authority
JP
Japan
Prior art keywords
value
changes
signal
fuel
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4300879A
Other languages
Japanese (ja)
Other versions
JPS55137332A (en
Inventor
Masaharu Asano
Hideyuki Tamura
Shoji Furuhashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4300879A priority Critical patent/JPS55137332A/en
Publication of JPS55137332A publication Critical patent/JPS55137332A/en
Publication of JPS6115256B2 publication Critical patent/JPS6115256B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は、内燃機関の燃料供給量を排気センサ
の信号に基づいて帰還制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for feedback controlling the amount of fuel supplied to an internal combustion engine based on a signal from an exhaust sensor.

最近、自動車の排気浄化の一方法として、エン
ジンの排気ガス成分に関する情報に応じて燃料供
給量を制御することにより、混合気の空燃比を制
御する燃料帰還制御装置が実用化されている。
Recently, as a method for purifying automobile exhaust gas, a fuel feedback control device has been put into practical use, which controls the air-fuel ratio of an air-fuel mixture by controlling the amount of fuel supplied in accordance with information regarding engine exhaust gas components.

第1図は上記の燃料帰還制御装置の一例のブロ
ツク図である。
FIG. 1 is a block diagram of an example of the above fuel feedback control device.

第1図において、1はエンジン、2は排気管、
3は排気管2に設置した排気センサ、4は排気浄
化装置、5は制御装置である。
In Fig. 1, 1 is the engine, 2 is the exhaust pipe,
3 is an exhaust sensor installed in the exhaust pipe 2, 4 is an exhaust purification device, and 5 is a control device.

制御装置5は、燃料供給量計算部6と帰還制御
部7とからなり、例えばマイクロコンピユータで
構成されている。
The control device 5 includes a fuel supply amount calculation section 6 and a feedback control section 7, and is configured by, for example, a microcomputer.

排気センサ3は、例えば排気ガス中の酸素濃度
に応じた信号S2を出力する。
The exhaust sensor 3 outputs a signal S2 depending on the oxygen concentration in the exhaust gas, for example.

帰還制御部7は、信号S2に基づいて混合気の空
燃比が設定値より大か小か(混合気が希薄か過濃
か)を判定し、例えば比例演算と積分演算との両
方を組合せた演算を行ない、希薄の場合には燃料
供給量を増加させ、過濃の場合には減少させるた
めの制御信号S3を出力する。
The feedback control unit 7 determines whether the air-fuel ratio of the air-fuel mixture is larger or smaller than a set value (whether the air-fuel mixture is lean or rich) based on the signal S2 , and performs a combination of both a proportional calculation and an integral calculation, for example. A control signal S3 is output to increase the fuel supply amount when the fuel is lean, and to decrease it when the fuel is rich.

燃料供給量計算部6は、エンジン1に設けられ
た各種センサから与えられる運転状態信号S1(吸
入空気量、回転数、機関温度等の信号)に基づい
て燃料供給量の基本値を算出し、その基本値に前
記制御信号S3に応じた補正を施して実際の燃料供
給量を算出し、燃料供給量信号S4を送出する。こ
の燃料供給量信号S4によつてエンジン1内の燃料
供給装置(燃料噴射弁又は電子制御気化器)を制
御し、運転状態に対応した燃料量を供給すること
により、混合気の空燃比を所望の値(以下、設定
空燃比と記す)に維持することが出来る。なお排
気浄化装置4として、CO及びHCの酸化とNOxの
還元とを同時に行なう三元触媒装置を用いる場合
には、設定空燃比の値を理論空燃比(14.8)近傍
の値に設定する。
The fuel supply amount calculation unit 6 calculates the basic value of the fuel supply amount based on the operating status signal S 1 (signal of intake air amount, rotation speed, engine temperature, etc.) given from various sensors installed in the engine 1. , corrects the basic value according to the control signal S3 to calculate the actual fuel supply amount, and sends out the fuel supply amount signal S4 . This fuel supply amount signal S4 controls the fuel supply device (fuel injection valve or electronically controlled carburetor) in the engine 1, and by supplying the amount of fuel corresponding to the operating condition, the air-fuel ratio of the air-fuel mixture is adjusted. It is possible to maintain the desired value (hereinafter referred to as the set air-fuel ratio). Note that when a three-way catalyst device that simultaneously oxidizes CO and HC and reduces NOx is used as the exhaust purification device 4, the value of the set air-fuel ratio is set to a value near the stoichiometric air-fuel ratio (14.8).

次に第2図は、排気センサ3として一般に用い
られているジルコニア酸素計(以下O2センサと
記す)の出力特性図である。
Next, FIG. 2 is an output characteristic diagram of a zirconia oxygen meter (hereinafter referred to as an O 2 sensor) which is generally used as the exhaust sensor 3.

図示のごとく、O2センサの特性は、λ=1近
傍(理論空燃比14.8をλ=1とする)の点を境に
して段階的に急変するものであり、ほぼ高レベル
と低レベルの2値信号となる。したがつて設定空
燃比をλ=1に設定する場合には非常に好都合で
あるが、排気浄化装置4の特性によつては、λ=
1より過濃又は希薄な任意の点に空燃比を設定し
たい場合もある。
As shown in the figure, the characteristics of the O 2 sensor suddenly change step by step at a point near λ = 1 (the stoichiometric air-fuel ratio of 14.8 is set to λ = 1). It becomes a value signal. Therefore, it is very convenient to set the set air-fuel ratio to λ=1, but depending on the characteristics of the exhaust purification device 4, λ=1.
There are cases where it is desired to set the air-fuel ratio to an arbitrary point richer or leaner than 1.

設定空燃比を任意の点に設定する方法として
は、第3図及び第4図に示すごとき二つの方法を
本出願人は既に出願(特願昭50−155767(特開昭
52−81433号公報)、特願昭50−155768(特開昭52
−81434号公報))している。
As a method for setting the set air-fuel ratio to an arbitrary point, the applicant has already filed an application for two methods as shown in Figs.
52-81433), Japanese Patent Application No. 155768 (1982)
-81434))).

まず第3図に示す方法は、O2センサの出力
を、比較器を用いて基準値と比較して作つた偏差
信号S5を修正することにより、制御信号S3の中心
値すなわち設定空燃比の値を変えるものである。
First, the method shown in Fig. 3 is to correct the deviation signal S5 created by comparing the output of the O2 sensor with a reference value using a comparator, and then adjust the center value of the control signal S3 , that is, the set air-fuel ratio. It changes the value of .

第3図において、偏差信号S5の低レベル側(希
薄側)の時間をTDだけ延長させるように修正す
ることにより、設定空燃比の値をa1からa2に移動
させることが出来る。
In FIG. 3, the value of the set air-fuel ratio can be moved from a 1 to a 2 by modifying the time on the low level side (lean side) of the deviation signal S 5 to be extended by T D .

次に第4図に示す方法は、積分演算における積
分定数の値を、増加時と減少時とで変えることに
より、図示のごとく制御信号S3の上昇時の勾配β
と下降時の勾配αとに差を設けることによつて設
定空燃比の値をa1からa2に移動させるものであ
る。
Next, in the method shown in FIG. 4, by changing the value of the integral constant in the integral calculation when increasing and decreasing, the slope β when the control signal S 3 increases as shown in the figure.
The set air-fuel ratio value is moved from a 1 to a 2 by providing a difference between the gradient α and the gradient α during descent.

しかし上記のごとき方法においては、制御信号
S3の繰返し周期が長く(T1<T2、T3<T4)なる
と共に振巾が大きく(A1<A2、A3<A4)なるの
で、空燃比の変動巾が大きくなり、そのため排気
浄化装置の浄化機能が低下するというおそれがあ
り、また上記のごとき制御装置をアナログ回路で
構成すると回路構成が複雑になり、マイクロコン
ピユータによる制御の場合でも演算が複雑になる
というおそれもあった。
However, in the above method, the control signal
As the repetition period of S 3 becomes longer (T 1 < T 2 , T 3 < T 4 ), the amplitude becomes larger (A 1 < A 2 , A 3 < A 4 ), so the fluctuation range of the air-fuel ratio becomes larger. Therefore, there is a risk that the purification function of the exhaust gas purification device will deteriorate.Also, if the control device as described above is configured with an analog circuit, the circuit configuration will be complicated, and even when controlled by a microcomputer, there is a risk that the calculations will be complicated. there were.

本発明は上記の問題に鑑みてなされたものであ
り、制御信号中の比例分の大きさを、濃化方向と
希薄化方向とで異なつた値とするように構成する
ことにより、繰返し周期や振巾を大きくすること
なく、かつ構成の容易な燃料帰還制御装置を提供
することを目的とする。
The present invention has been made in view of the above problem, and by configuring the proportional component in the control signal to have different values in the enriching direction and the diluting direction, the repetition period and the It is an object of the present invention to provide a fuel feedback control device that is easy to configure without increasing the amplitude.

以下図面に基づいて本発明を詳細に説明する。 The present invention will be explained in detail below based on the drawings.

第5図は本発明の方式による信号波形図であ
る。
FIG. 5 is a signal waveform diagram according to the method of the present invention.

第5図において、τは帰還制御系の遅れ時間で
あり、第1図の構成においてエンジン1への燃料
供給量を変化させた時点からその結果が排気セン
サ3の信号S2に現われるまでの時間がほぼτに相
当する。なおτの値はエンジンの運転状態(特に
回転速度)に応じて変化するが、説明の都合上、
図ではτが一定の場合を例示している。
In FIG. 5, τ is the delay time of the feedback control system, which is the time from when the fuel supply amount to the engine 1 is changed in the configuration shown in FIG. 1 until the result appears in the signal S2 of the exhaust sensor 3. approximately corresponds to τ. Note that the value of τ changes depending on the operating condition of the engine (especially the rotational speed), but for the sake of explanation,
The figure illustrates the case where τ is constant.

また制御信号S3において、垂直に増加又は減少
している分、すなわちP0、P1、P2が比例分であ
り、所定の勾配をもつた分が積分分である。
Further, in the control signal S 3 , the vertically increasing or decreasing portions, ie, P 0 , P 1 , and P 2 are the proportional portions, and the portion having a predetermined slope is the integral portion.

本発明においては、上記の比例分の値を、濃化
方向(増加)と希薄化方向(減少)とで異なつた
値にすることによつて設定空燃比の値を変えるよ
うにしたものである。
In the present invention, the value of the set air-fuel ratio is changed by setting the above proportional value to different values in the enrichment direction (increase) and the dilution direction (decrease). .

すなわち、第5図において、比例分の値が濃化
方向も希薄化方向も共にP0(標準値、すなわち空
燃比を偏位させない場合の標準の値)である場合
の設定空燃比をa1とした場合に、排気センサの信
号が希薄側から過濃側に変化したときに制御信号
を希薄側へ変化させる比例分の値をP1、過濃側か
ら希薄側に変化したときに制御信号を過濃側へ変
化させる比例分の値をP2とし、P1<P2とすれば、
設定空燃比はa2となり、a1より濃化方向に移動す
る。なおP1<P2とすれば、a2はa1より希薄化方向
に移動する。
That is, in Fig. 5, the set air-fuel ratio when the proportional component value is P 0 (standard value, that is, the standard value when the air-fuel ratio is not deviated) in both the enrichment direction and the dilution direction is a 1 In this case, P 1 is the proportional value that changes the control signal to the lean side when the exhaust sensor signal changes from the lean side to the rich side, and the control signal when the signal changes from the rich side to the lean side. Let P 2 be the proportional value that changes P to the over-concentrated side, and if P 1 < P 2 , then
The set air-fuel ratio becomes a2 and moves in the direction of enrichment from a1 . Note that if P 1 <P 2 , a 2 moves in the direction of dilution compared to a 1 .

また、2P0=P1+P2に設定すれば、繰返し周期
は変らず(T5=T6)、更に2P0<P1+P2にすれば
繰返し周期を短く(T5>T6)することも出来る。
また、いずれの場合においても制御信号S3の振巾
は大きくはならない(A5=≧A6)。したがつて空
燃比の変動巾が大きくなるおそれもない。
Also, if you set 2P 0 = P 1 + P 2 , the repetition period will not change (T 5 = T 6 ), and if you set 2P 0 < P 1 + P 2 , the repetition period will become shorter (T 5 > T 6 ). You can also do that.
Furthermore, in either case, the amplitude of the control signal S 3 does not become large (A 5 =≧A 6 ). Therefore, there is no fear that the fluctuation range of the air-fuel ratio will become large.

次に、第6図は上記の方式をコンピユータを用
いて演算する場合のフローチヤートの一実施例図
であり、第7図は第6図の演算における信号波形
を示す。なお第7図の制御信号S3は、デイジタル
信号を階段状の波形で表示したものである。
Next, FIG. 6 is an embodiment of a flowchart for calculating the above method using a computer, and FIG. 7 shows signal waveforms in the calculation of FIG. 6. Note that the control signal S3 in FIG. 7 is a digital signal displayed in a stepped waveform.

第6図のの演算は、一定時間周期ごと、又は
エンジンのクランク軸が一定角度回転するごとに
行なわれる。例えば第7図のS3のt1〜t4は各々上
記の演算開始時点を示す。
The calculation in FIG. 6 is performed every fixed time period or every time the engine crankshaft rotates by a fixed angle. For example, t1 to t4 of S3 in FIG. 7 each indicate the above-mentioned calculation start time.

第6図のフローチヤートにおいては、ブロツク
L1〜L3において混合気の状態を判別し、その結
果に応じて、各演算ごとにALPHA(S3の値)に
積分分1を加算又は減算し、かつ混合気が希薄側
から過濃側に変化した時点では比例分P1を減算
し、過濃側から希薄側に変化した時点では比例分
P2を加算する。
In the flowchart of Figure 6, the block
The state of the air-fuel mixture is determined at L 1 to L 3 , and depending on the result, the integral 1 is added or subtracted from ALPHA (value of S 3 ) for each calculation, and the air-fuel mixture is determined from lean to rich. When it changes from the rich side to the lean side, the proportional amount P1 is subtracted, and when it changes from the rich side to the lean side, the proportional amount P1 is subtracted.
Add P 2 .

上記の比例分P1とP2の値は任意の値に設定する
ことが出来、P1<P2としても特に構成が複雑にな
ることはない。したがつて第1図の装置で制御装
置5にマイクロコンピユータを用いた場合には、
第6図のフローチヤートによつて本発明を容易に
実現することが出来る。
The values of the above proportional portions P 1 and P 2 can be set to arbitrary values, and even if P 1 < P 2 , the configuration will not become particularly complicated. Therefore, if a microcomputer is used as the control device 5 in the device shown in FIG.
The present invention can be easily realized using the flowchart shown in FIG.

次に、第8図はアナログ回路を用いた場合の本
発明の一実施例図であり、第9図は第8図の回路
の信号波形図である。
Next, FIG. 8 is a diagram showing an embodiment of the present invention when an analog circuit is used, and FIG. 9 is a signal waveform diagram of the circuit of FIG.

第8図において、8は演算増巾器であり、コン
デンサC1及び抵抗R1、R2と共に積分回路を構成
している。またV0は基準電圧である。
In FIG. 8, 8 is an operational amplifier, which together with a capacitor C 1 and resistors R 1 and R 2 constitutes an integrating circuit. Further, V 0 is a reference voltage.

また9は切換信号発生回路であり、偏差信号S5
の立上りと立下りでトリガされ、各々異なる長さ
τとτだけ継続する切換信号S6を出力する。
この切換信号発生回路9は、例えば立上りでトリ
ガされる単安定マルチバイブレータ、立下りでト
リガされる単安定マルチバイブレータ及び両者の
出力の和を出力する回路とを組合せて構成するこ
とが出来る。
9 is a switching signal generation circuit, which generates a deviation signal S 5
It outputs a switching signal S 6 which is triggered at the rising edge and falling edge of , and lasts for different lengths τ 1 and τ 2 , respectively.
This switching signal generating circuit 9 can be configured by combining, for example, a monostable multivibrator triggered by a rising edge, a monostable multivibrator triggered by a falling edge, and a circuit that outputs the sum of the outputs of both.

また、10はスイツチング回路であり、切換信
号S6が与えられている間、オンになる。
Further, 10 is a switching circuit, which is turned on while the switching signal S6 is applied.

前記の積分回路において、R1≪R2であり、ス
イツチング回路10がオンのあいだは、極めて急
速に積分が行なわれるので、第9図のP1、P2に示
すごとく、ほぼ比例分と同じ波形となる。またP1
とP2の大きさは、スイツチング回路10がオンに
なつている時間、すなわちτ、τに比例す
る。したがつてτとτの値を変えてやれば、
P1とP2の値を任意に設定することが出来る。
In the integration circuit described above, R 1 << R 2 and integration is performed extremely rapidly while the switching circuit 10 is on, so as shown in P 1 and P 2 in FIG. 9, it is almost the same as the proportional component. It becomes a waveform. Also P 1
The magnitudes of and P 2 are proportional to the time that the switching circuit 10 is on, that is, τ 1 and τ 2 . Therefore, if we change the values of τ 1 and τ 2 , we get
The values of P 1 and P 2 can be set arbitrarily.

以上説明したごとく本発明によれば、空燃比変
動の繰返し周期や振巾を大きくすることなしに設
定空燃比を任意の値の設定することが出来るの
で、排気浄化装置を最適状態で動作させることが
出来排気浄化性能を向上させることが出来るとい
う効果がある。
As explained above, according to the present invention, the set air-fuel ratio can be set to an arbitrary value without increasing the repetition period or amplitude of the air-fuel ratio fluctuation, so that the exhaust purification device can be operated in an optimal state. This has the effect of improving exhaust purification performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する燃料帰還制御装置の
一例図、第2図は排気センサの出力特性図、第3
図及び第4図は従来方式の信号波形図、第5図は
本発明の信号波形図、第6図は本発明の一実施例
のフローチヤート、第7図は第6図のフローチヤ
ートによる信号波形図、第8図は本発明の他の実
施例の回路図、第9図は第8図の回路の信号波形
図である。 符号の説明、1……エンジン、2……排気管、
3……排気センサ、4……排気浄化装置、5……
制御装置、6……燃料供給量計算部、7……帰還
制御部、8……演算増巾器、9……切換信号発生
回路、10……スイツチング回路。
FIG. 1 is an example of a fuel feedback control device to which the present invention is applied, FIG. 2 is an output characteristic diagram of an exhaust sensor, and FIG.
4 and 4 are signal waveform diagrams of the conventional method, FIG. 5 is a signal waveform diagram of the present invention, FIG. 6 is a flowchart of an embodiment of the present invention, and FIG. 7 is a signal according to the flowchart of FIG. 6. FIG. 8 is a circuit diagram of another embodiment of the present invention, and FIG. 9 is a signal waveform diagram of the circuit of FIG. 8. Explanation of symbols, 1...Engine, 2...Exhaust pipe,
3...Exhaust sensor, 4...Exhaust purification device, 5...
Control device, 6... Fuel supply amount calculation unit, 7... Feedback control unit, 8... Arithmetic amplifier, 9... Switching signal generation circuit, 10... Switching circuit.

Claims (1)

【特許請求の範囲】 1 エンジンの排気ガス成分濃度を検出する排気
センサと、該排気センサの信号に基づいて少なく
とも比例制御特性をもつた制御信号を算出し、該
制御信号によつてエンジンへの燃料供給量を補正
する制御手段とを備え、エンジンに供給する混合
気の空燃比を設定空燃比に維持するように制御す
る燃料帰還制御装置において、排気センサの信号
が過濃側から希薄側に変化したときに制御信号を
濃化方向へ変化させる比例分の大きさと、希薄側
から過濃側に変化したときに制御信号を希薄化方
向へ変化させる比例分の大きさとを異なつた値に
設定し、かつ上記比例分の標準値をP0、希薄化方
向へ変化させる比例分の値をP1、濃化方向へ変化
させる比例分の値をP2とした場合に、P1とP2とを
2P0≦P1+P2を満足する値に設定することによ
り、空燃比の変動幅や繰返し周期を大きくするこ
となしに設定空燃比の値を偏位させることを特徴
とする燃料帰還制御装置。 2 上記制御手段としてマイクロコンピユータを
用い、排気センサの信号を所定の周期でサンプリ
ングし、そのサンプル値に応じて制御信号を演算
し、かつ排気センサの信号が過濃側から希薄側に
変化したときに制御信号を濃化方向へ変化させる
量と、希薄側から過濃側に変化したときに制御信
号を希薄化方向へ変化させる量とを異なつた値に
設定すると共に、上記二つの量を加算した値を標
準値の2倍以上の値に設定したことを特徴とする
特許請求の範囲第1項記載の燃料帰還制御装置。
[Claims] 1. An exhaust sensor that detects the concentration of exhaust gas components of the engine, a control signal having at least a proportional control characteristic calculated based on the signal of the exhaust sensor, and a control signal that controls the engine by the control signal. In the fuel feedback control device, which includes a control means for correcting the fuel supply amount and controls the air-fuel ratio of the air-fuel mixture supplied to the engine to maintain the set air-fuel ratio, the signal from the exhaust sensor changes from the rich side to the lean side. The magnitude of the proportional component that changes the control signal in the direction of enrichment when it changes, and the magnitude of the proportional component that changes the control signal in the direction of dilution when it changes from the lean side to the over-concentrated side are set to different values. And if the standard value of the proportional component mentioned above is P 0 , the value of the proportional component that changes in the direction of dilution is P 1 , and the value of the proportional component that changes in the direction of enrichment is P 2 , then P 1 and P 2 and
A fuel feedback control device characterized in that by setting a value that satisfies 2P 0 ≦P 1 +P 2 , the value of a set air-fuel ratio is deviated without increasing the fluctuation width or repetition period of the air-fuel ratio. 2 A microcomputer is used as the control means, the signal of the exhaust sensor is sampled at a predetermined period, and a control signal is calculated according to the sample value, and when the signal of the exhaust sensor changes from the rich side to the lean side. The amount by which the control signal is changed in the direction of concentration when changing from the lean side to the rich side is set to different values, and the amount by which the control signal is changed in the direction of dilution when it changes from the lean side to the rich side are set to different values, and the above two amounts are added. 2. The fuel feedback control device according to claim 1, wherein the value is set to a value twice or more of a standard value.
JP4300879A 1979-04-11 1979-04-11 Fuel return controller Granted JPS55137332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4300879A JPS55137332A (en) 1979-04-11 1979-04-11 Fuel return controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4300879A JPS55137332A (en) 1979-04-11 1979-04-11 Fuel return controller

Publications (2)

Publication Number Publication Date
JPS55137332A JPS55137332A (en) 1980-10-27
JPS6115256B2 true JPS6115256B2 (en) 1986-04-23

Family

ID=12651953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4300879A Granted JPS55137332A (en) 1979-04-11 1979-04-11 Fuel return controller

Country Status (1)

Country Link
JP (1) JPS55137332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275467U (en) * 1988-11-25 1990-06-08

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259723A (en) * 1984-06-04 1985-12-21 Mazda Motor Corp Control device of supercharge pressure in engine with supercharger
JPS6241945A (en) * 1985-08-19 1987-02-23 Nippon Carbureter Co Ltd Method for controlling air-fuel ratio of engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275467U (en) * 1988-11-25 1990-06-08

Also Published As

Publication number Publication date
JPS55137332A (en) 1980-10-27

Similar Documents

Publication Publication Date Title
CA1078045A (en) Closed-loop mixture control system for an internal combustion engine using a differential amplifier with a reference voltage variable according to engine operating parameters
JPS5950862B2 (en) Air fuel ratio control device
US5623824A (en) Air-fuel ratio control system for internal combustion engine
US5040513A (en) Open-loop/closed-loop control system for an internal combustion engine
JP2518247B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
US4853862A (en) Method and apparatus for controlling air-fuel ratio in an internal combustion engine by corrective feedback control
JPS6115256B2 (en)
US4753208A (en) Method for controlling air/fuel ratio of fuel supply system for an internal combustion engine
JP2757625B2 (en) Air-fuel ratio sensor deterioration determination device
JP2778197B2 (en) Air-fuel ratio control device for gas engine
JPH08158915A (en) Air fuel ratio control device for internal combustion engine
US5970966A (en) Engine air-fuel ratio controller
JP3826996B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0776545B2 (en) Air-fuel ratio controller for spark ignition engine
JP2518246B2 (en) Air-fuel ratio control device for internal combustion engine
JP2560303B2 (en) Air-fuel ratio control device for internal combustion engine
JP3304653B2 (en) Air-fuel ratio control device for internal combustion engine
JP2805822B2 (en) Air-fuel ratio control method for internal combustion engine
JP2503391B2 (en) Air-fuel ratio control device
JP3219335B2 (en) Air-fuel ratio control device for internal combustion engine
JP2580053B2 (en) Air-fuel ratio control device
JP2641828B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPS632020B2 (en)