JPS6115248Y2 - - Google Patents

Info

Publication number
JPS6115248Y2
JPS6115248Y2 JP168781U JP168781U JPS6115248Y2 JP S6115248 Y2 JPS6115248 Y2 JP S6115248Y2 JP 168781 U JP168781 U JP 168781U JP 168781 U JP168781 U JP 168781U JP S6115248 Y2 JPS6115248 Y2 JP S6115248Y2
Authority
JP
Japan
Prior art keywords
fuel
passage
engine
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP168781U
Other languages
Japanese (ja)
Other versions
JPS57115952U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP168781U priority Critical patent/JPS6115248Y2/ja
Priority to DE19823200622 priority patent/DE3200622A1/en
Publication of JPS57115952U publication Critical patent/JPS57115952U/ja
Application granted granted Critical
Publication of JPS6115248Y2 publication Critical patent/JPS6115248Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【考案の詳細な説明】 この考案は、燃料噴射装置を有する内燃機関に
おけるベーパロツク防止装置に関する。
[Detailed Description of the Invention] This invention relates to a vapor lock prevention device for an internal combustion engine having a fuel injection device.

従来の内燃機関の燃料噴射装置におけるベーパ
ロツク防止装置としては、例えば第1図に示すよ
うなものがある。
An example of a vapor lock prevention device in a conventional fuel injection system for an internal combustion engine is shown in FIG.

これを簡単に説明すると、燃料タンク1内の燃
料は、燃料ポンプ2によつて押し出され、燃料ダ
ンパ3及び燃料フイルタ4を通り、燃料パイプ5
を経て燃料噴射弁6より機関燃焼室7に供給され
る。
To explain this simply, the fuel in the fuel tank 1 is pushed out by the fuel pump 2, passes through the fuel damper 3 and the fuel filter 4, and then passes through the fuel pipe 5.
The fuel is then supplied from the fuel injection valve 6 to the engine combustion chamber 7.

一方燃料圧力(燃圧)は、インテークマニホー
ルド内の吸入負圧との差圧が一定となるように、
燃料圧力制御弁としてのプレツシヤレギユレータ
8によつて制御され、余分な燃料は燃料リターン
パイプ9を経て燃料タンク1に戻される構造とな
つている。
On the other hand, the fuel pressure (fuel pressure) is set so that the differential pressure with the intake negative pressure in the intake manifold is constant.
It is controlled by a pressure regulator 8 as a fuel pressure control valve, and excess fuel is returned to the fuel tank 1 via a fuel return pipe 9.

そしてイグニツシヨンスイツチ10がオフの機
関停止状態で、かつ機関冷却水温が予め設定した
温度以上で水温スイツチ11がオンの場合に、燃
料噴射弁冷却ブロア12を作動させて噴射弁6に
風を吹き付け、それによつて噴射弁6と該噴射弁
内の燃料を冷却してベーパロツクを防止するよう
になつている。なお、13は、イグニツシヨンス
イツチ10がオフの時に閉じるリレーである。
Then, when the engine is stopped with the ignition switch 10 off and the engine cooling water temperature is higher than a preset temperature and the water temperature switch 11 is on, the fuel injection valve cooling blower 12 is operated to blow air into the injection valve 6. This spraying cools the injection valve 6 and the fuel within the injection valve to prevent vapor lock. Note that 13 is a relay that closes when the ignition switch 10 is off.

ところで、アルコールとガソリンとの混合燃料
は、燃料の蒸留特性が第2図に破線で示すよう
に、ガソリン100%(実線で示す)と比較すると
揮発性が高いためにベーパロツクを起し易いこと
が知られている。
By the way, mixed fuel of alcohol and gasoline is more volatile than 100% gasoline (shown as a solid line) due to the distillation characteristics of the fuel, as shown by the broken line in Figure 2, making it easier to cause vapor lock. Are known.

そのため、このような混合燃料を上記のような
ベーパロツク防止装置を具備した内燃機関に用い
た場合、燃料噴射弁冷却ブロア12の能力とバツ
テリの容量から冷却に限度があるため、ベーパロ
ツクを十分抑制できないばかりか、冷却ブロアを
必要とするためコストアツプになるという問題が
あつた。
Therefore, when such a mixed fuel is used in an internal combustion engine equipped with a vapor lock prevention device as described above, vapor lock cannot be sufficiently suppressed because cooling is limited due to the capacity of the fuel injection valve cooling blower 12 and the capacity of the battery. Not only that, but a cooling blower was required, which caused a problem of increased costs.

この考案は、このような従来の問題点に着目し
てなされたもので、機関停止状態又は機関停止後
の燃料温度、冷却水温度等の機関雰囲気温度を検
出し、その検出温度が予め設定した温度以上の時
に、燃料圧力制御弁より上流の燃料通路(パイ
プ)内の燃料圧力(以下、「燃圧」という)を大
気圧(ゲート圧0Kg/cm2)に低下させることによ
り、上記問題点を解決することを目的としてい
る。
This idea was created by focusing on these conventional problems, and detects the engine atmosphere temperature such as fuel temperature and cooling water temperature when the engine is stopped or after the engine is stopped, and the detected temperature is set in advance. The above problem can be solved by lowering the fuel pressure (hereinafter referred to as "fuel pressure") in the fuel passage (pipe) upstream of the fuel pressure control valve to atmospheric pressure (gate pressure 0 kg/cm 2 ) when the temperature is higher than the fuel pressure control valve. It aims to solve the problem.

そのため、この考案によるベーパロツク防止装
置は、第1図に示したような、燃料タンクから燃
料ポンプによつて送出される燃料を燃料噴射弁に
供給する燃料通路と、余分な燃料を燃料タンクへ
戻す燃料リターン通路と、前記燃料通路と燃料リ
ターン通路との間に設けられ、前記燃料通路の燃
料圧力を制御する燃料圧力制御弁とを有する内燃
機関の燃料噴射装置において、 機関停止状態又は機関停止後の機関雰囲気温度
を検知する機関状態検知手段を設けると共に、 この機関状態検知手段の検知出力によつて作動
する電磁駆動の弁を備え、該弁の開放によつて前
記燃料通路を前記燃料リターン通路に連通させて
該燃料通路内の燃料圧力を略大気圧まで低下させ
る燃料圧力減圧手段を、前記燃料通路と燃料リタ
ーン通路との間に設けることにより上記の目的を
達成したものである。
Therefore, the vapor lock prevention device according to this invention has a fuel passage that supplies the fuel delivered by the fuel pump from the fuel tank to the fuel injection valve, and returns excess fuel to the fuel tank, as shown in Fig. 1. A fuel injection device for an internal combustion engine, comprising a fuel return passage and a fuel pressure control valve that is provided between the fuel passage and the fuel return passage and controls fuel pressure in the fuel passage, wherein the engine is stopped or after the engine is stopped. is provided with an engine condition detection means for detecting the engine atmospheric temperature, and an electromagnetically driven valve operated by the detection output of the engine condition detection means, and when the valve is opened, the fuel passage is connected to the fuel return passage. The above object is achieved by providing a fuel pressure reducing means between the fuel passage and the fuel return passage for communicating with the fuel passage and lowering the fuel pressure in the fuel passage to approximately atmospheric pressure.

以下、この考案の実施例を図面に基づいて説明
する。なお、以下の説明では燃圧はゲート圧表示
する。
Hereinafter, embodiments of this invention will be described based on the drawings. In the following explanation, fuel pressure will be expressed as gate pressure.

第3図は、この考案の一実施例を示す構成図で
あり、第1図と対応する部分には同一符号を付し
てその部分の説明を省略する。この実施例におい
ては、燃料タンク1から燃料ポンプ2によつて送
出される燃料を燃料噴射弁6に供給する燃料通路
である燃料パイプ5と、余分な燃料を燃料タンク
1へ戻す燃料リターン通路である燃料リターンパ
イプ9との間にバイパス通路としてのバイパスパ
イプ15を設け、そこにこのバイパスパイプ15
を開閉する2方電磁弁14を介装してあり、これ
等2方電磁弁14とバイパスパイプ15とによつ
て燃料圧力減圧手段を構成している。
FIG. 3 is a block diagram showing an embodiment of this invention, and parts corresponding to those in FIG. 1 are given the same reference numerals and explanations of those parts will be omitted. In this embodiment, a fuel pipe 5 serves as a fuel passage for supplying fuel delivered by a fuel pump 2 from a fuel tank 1 to a fuel injection valve 6, and a fuel return passage serves as a fuel passage for returning excess fuel to the fuel tank 1. A bypass pipe 15 as a bypass passage is provided between a certain fuel return pipe 9, and this bypass pipe 15 is provided there.
A two-way solenoid valve 14 for opening and closing is interposed, and the two-way solenoid valve 14 and a bypass pipe 15 constitute fuel pressure reducing means.

そして、2方電磁弁14は例えば第4図に示す
ように、電磁コイル14a、弁体14b、及びリ
ターンスプリング14cによつて構成され、機関
状態検知手段としてのイグニツシヨンスイツチ1
0がオフの時は、弁体14bが図示の位置にある
ためバイパスパイプ15が開路し、イグニツシヨ
ンスイツチ10がオンの時は、電磁コイル14a
が励磁されるためその吸引力によつて弁体14b
がリターンスプリング14cに抗して左方へ移動
するので、バイパスパイプ15が閉路する。
As shown in FIG. 4, the two-way solenoid valve 14 is composed of an electromagnetic coil 14a, a valve body 14b, and a return spring 14c, and the ignition switch 1 serves as an engine state detection means.
0 is off, the bypass pipe 15 is opened because the valve body 14b is in the position shown, and when the ignition switch 10 is on, the electromagnetic coil 14a is opened.
is excited, and its attractive force causes the valve body 14b to
moves to the left against the return spring 14c, so the bypass pipe 15 is closed.

したがつてこの実施例によれば、機関運転時は
イグニツシヨンスイツチ10がオンであるから、
バイパスパイプ15を遮断する。そして、機関停
止時はイグニツシヨンスイツチ10がオフである
から、バイパスパイプ15が開路して燃料パイプ
5のプレツシヤレギユレータ8より上流側を燃料
リターンパイプ9に連通させる。
Therefore, according to this embodiment, since the ignition switch 10 is on when the engine is operating,
Bypass pipe 15 is shut off. Since the ignition switch 10 is off when the engine is stopped, the bypass pipe 15 is opened and the upstream side of the fuel pipe 5 from the pressure regulator 8 is communicated with the fuel return pipe 9.

そのため、機関停止直後、例えば燃料パイプ5
内の燃圧が1.8Kg/cm2あつても、燃料リターンパ
イプ9内の燃圧が0Kg/cm2であるので、2方電磁
弁14が開弁すると圧力差で燃料パイプ5内の燃
料が燃料リターンパイプ9内に流出するため、燃
料パイプ5内の燃圧は0Kg/cm2に低下する。
Therefore, immediately after the engine stops, for example, the fuel pipe 5
Even if the fuel pressure inside is 1.8Kg/cm 2 , the fuel pressure inside the fuel return pipe 9 is 0Kg/cm 2 , so when the two-way solenoid valve 14 opens, the fuel inside the fuel pipe 5 returns due to the pressure difference. Since the fuel flows out into the pipe 9, the fuel pressure in the fuel pipe 5 decreases to 0 kg/cm 2 .

ところで、一般に高速高負荷走行後機関を停止
すると、機関本体からの放熱で、燃料噴射弁や機
関本体に隣接する燃料パイプ内の燃料温度が、例
えばプレツシヤレギユレータ8の最大燃圧(2.55
Kg/cm2)までベーパライズされる。
By the way, generally when the engine is stopped after running at high speed and under high load, the temperature of the fuel in the fuel injection valve and the fuel pipe adjacent to the engine body increases due to heat radiation from the engine body, for example, the maximum fuel pressure of the pressure regulator 8 (2.55
kg/cm 2 ).

一方プレツシヤレギユレータ8は、常に(燃
圧)−(吸入負圧)が2.55Kg/cm2になるように燃圧
を制御するため、機関再始動の際、クランキング
により吸入負圧(約0.4Kg/cm2)が発生すると、
燃圧は2.55Kg/cm2から2.15Kg/cm2に減圧され、そ
の際の体積膨張でベーパが更に大量発生する。
On the other hand, the pressure regulator 8 always controls the fuel pressure so that (fuel pressure) - (suction negative pressure) is 2.55 kg/cm 2 , so when restarting the engine, cranking causes suction negative pressure (approx. 0.4Kg/cm 2 ) occurs,
The fuel pressure is reduced from 2.55Kg/cm 2 to 2.15Kg/cm 2 , and the volumetric expansion at this time generates even more vapor.

そのため、燃焼室に供給される燃料は、液体と
気体の混合となり、噴射弁1回当りに噴射される
燃料の量が減少するため、空燃比が希薄化し、従
来はスムーズな機関の再始動ができなかつた。
As a result, the fuel supplied to the combustion chamber becomes a mixture of liquid and gas, and the amount of fuel injected per injection valve decreases, resulting in a leaner air-fuel ratio and a smooth restart of the engine that was previously impossible. I couldn't do it.

しかしながら、この考案によるベーパロツク防
止装置を用いれば、機関停止後燃料温度が上昇し
てベーパが発生しても、燃料パイプ5のプレツシ
ヤレギユレータ8より上流側と燃料リターンパイ
プ9を連通させたため、ベーパによる圧力上昇分
燃料がリターンするので、燃圧は常に0Kg/cm2
なつている。
However, if the vapor lock prevention device of this invention is used, even if the fuel temperature rises and vapor is generated after the engine is stopped, the upstream side of the fuel pipe 5 from the pressure regulator 8 and the fuel return pipe 9 can be communicated with each other. As a result, the fuel that increases in pressure due to vapor returns, so the fuel pressure is always 0 kg/cm 2 .

したがつて、機関始動の際クランキングによつ
て吸入負圧が発生しても、燃圧が0Kg/cm2から
2.15Kg/cm2に増圧するため、体積縮少によりベー
パの発生が抑制され、空燃比が希薄化せずスムー
ズな機関の再始動が可能となる。
Therefore, even if suction negative pressure is generated due to cranking when starting the engine, the fuel pressure will not rise from 0 kg/ cm2.
Since the pressure is increased to 2.15Kg/cm 2 , the volume is reduced and vapor generation is suppressed, making it possible to restart the engine smoothly without diluting the air-fuel ratio.

そのため、アルコール混合燃料を用いても、従
来のガソリンと同様にベーパロツクを防止でき
る。
Therefore, even if alcohol mixed fuel is used, vapor lock can be prevented in the same way as with conventional gasoline.

第5図は、この考案の他の実施例を示す構図で
あり、第3図と対応する部分には同一符号を付し
てその部分の説明は省略する。
FIG. 5 is a diagram showing another embodiment of the invention, and parts corresponding to those in FIG. 3 are given the same reference numerals and explanations of those parts will be omitted.

この実施例では、イグニツシヨンスイツチ10
がオフして機関が停止した後の機関雰囲気温度と
して、燃料温度(以下「燃温」と云う)を検出
し、その検出温度が例えば70℃以上の時にのみ、
燃料パイプ5のプレツシヤレギユレータ8より上
流側と燃料リターンパイプ9とを2方電磁弁16
を介装したバイパスパイプ15によつて連通する
ようにしている。
In this embodiment, the ignition switch 10
The fuel temperature (hereinafter referred to as ``fuel temperature'') is detected as the engine ambient temperature after the engine is turned off and the engine has stopped, and only when the detected temperature is, for example, 70℃ or higher,
A two-way solenoid valve 16 connects the fuel pipe 5 upstream of the pressure regulator 8 and the fuel return pipe 9.
They are communicated through a bypass pipe 15 which has a bypass pipe 15 interposed therebetween.

この実施例における2方電磁弁16は、第6図
に示すように、電磁コイル16aが励磁されてい
ない時には、弁体16bによつてバイパスパイプ
15を閉路し、励磁されると、弁体16bがリタ
ーンスプリング16cに抗して左行し、バイパス
パイプ15を開路するようになつている。
As shown in FIG. 6, the two-way solenoid valve 16 in this embodiment closes the bypass pipe 15 with the valve body 16b when the solenoid coil 16a is not energized, and when the solenoid coil 16a is energized, the valve body 16b closes the bypass pipe 15. moves to the left against the return spring 16c, opening the bypass pipe 15.

そして、この2方電磁弁16の電磁コイル16
aとリレー13の接点との間には、燃料パイプ5
に設けられ、このパイプ内の燃温が70℃未満の時
にオフし、70℃以上の時にオンする燃温スイツチ
18を接続してある。
Then, the electromagnetic coil 16 of this two-way electromagnetic valve 16
A fuel pipe 5 is connected between a and the contact point of the relay 13.
A fuel temperature switch 18 is connected thereto, which turns off when the fuel temperature in the pipe is less than 70°C and turns on when it is above 70°C.

なお、この実施例では燃温スイツチ18とイグ
ニツシヨンスイツチ10とリレー13とによつて
機関状態検知手段を構成している。
In this embodiment, the fuel temperature switch 18, the ignition switch 10, and the relay 13 constitute engine state detection means.

このような構成により、イグニツシヨンスイツ
チ10のオフによつてリレー13の接点がオンし
た状態で燃温が70℃以上の時にのみ、2方電磁弁
16の電磁コイル16aがリレー13の接点及び
燃温スイツチ18を介して通電されて励磁される
ため、バイパスパイプ15が開路して燃料パイプ
5内に燃圧を0Kg/cm2に落す。
With this configuration, the electromagnetic coil 16a of the two-way solenoid valve 16 is connected to the contacts of the relay 13 and the contacts of the relay 13 only when the fuel temperature is 70°C or higher when the ignition switch 10 is turned off and the contacts of the relay 13 are turned on. Since the fuel temperature switch 18 is energized and excited, the bypass pipe 15 is opened and the fuel pressure in the fuel pipe 5 is reduced to 0 kg/cm 2 .

そして、このようにすることによつて、前述の
実施例との同様な効果が得られるばかりか、燃温
が低くてベーパがあまり発生せず、機関再始動性
が悪化しない時にはバイパスパイプ15が開路し
ないので、そのような条件下での頻繁な再始動の
際に始動時間を短縮できる効果が得られる。
By doing this, not only can the same effect as in the above embodiment be obtained, but also the bypass pipe 15 is closed when the fuel temperature is low and vapor is not generated so much that the engine restartability is not deteriorated. Since the circuit does not open, it is possible to shorten the starting time when restarting frequently under such conditions.

第7図は、この考案のさらに他の実施例を示す
構成図であり、第5図と対応する部分には同一符
号を付してその部分の説明は省略する。
FIG. 7 is a block diagram showing still another embodiment of the invention, and parts corresponding to those in FIG. 5 are given the same reference numerals and explanations of those parts will be omitted.

この実施例では、プレツシヤレギユレータ17
に2方電磁弁とバイパスパイプとからなる燃料減
圧手段の機能を付加した構成になつている。
In this embodiment, the pressure regulator 17
It has a structure in which the function of a fuel pressure reducing means consisting of a two-way solenoid valve and a bypass pipe is added to the structure.

すなわち、第7図におけるプレツシヤレギユレ
ータ17は、第8図に示すようにダイヤフラム1
7a、リターンスプリング17b、燃圧室17
c、負圧室17d、電磁コイル17e、作動ロツ
ト17g、及び開閉バルブ部17f等によつて構
成されており、電磁コイル17eが励磁されてい
ない時は、インテークマニホールドから負圧室1
7dに供給される吸入負圧に応じてダイヤフラム
17aがリターンスプリング17bに抗して作動
することにより、開閉バルブ部17fの開度が調
整されて、燃料パイプ5内の燃圧が、常に例えば
2.55Kg/cm2となるように作用し、電磁コイル17
eが励磁されると、負圧室17dの負圧の如何に
拘らず、作動ロツド17gが電磁コイル17eに
吸引されてダイヤフラム17aを引つぱるため、
開閉バルブ部17fが強制的に全開し、燃料パイ
プ5と燃料リターンパイプ9とを等圧的に連通す
る。
That is, the pressure regulator 17 in FIG. 7 is connected to the diaphragm 1 as shown in FIG.
7a, return spring 17b, fuel pressure chamber 17
c, negative pressure chamber 17d, electromagnetic coil 17e, operating rod 17g, opening/closing valve part 17f, etc. When the electromagnetic coil 17e is not excited, the negative pressure chamber 1 is removed from the intake manifold.
By operating the diaphragm 17a against the return spring 17b in response to the suction negative pressure supplied to the valve 7d, the opening degree of the opening/closing valve part 17f is adjusted, and the fuel pressure in the fuel pipe 5 is always maintained at, for example,
2.55Kg/ cm2 , and the electromagnetic coil 17
When e is excited, the actuating rod 17g is attracted to the electromagnetic coil 17e and pulls the diaphragm 17a regardless of the negative pressure in the negative pressure chamber 17d.
The on-off valve portion 17f is forcibly fully opened, and the fuel pipe 5 and the fuel return pipe 9 are communicated with each other in an equal pressure manner.

したがつて、第7図に示す実施例においても第
5図の実施例と同様な効果が得られる。
Therefore, the embodiment shown in FIG. 7 also provides the same effect as the embodiment shown in FIG. 5.

なお、上記実施例では機関雰囲気温度として燃
料温度を検知するようにした例について述べた
が、冷却水温や機関の潤滑油温を検知するように
しても良い。
In the above embodiment, an example was described in which the fuel temperature was detected as the engine ambient temperature, but the cooling water temperature or the lubricating oil temperature of the engine may also be detected.

以上説明してきたように、この考案によれば、
機関停止状態又は機関停止後機関雰囲気温度が所
定の温度以上に上昇した際、燃料圧力制御弁(プ
レツシヤレギユレータ)より上流の燃料を燃料リ
ターン通路に戻すことによつて、燃圧を大気圧
(ゲージ圧で0Kg/cm2)まで落すようにしたた
め、高温再始動において、始動時の燃圧で燃料を
押え込むことによつてベーパの発生を抑制でき、
それによつて空燃比が希薄化せず機関をスムーズ
に再始動できる。
As explained above, according to this idea,
When the engine is stopped or the engine atmosphere temperature rises above a predetermined temperature after the engine is stopped, the fuel pressure is increased by returning the fuel upstream from the fuel pressure control valve (pressure regulator) to the fuel return passage. By reducing the atmospheric pressure to 0 kg/cm 2 (gauge pressure), the generation of vapor can be suppressed by holding down the fuel with the fuel pressure at the time of starting at high temperature.
This allows the engine to be restarted smoothly without the air-fuel ratio becoming lean.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のベーパロツク防止装置の一例
を示す構図、第2図は、ガソリンとアルコール混
合燃料との留出特性を示す線図、第3図は、この
考案の一実施例を示す構成図、第4図は、第3図
における2方電磁弁の一例を示す断面図、第5図
は、この考案の他の実施例を示す構成図、第6図
は、第5図における2方電磁弁の一例を示す断面
図、第7図は、この考案のさらに他の実施例を示
す構成図、第8図は、第2図におけるプレツシヤ
レギユレータの一例を示す断面図である。 1……燃料タンク、2……燃料ポンプ、3……
燃料ダンパ、4……燃料フイルタ、5……燃料パ
イプ、6……燃料噴射弁、7……燃焼室、8,1
7……プレツシヤレギユレータ(燃料圧力制御
弁)、9……燃料リターンパイプ、10……イグ
ニツシヨンスイツチ、11……水温スイツチ、1
2……冷却ブロア、13……リレー、14,16
……2方電磁弁、15……バイパスパイプ、18
……燃温スイツチ。
Fig. 1 is a composition showing an example of a conventional vapor lock prevention device, Fig. 2 is a diagram showing distillation characteristics of gasoline and alcohol mixed fuel, and Fig. 3 is a composition showing an example of this invention. 4 is a sectional view showing an example of the two-way solenoid valve in FIG. 3, FIG. 5 is a configuration diagram showing another embodiment of the invention, and FIG. FIG. 7 is a sectional view showing an example of a solenoid valve, FIG. 7 is a configuration diagram showing still another embodiment of the invention, and FIG. 8 is a sectional view showing an example of the pressure regulator in FIG. 2. . 1...Fuel tank, 2...Fuel pump, 3...
Fuel damper, 4... Fuel filter, 5... Fuel pipe, 6... Fuel injection valve, 7... Combustion chamber, 8, 1
7... Pressure regulator (fuel pressure control valve), 9... Fuel return pipe, 10... Ignition switch, 11... Water temperature switch, 1
2... Cooling blower, 13... Relay, 14, 16
... 2-way solenoid valve, 15 ... Bypass pipe, 18
...Fuel temperature switch.

Claims (1)

【実用新案登録請求の範囲】 1 燃料タンクから燃料ポンプによつて送出され
る燃料を燃料噴射弁に供給する燃料通路と、余
分な燃料を燃料タンクへ戻す燃料リターン通路
と、前記燃料通路と燃料リターン通路との間に
設けられ、前記燃料通路の燃料圧力を制御する
燃料圧力制御弁とを有する内燃機関の燃料噴射
装置において、 機関停止状態又は機関停止後の機関雰囲気温
度を検知する機関状態検知手段を設けると共
に、 この機関状態検知手段の検知出力によつて作
動する電磁駆動の弁を備え、該弁の開放によつ
て前記燃料通路の前記燃料圧力制御弁より上流
側を前記燃料リターン通路に連通させて該燃料
通路内の燃料圧力を略大気圧まで低下させる燃
料圧力減圧手段を、前記燃料通路と燃料リター
ン通路との間に設けたことを特徴とするベーパ
ロツク防止装置。 2 前記燃料圧力減圧手段が、前記燃料通路の前
記燃料圧力制御弁より上流側と燃料リターン通
路との間に設けたバイパス通路と、該バイパス
通路を開閉する2方電磁弁とによつて構成され
ている実用新案登録請求の範囲第1項記載のベ
ーパロツク防止装置。
[Claims for Utility Model Registration] 1. A fuel passage that supplies fuel delivered by a fuel pump from a fuel tank to a fuel injection valve, a fuel return passage that returns excess fuel to the fuel tank, and a connection between the fuel passage and the fuel In a fuel injection device for an internal combustion engine having a fuel pressure control valve provided between a return passage and a fuel pressure control valve for controlling fuel pressure in the fuel passage, the engine state detection detects the engine atmosphere temperature in the engine stop state or after the engine stops. and an electromagnetically driven valve operated by the detection output of the engine state detection means, and when the valve is opened, the upstream side of the fuel pressure control valve of the fuel passage is connected to the fuel return passage. A vapor lock prevention device characterized in that a fuel pressure reducing means is provided between the fuel passage and the fuel return passage to communicate with each other to reduce the fuel pressure in the fuel passage to approximately atmospheric pressure. 2. The fuel pressure reducing means is constituted by a bypass passage provided between a fuel return passage and an upstream side of the fuel pressure control valve in the fuel passage, and a two-way solenoid valve that opens and closes the bypass passage. A vapor lock prevention device according to claim 1, which has been registered as a utility model.
JP168781U 1981-01-12 1981-01-12 Expired JPS6115248Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP168781U JPS6115248Y2 (en) 1981-01-12 1981-01-12
DE19823200622 DE3200622A1 (en) 1981-01-12 1982-01-12 Fuel injection system for combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP168781U JPS6115248Y2 (en) 1981-01-12 1981-01-12

Publications (2)

Publication Number Publication Date
JPS57115952U JPS57115952U (en) 1982-07-17
JPS6115248Y2 true JPS6115248Y2 (en) 1986-05-12

Family

ID=11508422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP168781U Expired JPS6115248Y2 (en) 1981-01-12 1981-01-12

Country Status (2)

Country Link
JP (1) JPS6115248Y2 (en)
DE (1) DE3200622A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650090B2 (en) * 1983-05-17 1994-06-29 日産自動車株式会社 Fuel cutoff valve for distributed fuel injection pump
DE3608522A1 (en) * 1986-03-14 1987-09-17 Bosch Gmbh Robert METHOD FOR CONTROLLING A FUEL INJECTION SYSTEM AND FUEL INJECTION SYSTEM
FR2612257B1 (en) * 1987-03-10 1989-06-09 Renault FUEL CIRCUIT OF AN ELECTRONIC INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE3914939A1 (en) * 1989-05-06 1990-11-08 Bayerische Motoren Werke Ag Fuel injection system for IC engine - has pressure accumulator fitted in fuel supply pipe
DE4136833A1 (en) * 1991-11-08 1993-05-13 Bayerische Motoren Werke Ag ARRANGEMENT FOR FUEL SUPPLY OF AN INTERNAL COMBUSTION ENGINE
DE4336871A1 (en) * 1993-10-28 1995-05-04 Siemens Ag Device for reducing the fuel temperature in the tank of a motor vehicle
JP3867167B2 (en) * 2002-02-14 2007-01-10 株式会社ケーヒン Fuel injection device
JP4179333B2 (en) * 2006-04-12 2008-11-12 トヨタ自動車株式会社 Start control device for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902355A1 (en) * 1979-01-22 1980-08-07 Bosch Gmbh Robert FUEL INJECTION SYSTEM
DE2902390A1 (en) * 1979-01-23 1980-07-31 Bosch Gmbh Robert Fuel injection system for internal combustion system - has float operated fuel valve to release vapour and prevent locking of injectors

Also Published As

Publication number Publication date
DE3200622A1 (en) 1982-09-23
JPS57115952U (en) 1982-07-17

Similar Documents

Publication Publication Date Title
JPS6115248Y2 (en)
US3744471A (en) Carburetor emission control
US4106464A (en) Programmed control system for a lean-burning internal combustion engine
US3744470A (en) Engine anti-diesel control
US4495904A (en) Apparatus for facilitating engine starting
US4043310A (en) Auxiliary apparatus for hot-starting internal combustion engine
US4195602A (en) Intake control means for internal combustion engines
US4105719A (en) Carburetor with auxiliary accelerator-pump system
JPS6218675Y2 (en)
US4442811A (en) Method and apparatus for expediting the starting of an internal combustion engine
JPH0330613Y2 (en)
JPS5840656B2 (en) Intake control device for internal combustion engines
JPH037569Y2 (en)
JPS6030453Y2 (en) York valve control device
JPS6126607Y2 (en)
JPS5851393Y2 (en) Fuel vapor processing equipment for internal combustion engines
JPS60190660A (en) Fuel pressure control device of fuel-injection engine
JPS603963Y2 (en) Vaporizer evaporative heat control system
JPS626286Y2 (en)
JPS6327543B2 (en)
JPS6228680Y2 (en)
JPS61167155A (en) Pressure regulator for internal-combustion engine
JPS60132068A (en) Fuel pressure controller for fuel injection engine
JPS6160258B2 (en)
JPH0734210Y2 (en) Engine start control mechanism