JPS61152332A - Preparation of heat exchanger - Google Patents

Preparation of heat exchanger

Info

Publication number
JPS61152332A
JPS61152332A JP27927684A JP27927684A JPS61152332A JP S61152332 A JPS61152332 A JP S61152332A JP 27927684 A JP27927684 A JP 27927684A JP 27927684 A JP27927684 A JP 27927684A JP S61152332 A JPS61152332 A JP S61152332A
Authority
JP
Japan
Prior art keywords
fin
refrigerant passage
bending
heat exchanger
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27927684A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yamauchi
芳幸 山内
Toshio Ohara
敏夫 大原
Shigenobu Fukumi
重信 福見
Yoshio Miyata
喜夫 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP27927684A priority Critical patent/JPS61152332A/en
Publication of JPS61152332A publication Critical patent/JPS61152332A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce the production defects due to bending work by joining a meandering fin continuous to the half height of the interval between the coolant passing pipes after bending, onto the both side surfaces of the coolant passing pipe and bending the coolant passing pipe into meandering form, thus increasing the buckling strength and sacrifice corrosion. CONSTITUTION:Onto the both side surfaces of a coolant passage pipe 1 having the length corresponding to one unit of the core of a heat exchanger, a fin 2 curved into meandering is brazed. The height 6 of the fin is the half of the interval between pipes in the case when the pipe 1 is bent. Therefore, the height of the fin can be reduced to half, and the buckling strength can be increased, and since the fin 2 exists also in a bent part 3, the sacrifice corrosion effect by the combination of material can be expected. Further, the production defects such as buckling of the fin 2 due to the precision in bending work of the coolant passing pipe 1 and brazing defect can be reduced, and the necessary manhour in assembly work can be reduced by the reduction of the number of parts of the fin 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蛇行状に成形された冷媒通路管とその間に蛇
行状に成形されたフィンを組合せた熱交tIA器の製造
方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a heat exchanger TIA device that combines a meandering refrigerant passage pipe and a meandering fin therebetween. be.

〔従来の技術〕[Conventional technology]

従来、この種の熱交t’sにおいては、第2図(alに
その外観模式図を示す通り、予め蛇行状に成形された冷
媒通路管1の間に蛇行状に成形されたフィン2を挿入し
てろう付けしである。
Conventionally, in this type of heat exchanger t's, as shown in a schematic diagram of the external appearance in FIG. Insert and braze.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来の熱交換器においては、冷媒通路管1とフィン
2のろう付けの際、密着させるための荷重をかけなけれ
ばならず、ろう付け中にフィン2が第2図(b)に矢印
Aで示すように座屈してしまうという問題点がある。ま
た、フィン2に電位の卑な材料を用いて犠牲腐食させ冷
媒通路管lを保護させているが、前記第2図(a)図示
の曲がり部3はフィン材が接していないため、この保護
効果が発揮されないという問題点がある。
In the conventional heat exchanger, when brazing the refrigerant passage pipes 1 and the fins 2, it is necessary to apply a load to bring them into close contact, and during the brazing, the fins 2 move in the direction of arrow A in FIG. 2(b). There is a problem in that it buckles as shown in . In addition, the fins 2 are sacrificially corroded using a material with a low potential to protect the refrigerant passage pipe l, but since the bent portion 3 shown in FIG. 2(a) is not in contact with the fin material, this protection The problem is that it is not effective.

また、相隣る冷媒通路管lの間にフィン2を1本宛挿入
するため通路管の曲げ数nに対しくn+2)本のフィン
が必要となり、フィンの部品点数が多くなるという問題
点がある。
Furthermore, since each fin 2 is inserted between adjacent refrigerant passage pipes l, n+2) fins are required for the number n of bends in the passage pipe, which poses the problem of an increase in the number of fin parts. be.

c問題点を解決するための手段〕 本発明は、冷媒通路管を蛇行状に曲げる前に、冷媒通路
管の両側面に蛇行状のフィンをろう付けし、その後、曲
げ成形してコアを形成するようにしたものである。
Means for Solving Problem c] The present invention involves brazing serpentine fins on both sides of the refrigerant passage pipe before bending the refrigerant passage pipe into a serpentine shape, and then bending the pipe to form a core. It was designed to do so.

〔作 用〕[For production]

フィン高さが半分になることにより座屈強度が増し、冷
媒通路管の曲げ部にもフィン材が存在するので材料の組
合せによる犠牲腐食効果が期待でき、またフィンは2本
の連続したものをろう付けすればよいので、フィンの部
品点数が減少する。
By halving the fin height, the buckling strength increases, and since fin material is also present at the bent part of the refrigerant passage pipe, sacrificial corrosion effects can be expected due to the combination of materials. Since only brazing is required, the number of fin parts is reduced.

〔実施例〕〔Example〕

以下、本発明になる熱交換器の製造方法の一実施例につ
いて説明する。第1図(δ)、山)は本発明になる製造
方法を実施した熱交換器の一実施例を示す外観模式図で
、第1図ta>のように熱交換器のコア一台分の長さの
冷媒通路管1 (偏平チューブ)の両側面に蛇行状に曲
げた連続したフィン2をろう付けしてあり、このフィン
2の高さ6は前記冷媒通路管lを蛇行状に曲げてコアを
形成したときの各冷媒通路管の間隔の半分の高さにしで
ある。
An embodiment of the method for manufacturing a heat exchanger according to the present invention will be described below. Fig. 1 (δ), peak) is a schematic external view showing an example of a heat exchanger manufactured by the manufacturing method of the present invention. Continuous fins 2 bent in a serpentine shape are brazed to both sides of a long refrigerant passage pipe 1 (flat tube), and the height 6 of the fins 2 is determined by bending the refrigerant passage pipe 1 in a serpentine shape. The height is half the distance between the refrigerant passage pipes when the core is formed.

なお、5はフィン2を押圧してろう付けする治具である
0次に前記第1図(a)のように形成した冷媒通路管l
と蛇行状に曲げて第1図(b1図示のように熱交換器の
コア4を形成しである。ここでフィンに犠牲腐食効果を
もたすために、例えばチューブ1にはJISA3003
のような電位の責な材料、フィンにはJISA1050
にZnとかSnなどを添加した電位の卑な材料の組合せ
を使用している。
5 is a jig for pressing and brazing the fins 2.Next, there is a refrigerant passage pipe l formed as shown in FIG. 1(a) above.
The core 4 of the heat exchanger is formed by bending it into a serpentine shape as shown in Figure 1 (b1).Here, in order to have a sacrificial corrosion effect on the fins, for example, the tube 1 is made of JISA3003.
JISA1050 for fins and materials that are susceptible to potential, such as
A combination of low-potential materials, such as Zn or Sn, is used.

なお、第3図は本発明製造方法の他の実施例を示し、冷
媒通路管lの曲げ部3の部分だけフィン2を平面にしで
ある。また本発明製造方法はζ第4図に示すような押出
多穴偏平チューブの冷媒通路管にも通用できる。また本
発明製造方法は、第5図に示すような内部にフィンを収
納したインナーフィン付板成形偏平チューブにも通用で
きる。
In addition, FIG. 3 shows another embodiment of the manufacturing method of the present invention, in which the fins 2 are made flat only at the bent portions 3 of the refrigerant passage pipes l. Further, the manufacturing method of the present invention can also be applied to a refrigerant passage pipe of an extruded multi-hole flat tube as shown in FIG. 4. Furthermore, the manufacturing method of the present invention can also be applied to a plate-molded flat tube with inner fins having fins housed inside as shown in FIG.

次に、第6図は本発明方法において、冷媒通路管である
チューブとフィンの製造とろう付けを連続的に行なう方
法の一実施例を示し、チューブ製造機7の両側にフィン
製造機8を配置し、各製造機より出て来たチューブ及び
フィンを治具5の中で、フィン2、チューブ11フイン
2の順に配置し、それを連続炉9の中でろう付けし、連
続炉より出て来たフィン付チューブをコア一台分の長さ
に切断し、その後、前記実施例と同じく蛇iテ伏に曲げ
加工してコアを形成する。
Next, FIG. 6 shows an embodiment of the method of the present invention in which tubes and fins, which are refrigerant passage pipes, are manufactured and brazed continuously. The tubes and fins that come out of each manufacturing machine are placed in the order of fin 2, tube 11, and fin 2 in jig 5, and then brazed in continuous furnace 9, and then removed from the continuous furnace. The obtained finned tube is cut to the length of one core, and then bent into a meandering shape as in the previous embodiment to form a core.

次に、冷媒通路管の曲げ部3の曲げ加工方法の実施例と
しては、第7図に示すように、治具10を冷媒通路管の
曲げ部の内側に配して基準とし、周囲をおさえることに
より冷媒通路管を曲げる。
Next, as an example of the method of bending the bent portion 3 of the refrigerant passage pipe, as shown in FIG. This bends the refrigerant passage pipe.

また、第8図(al、 (bl、 (C1,(dlは冷
媒通路管の曲げ部の加工方法の他の実施例の工程図で、
治具10゜10’を用いてプレス加工により(al、 
(b)、 (C1,(d)の順に段階的に曲げていく。
In addition, FIG. 8 (al, (bl, (C1, (dl) is a process diagram of another example of the method for processing the bent portion of the refrigerant passage pipe,
By press working using a jig 10°10' (al,
Bending step by step in the order of (b), (C1, and (d)).

また、第9図(jI)、 (b)はコア一台分の冷媒通
路管の複数の曲げ部の曲げ加工を同時に1回で行なう方
法の一実施例で、第9図(alのように曲げ部にベンダ
11を取付け左右より押しながら矢印の方向に交互に同
時に上下に引張ることにより第9回出)のようなコアを
1回の加工で製作できる。
In addition, Figures 9 (jI) and (b) are examples of a method for simultaneously bending multiple bends of refrigerant passage pipes for one core in one operation, as shown in Figure 9 (al). By attaching the bender 11 to the bent portion and simultaneously pulling it up and down in the direction of the arrow while pushing it from the left and right sides, a core like the one shown in item 9) can be manufactured in one process.

〔発明の効果〕〔Effect of the invention〕

本発明になる熱交換器の製造方法においては、フィン高
さが半分になることにより座屈強度が増し、冷媒通路管
の曲げ加工の精度によるフィンの座屈、ろう付け不良と
いった製造不良が少なくなる効果があり、冷媒通路管の
曲げ部にもフィン材が存在するので材料の組合せによる
犠牲腐食効果が期待でき、またフィンは2本の連続した
ものでよいので、フィンの部品点数が減少し組付け工数
゛を省略できる等の効果がある。
In the heat exchanger manufacturing method of the present invention, the buckling strength is increased by halving the fin height, and manufacturing defects such as fin buckling and brazing defects due to the precision of bending of the refrigerant passage pipes are reduced. Since the fin material is also present at the bent part of the refrigerant passage pipe, a sacrificial corrosion effect can be expected due to the combination of materials.Also, since two consecutive fins are sufficient, the number of fin parts is reduced. There are effects such as being able to omit assembly man-hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明になる熱交換器の製造方法の中間
工程における模式図、第1回出)は本発明になる熱交換
器の製造方法を実施した熱交換器のコアの外観模式図、
第2図(alは従来の製造方法になる熱交換器のコアの
外観模式図、第2図(blは従来の製造方法になる熱交
換器のコアにおけるフィンの座屈状態を示す部分拡大模
式図、第3図は本発明になる製造方法の他の実施例の中
間工程の模式図、第4図は本発明になる熱交換器の製造
方法における冷媒通路管として押出多穴偏平チ諷−ブを
使用した場合の中間工程における模式図、第5図は本発
明製造方法における冷媒通路管としてインナーフィン付
板成形偏平チューブを使用した場合の中間工程における
模式図、第6VIJは本発明製造方法において冷媒通路
管とフィンの製造とろう付けを連続的に行なう方法の一
実施例の中間工程における模式図、第7図及び第8図(
al、 (bl、 (cl、 (d)は本発明製造方法
における冷媒通路管の曲げ部における曲げ加工方法の実
施例を示す模式図、第9図(8)。 (blは本発明製造方法においてコア一台分の冷媒通路
管の曲げ加工を同時に1回の加工で行なう実施例の模式
図である。 l・・・冷媒通路管、2・・・フィン、3・・・曲げ部
、4・・・コア、6・・・フィンの高さ、5・・・11
3fL、、lO−・ 10′・・・治具、11・・・ヘ
ンダ。
FIG. 1(a) is a schematic diagram of an intermediate step in the method for manufacturing a heat exchanger according to the present invention, and Figure 1 (a) is an external view of the core of a heat exchanger manufactured by the method for manufacturing a heat exchanger according to the present invention. Pattern diagram,
Figure 2 (al is a schematic external view of the core of a heat exchanger manufactured by the conventional manufacturing method, and Figure 2 (bl is a partially enlarged schematic diagram showing the buckled state of the fins in the core of the heat exchanger manufactured by the conventional manufacturing method) 3 is a schematic diagram of an intermediate step in another embodiment of the manufacturing method according to the present invention, and FIG. 4 is an extruded multi-hole flat pipe as a refrigerant passage pipe in the method for manufacturing a heat exchanger according to the present invention. FIG. 5 is a schematic diagram of an intermediate step when a plate-formed flat tube with inner fins is used as a refrigerant passage pipe in the manufacturing method of the present invention. FIGS. 7 and 8 are schematic diagrams of intermediate steps of an embodiment of a method for continuously manufacturing and brazing refrigerant passage pipes and fins in
al, (bl, (cl, (d) is a schematic diagram showing an example of the bending method at the bent part of the refrigerant passage pipe in the manufacturing method of the present invention, FIG. 9 (8). It is a schematic diagram of an embodiment in which bending of refrigerant passage pipes for one core unit is performed at the same time in one process. l... Refrigerant passage pipe, 2... Fin, 3... Bending portion, 4... ...Core, 6...Fin height, 5...11
3fL,, lO-・10'...Jig, 11...Hender.

Claims (1)

【特許請求の範囲】[Claims]  蛇行状に曲げ加工する前の冷媒通路管の両側面に、曲
げ加工したときの冷媒通路管の相隣る間隔の半分の高さ
の連続した蛇行状フィンをろう付け接合した後に、前記
冷媒通路管を蛇行状に曲げ加工してコアを形成すること
を特徴とする熱交換器の製造方法。
After brazing and joining continuous serpentine fins with a height half the distance between adjacent refrigerant passage pipes when bent, to both sides of the refrigerant passage pipe before being bent into a serpentine shape, the refrigerant passage A method of manufacturing a heat exchanger, which comprises forming a core by bending a tube into a meandering shape.
JP27927684A 1984-12-25 1984-12-25 Preparation of heat exchanger Pending JPS61152332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27927684A JPS61152332A (en) 1984-12-25 1984-12-25 Preparation of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27927684A JPS61152332A (en) 1984-12-25 1984-12-25 Preparation of heat exchanger

Publications (1)

Publication Number Publication Date
JPS61152332A true JPS61152332A (en) 1986-07-11

Family

ID=17608906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27927684A Pending JPS61152332A (en) 1984-12-25 1984-12-25 Preparation of heat exchanger

Country Status (1)

Country Link
JP (1) JPS61152332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048671A1 (en) * 2001-12-03 2003-06-12 Brazeway, Inc. Flattened tube heat exchanger made from micro-channel tubing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048671A1 (en) * 2001-12-03 2003-06-12 Brazeway, Inc. Flattened tube heat exchanger made from micro-channel tubing

Similar Documents

Publication Publication Date Title
US7044211B2 (en) Method of forming heat exchanger tubing and tubing formed thereby
JPH0284250A (en) Manufacture of brazing pipe
JPH07218170A (en) Tubular section for heat exchanger, molding equipment thereof and heat exchanger thereof
KR20140020699A (en) Heat exchanger tube, heat exchanger tube assembly, and methods of making the same
CZ303129B6 (en) Heat exchanger and process for producing the heat exchanger
US2722048A (en) Method of making heat exchangers
JP2014035181A (en) Heat exchanger tube, heat exchanger tube assembly, and method of making the same
JPS6166091A (en) Manufacture of heat exchanger tube material and core by use of such material and core by use of such material
CN103567732B (en) Tube Sheet of Heat Exchanger, Tube Sheet of Heat Exchanger component and the method for manufacturing them
JPH05115934A (en) Manufacture of flattened tube for heat exchanger
JPH0355211B2 (en)
JPS61152332A (en) Preparation of heat exchanger
RU2448797C2 (en) Method of making heat exchanger
JPH02205251A (en) Manufacture of heat exchanger core
JP3966072B2 (en) Manufacturing method of heat exchanger tube
US3648344A (en) Process of fabricating a radiator core
JPH03174971A (en) Manufacture of core in heat exchanger
JPS60205192A (en) Heat exchanger
US3731732A (en) Tube and fin heat exchanger
JP2766532B2 (en) Manufacturing method of aluminum double-pipe heat exchanger
CN103575148B (en) Tube Sheet of Heat Exchanger, Tube Sheet of Heat Exchanger component and the method for manufacturing them
JP3451492B2 (en) Diameter reduction method for end of heat exchange tube with inner fin
JP4029388B2 (en) Manufacturing method of heat exchanger core
JP2756605B2 (en) Heat exchanger manufacturing method
JPS642448B2 (en)