JPS61151971A - Battery apparatus - Google Patents

Battery apparatus

Info

Publication number
JPS61151971A
JPS61151971A JP59281657A JP28165784A JPS61151971A JP S61151971 A JPS61151971 A JP S61151971A JP 59281657 A JP59281657 A JP 59281657A JP 28165784 A JP28165784 A JP 28165784A JP S61151971 A JPS61151971 A JP S61151971A
Authority
JP
Japan
Prior art keywords
battery
halogen
hydrogen
electrode active
hydrogen halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59281657A
Other languages
Japanese (ja)
Inventor
Osamu Hamamoto
修 浜本
Yukio Nakamura
幸夫 中村
Miyuki Matsuda
幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59281657A priority Critical patent/JPS61151971A/en
Publication of JPS61151971A publication Critical patent/JPS61151971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To improve a whole efficiency of a battery, according to a method wherein both electrodes are separated by a diaphragm selectively transmitting hydrogen ions mainly, and halogen and hydrogen additionally produced by electrode reaction are separated in gas and liquid, and are introduced in a reactor to be allowed to, and the generated hydrogen halide is returned into an original positive electrode active substance. CONSTITUTION:Hydrogen and halogen gas generated in the negative and positive electrodes 4 and 5 of a battery cell stack 3 are introduced into a reactor 10 from negative and positive electrodes active substance tanks 1 and 2 through lines 8a and 8b, and react here to generate hydrogen halide. The hydrogen halide is suitably returned to the tank 2 via a storage tank 11, and the required quantity of the hydrogen halide is supplied into an original positive electrode active substance. As described above, the additionally produced gas generated in negative and positive electrodes is separated in gas and liquid, and allowed to react in the reactor 10, and the additionally produced hydrogen halide is suitably returned into the battery, so that the quantity of the negative and positive electrodes active substances can be automatically rebalanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電池装置に関し、さらに詳しくは両極の電池
活物質が液状であるレドックスフロー型二次電池など活
物質再生型等の燃料電池に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a battery device, and more particularly to a fuel cell such as an active material regeneration type such as a redox flow type secondary battery in which the battery active material of both electrodes is liquid. .

(従来の技術) 両極の電池活物質が、液状である電池には一部の湿式の
燃料電池、レドックスフロー型二次電池等があり、大き
な起電力を得ることができる活物質の組合せ(レドック
ス対)としては、クロム2価/3価−鉄3価/2価対、
チタン3価/4価−鉄3価/2価対等の組合せがあるが
、これらは化学種の委全性という面での利点を持っては
いるものの、1セルあたりの起動力が小さく、また溶解
度上の制約から、電池のエネルギー密度が小さいという
欠点がある。これらに対して起電力が高く、大きな出力
エネルギー密度が期待できるクロム−ハロゲン系電池は
、両極活物質がフロー型電池の最大の欠点とされていた
エネルギー密度の小さいことを克服し、さらに両極活物
質とともに流体であるため取扱い易いという利点を有し
ている。このため、クロムとハロゲンをそれぞれ負正極
活物質とする電池が提案されている(アール・エフ・ザ
ビネランド(RF、5avinelland) 、ディ
ー・ニー・ボラスキ(D、A、Po1aski ) 、
”エクスペリメンタル・エバルエーション・オプ・ア・
プロトタイプ・ハイブリッド・レドックス・ハロゲン・
エナジイ・ストアレージ・システム” (f!xper
imentalEvaluation of a Pr
ototype Hybrid Redox Hal。
(Prior art) Some wet fuel cells, redox flow type secondary batteries, etc. have batteries in which the battery active materials at both electrodes are in a liquid state, and a combination of active materials (redox pair) is chromium divalent/trivalent - iron trivalent/bivalent pair,
There are equivalent combinations of titanium trivalent/tetravalent and iron trivalent/bivalent, but although these have the advantage in terms of control of chemical species, the activation force per cell is small, and Due to solubility constraints, the battery has a low energy density. In contrast, chromium-halogen batteries have a high electromotive force and can be expected to have a large output energy density. Since it is a fluid together with the substance, it has the advantage of being easy to handle. For this reason, batteries using chromium and halogen as negative and positive electrode active materials have been proposed (RF, 5avilland, D.A. Po1aski),
“Experimental Evaluation Op.
Prototype/Hybrid/Redox/Halogen/
Energy Storage System” (f!xper
mentalEvaluation of a Pr
ototype Hybrid Redox Hal.

gen Energy Storage System
 ) 、シックスティーンス(16th) 、アイ・イ
ー・シー・イー・シー(IECEC)  、  819
385 (1781) )  。
gen Energy Storage System
), Sixteenth (16th), IECEC (IECEC), 819
385 (1781)).

(発明が解決しようとする問題点) しかし、従来の電池システムでは次のような欠点があっ
た。
(Problems to be Solved by the Invention) However, conventional battery systems have the following drawbacks.

(1)ハロゲン(塩素、臭素)の透過を抑え、フ。(1) Suppresses the permeation of halogens (chlorine, bromine).

ロトンを選択的に高い電導率で透過させることが困難で
あり、また、電気量効率や長時間にわたる繰返し充放電
における効率の低下が顕著である。
It is difficult to selectively transmit rotons with high conductivity, and there is a significant decrease in electrical efficiency and efficiency in repeated charging and discharging over a long period of time.

(2)負極活物質であるクロムは充電時に副反応として
水素を発生する。このため、活物質は正極側が常に過充
電状態に陥りやすく、放置すると電池の出力を著しく低
下させる。
(2) Chromium, which is a negative electrode active material, generates hydrogen as a side reaction during charging. For this reason, the positive electrode side of the active material always tends to be overcharged, and if left untreated, the output of the battery will be significantly reduced.

(3)負極活物質であるクロムの電極反応速度を上げる
ため、電池の動作温度を40〜60℃程度に上げる必要
があるが、昇温すると、/’%ロゲンの液中保持力が小
さくなり、ガスとしてのノ10ゲン貯蔵が必要になる。
(3) In order to increase the electrode reaction rate of chromium, which is the negative electrode active material, it is necessary to raise the operating temperature of the battery to about 40 to 60°C, but as the temperature rises, the retention power of /'%rogen in the liquid decreases. , storage of gas as a gas is required.

また電池セル内におむ1て隔膜を通してのハロゲンガス
の負極室への移動(拡散)が激しくなり、電池のクーロ
ン効率が大きく低下する。したがって常温でも良好に電
極反応を行わしめる負極を用いることが好ましい。
In addition, the movement (diffusion) of halogen gas into the negative electrode chamber through the diaphragm in the battery cell increases, and the Coulombic efficiency of the battery decreases significantly. Therefore, it is preferable to use a negative electrode that can perform an electrode reaction well even at room temperature.

(4)負極側における水素ガス発生を完全に抑えたり、
また発生した水素ガスをすべて回収することは一般に困
難である。正極活物質側では電池系外へ散逸した水素ガ
ス量分だけ、ハロゲンが過剰(正極側の過充電)になり
、長期充放電に支障をきたす。
(4) Completely suppress hydrogen gas generation on the negative electrode side,
Furthermore, it is generally difficult to recover all of the generated hydrogen gas. On the positive electrode active material side, halogen becomes excessive (overcharging on the positive electrode side) by the amount of hydrogen gas that has dissipated outside the battery system, causing problems in long-term charging and discharging.

本発明の目的は、従来のクロム−ハロゲン系電池を改善
し、副反応による正極側の過充電を解消し、電池として
の全体的な効率の向上を図った電池装置を提供すること
にある。
An object of the present invention is to provide a battery device that improves the conventional chromium-halogen battery, eliminates overcharging on the positive electrode side due to side reactions, and improves the overall efficiency of the battery.

(問題点を解決するための手段) 本発明は、負極における液状負極活物質の電極反応が2
価クロムおよび3価クロム間の酸化還元ならびに正極に
おける液状正極活物質の電極反応が1価ハロゲンおよび
0価ハロゲン間の酸化還元によって電池が構成され、該
両電極反応を行なわしめる電極が溶液流通型の多孔質電
極である電池装置において、該両電極間を主として水素
イオンを選択的に透過する隔膜で分離し、かつ該電極反
応で副生ずるハロゲンおよび水素をそれぞれ気液分離し
、反応器に導入してこれらを反応せしめ、生成したハロ
ゲン化水素を元の正極活物質中に戻すようにしたことを
特徴とする。
(Means for Solving the Problems) The present invention provides that the electrode reaction of the liquid negative electrode active material in the negative electrode is
A battery is constructed by the redox between valent chromium and trivalent chromium and the electrode reaction of the liquid positive electrode active material at the positive electrode between monovalent halogen and zero-valent halogen, and the electrode that carries out both electrode reactions is a solution-flow type. In a battery device that is a porous electrode, the two electrodes are separated by a diaphragm that selectively permeates mainly hydrogen ions, and the halogen and hydrogen produced as by-products in the electrode reaction are separated into gas and liquid and introduced into the reactor. The method is characterized in that the hydrogen halides produced are returned to the original positive electrode active material.

以下、本発明を図面により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の電池装置を示す説明図である。qの
装置は、正極5、負極4および隔l!lI6を有する電
池セルスタック3と、該セルスタック3にそれぞれ負極
活物質および正極活物質を供給するポンプ7a、7bお
よびライン9a、9bと、該負極活物質および正極活物
質をそれぞれ貯蔵するタンク1および2と、前記電池セ
ルスタック3の負極側で生成した水素および正極側で生
成したハロゲンガスをそれぞれ貯蔵タンク1および2か
ら抜き出すライン8aおよび8bと、該ライン8a、8
bから抜き出された水素およびハロゲンガスを反応させ
る反応器10と、該反応器10で得られたハロゲン化水
素を貯蔵する容器11と、該貯蔵タンク11から正極活
物質の貯蔵タンクにハロゲン化水素を供給するためのラ
イン15aと、該正極活物質の貯蔵容器2から過剰のハ
ロゲンを抜き出すためのライン15bおよびその処理装
置13と、負極および正極活物質の貯蔵タンクlおよび
2の間に設けられた、これらの活物質量を測定するため
のモニター装置14とから主として構成される。
FIG. 1 is an explanatory diagram showing a battery device of the present invention. The device q has a positive electrode 5, a negative electrode 4, and a distance l! A battery cell stack 3 having lI6, pumps 7a, 7b and lines 9a, 9b that supply a negative electrode active material and a positive electrode active material to the cell stack 3, respectively, and a tank 1 that stores the negative electrode active material and the positive electrode active material, respectively. and 2, lines 8a and 8b for extracting hydrogen generated on the negative electrode side of the battery cell stack 3 and halogen gas generated on the positive electrode side from storage tanks 1 and 2, respectively;
a reactor 10 for reacting hydrogen and halogen gas extracted from b, a container 11 for storing the hydrogen halide obtained in the reactor 10, and a container 11 for storing the hydrogen halide obtained in the reactor 10; A line 15a for supplying hydrogen, a line 15b for extracting excess halogen from the storage container 2 for the positive electrode active material, and a line 15b provided between the processing device 13 and the storage tanks 1 and 2 for the negative electrode and positive electrode active materials. and a monitor device 14 for measuring the amounts of these active materials.

電池セルスタック3の負極4および正極5でそれぞれ発
生した水素およびハロゲンガスは、負極活物質タンク1
および正極活物質タンク2からライン8aおよび8bを
通って反応器10内に導入され、ここで反応してハロゲ
ン化水素を生成する。
Hydrogen and halogen gas generated at the negative electrode 4 and positive electrode 5 of the battery cell stack 3 are transferred to the negative electrode active material tank 1.
and is introduced into the reactor 10 from the positive electrode active material tank 2 through lines 8a and 8b, where it reacts to produce hydrogen halide.

このハロゲン化水素は貯蔵タンク11を経て適宜正極活
物質タンク2に戻され、必要量が元の正極活物質中に供
給される。このように負極および正極で発生する副生物
ガスを気液分離して反応器10で反応させ、反応生成物
であるハロゲン化水素を適宜電池系内に戻すことにより
、正負極活物質量を自動的にリバランスさせることがで
き、正負極活物質の充放電深度を適正に調整することか
できる。
This hydrogen halide is appropriately returned to the positive electrode active material tank 2 via the storage tank 11, and the required amount is supplied into the original positive electrode active material. In this way, by-product gases generated at the negative and positive electrodes are separated into gas and liquid, reacted in the reactor 10, and hydrogen halide, which is a reaction product, is appropriately returned to the battery system, thereby automatically adjusting the amount of positive and negative electrode active materials. It is possible to rebalance the charge and discharge depth of the positive and negative electrode active materials appropriately.

本発明の電池システムにおいて、ハロゲンの電池系外へ
の放出量およびハロゲン化水素の電池系内への導入量は
、モニター装置14によって正、負極活物質量を測定し
、この測定値が所定値になるようにパルプ(第1図の1
6a、16b)を調整することによって行われる。すな
わち、一般にクロム2価、酸化イオンを負極活物質とす
るレドックス・フロー型二次電池は、前述のように水素
ガスを副生ずるため、電池反応における電流効率が正極
側よりも低下し、その結果正極活物質側が負極活物質側
より過充電状態になるので、本発明では、これを解消す
るためにハロゲンと水素を反応させ、リバランス シス
テムを設けているのであるが、水素の一部飛散等により
元の状態まで完全にバランスさせることは困難である。
In the battery system of the present invention, the amount of halogen released to the outside of the battery system and the amount of hydrogen halide introduced into the battery system are determined by measuring the amounts of positive and negative electrode active materials using the monitor device 14, and determining the amount of the positive and negative electrode active materials, and these measured values are set to a predetermined value. Pulp (1 in Figure 1)
6a, 16b). In other words, in general, redox flow type secondary batteries that use divalent chromium oxide ions as negative electrode active materials produce hydrogen gas as a by-product as described above, so the current efficiency in the battery reaction is lower than that on the positive electrode side, and as a result, Since the positive electrode active material side becomes more overcharged than the negative electrode active material side, in the present invention, in order to solve this problem, halogen and hydrogen are reacted and a rebalance system is provided. Therefore, it is difficult to completely restore the balance to the original state.

このため、    、;ハロゲンの電池系外への放出と
新たなハロゲン化    ゛水素の導入を行っている。
For this reason, we are releasing halogens outside the battery system and introducing a new hydrogen halide.

これらハロゲンの放出量、ハロゲン化水素の導入量は、
両活物質のアンバランスの程度によって決定される。こ
のためモニター装置14(正、負極活物質濃度分析針)
を設けて両極液中の正、負極活物質量を求め、これらが
バランスするようにハロゲン化水素の導入弁15aおよ
び放出弁15bをそれぞれ調整する。
The amount of these halogens released and the amount of hydrogen halide introduced are:
It is determined by the degree of imbalance between both active materials. For this purpose, the monitor device 14 (positive and negative electrode active material concentration analysis needles)
is provided to determine the amounts of positive and negative electrode active materials in both electrode solutions, and the hydrogen halide introduction valve 15a and release valve 15b are adjusted respectively so that these amounts are balanced.

モニター装置14としては、電量分析法(クーロメトリ
−1特に昭和59年11月22日出願の本出願人による
特願昭59−247643号の電量分析用セル)、ポル
タンメトリー、ポテンショメトリー、吸光光度法などの
方法による分析計が好適に用いられる。
The monitor device 14 includes coulometric analysis (Coulometry 1, especially the coulometric analysis cell of Patent Application No. 59-247643 filed by the present applicant filed on November 22, 1980), portammetry, potentiometry, and absorbance. An analyzer based on a method such as the above method is preferably used.

電池セルスタック3に用いる電極としては、電導性の優
れたグラファイト質カーボン電極、例えばグラファイト
質カーボンクロス、グラファイト質カーボンニ・ノド等
が好ましく用いられる。グラファイト質カーボンは、粉
末化してX線回折分析を行い回折ピークの中に(112
)線が観察できる程度のものであればよい。
As the electrodes used in the battery cell stack 3, graphitic carbon electrodes with excellent conductivity such as graphitic carbon cloth, graphitic carbon nitrogen, etc. are preferably used. Graphitic carbon is powdered and subjected to X-ray diffraction analysis to show (112) in the diffraction peak.
) It is sufficient if the line is observable.

また電気セルスタック3に用いる隔膜6としては、高分
子膜(ベース膜)にスルホン基を導入した陽イオン交換
膜が適当であり、スルホン基導入後の膜の平均巨孔径が
10Å以下であることが好ましい。このようなイオン交
換膜を用いることによって水素イオン選択透過性が著し
く向上し、前記副生物の分離性能を高めることができる
Furthermore, as the diaphragm 6 used in the electric cell stack 3, a cation exchange membrane in which sulfone groups are introduced into a polymer membrane (base membrane) is suitable, and the average macropore diameter of the membrane after the introduction of sulfone groups is 10 Å or less. is preferred. By using such an ion exchange membrane, the hydrogen ion selective permeability can be significantly improved, and the separation performance of the by-products can be improved.

上記隔膜の平均巨孔径の測定は、透過型電子顕微鏡では
分解能上の限界があるので、隔膜の一方を水で加圧した
場合の水の透過速度を測定し、ポアズイエの法則が成立
すると仮定して求めた次の式から算出した。
Since there is a resolution limit for measuring the average macropore diameter of the diaphragm with a transmission electron microscope, we measured the water permeation rate when one side of the diaphragm was pressurized with water, and assumed that Poisier's law holds. It was calculated from the following formula.

ここでAmは膜面積、Apは膜孔面積であり、(Am/
Ap値は膜の含水率値に相当し、はぼ0゜3〜0.5で
ある)、 ここでQは水の透過速度、δpは膜両側の圧力差、tは
膜の厚さ、μは粘性係数である。
Here, Am is the membrane area, Ap is the membrane pore area, and (Am/
The Ap value corresponds to the water content value of the membrane, which is approximately 0°3 to 0.5), where Q is the water permeation rate, δp is the pressure difference on both sides of the membrane, t is the membrane thickness, and μ is the viscosity coefficient.

反応器10としては、触媒を用いる接触法、燃焼法、水
素ハロゲン燃料電池法または電磁波照射法のいずれの原
理によるものでもよい。
The reactor 10 may be based on any of the following principles: a contact method using a catalyst, a combustion method, a hydrogen-halogen fuel cell method, or an electromagnetic wave irradiation method.

本発明におけるクロム−ハロゲン電池は、実用上クロム
−塩素電池とクロム−臭素電池の2種類があるが、保守
性、操作性、安全性等の点からクロム−臭素電池が特に
好適である。なお、ハロゲンとして塩素を用いる場合は
、第1図の構成にさらに低温状態で塩素を貯蔵する熱交
換設備を設ける必要がある。
The chromium-halogen battery used in the present invention is practically available in two types: a chromium-chlorine battery and a chromium-bromine battery, but a chromium-bromine battery is particularly preferred from the viewpoint of maintainability, operability, safety, and the like. In addition, when using chlorine as the halogen, it is necessary to further provide heat exchange equipment for storing chlorine at a low temperature in the configuration shown in FIG.

上記実施例によれば、(1)両活物質が液状であるため
、活物質反応部(電池セルスタック3)と貯蔵部(タン
ク1および2)等を独立して構成することができ、この
ため緊急停止性および負荷追従性に優れ、また二次電池
としての充放電時間の選択が容易であり、例えばタンク
に貯蔵する活物質量の増減のみで充放電時間率を調整す
ることができる。なお、本発明の電池の出力エネルギー
密度は、従来の亜鉛系電池に匹敵するものである。
According to the above embodiment, (1) since both active materials are liquid, the active material reaction section (battery cell stack 3) and storage section (tanks 1 and 2), etc. can be configured independently; Therefore, it has excellent emergency stop performance and load followability, and it is easy to select the charging and discharging time as a secondary battery. For example, the charging and discharging time rate can be adjusted simply by increasing or decreasing the amount of active material stored in the tank. Note that the output energy density of the battery of the present invention is comparable to that of conventional zinc-based batteries.

(2)電池セルスタックの隔膜として水素イオン透過性
能に優れたものを使用することにより、副生物としての
水素の分離性能を高め、本発明の主眼とする自動リバラ
ンス機能を有効に達成することができる。(3)両極の
電池質物質濃度をモニターし、その結果に基づいてハロ
ゲン化水素の電池系内への導入および余剰のハロゲンの
電池系外への放出を行なうようにしたので、両極におけ
る正、負極活物質の濃度を適正に保持し、充電深度等の
アンバランスを生じることがなくなる。
(2) By using a diaphragm with excellent hydrogen ion permeability as a diaphragm for the battery cell stack, the separation performance of hydrogen as a by-product can be improved, and the automatic rebalance function that is the main focus of the present invention can be effectively achieved. I can do it. (3) The concentration of battery material substances at both electrodes is monitored, and hydrogen halide is introduced into the battery system and excess halogen is released from the battery system based on the results. The concentration of the negative electrode active material is maintained at an appropriate level, and imbalances in the depth of charge, etc., do not occur.

以下、本発明の具体的実施例を述べる。Hereinafter, specific examples of the present invention will be described.

実施例1 試験用電池セルスタックとして、みかけの電極面積10
口高さ、1cm@(厚さ1鶴)の正、負極を有し、両極
を陽イオン交換膜で分離した小型単電池充放電試験シス
テムを作り、カーボン電極と隔膜を種々変化させ、みか
けの電流密度40mA/−で、定電流充放電試験を行っ
た。活物質としては、4規定臭化水素性2モル/l塩化
クロム(臭素−クロム電池)および4規定塩酸酸性2モ
ル/l塩化クロム(塩素−クロム電池)を用いた。
Example 1 As a test battery cell stack, the apparent electrode area was 10
We created a small cell charging/discharging test system with positive and negative electrodes with a mouth height of 1 cm @ (1 crane in thickness), with both electrodes separated by a cation exchange membrane, and by variously changing the carbon electrode and diaphragm, we A constant current charge/discharge test was conducted at a current density of 40 mA/-. As active materials, 4N hydrobromic acidic 2 mol/l chromium chloride (bromine-chromium battery) and 4N hydrochloric acid acidic 2 mol/l chromium chloride (chlorine-chromium battery) were used.

カーボン電極としては、炭素質< x is回折パター
ンに(112)回折ピークの見られないもの)、および
グラファイト質((112)回折ピークの確認できるも
の)カーボンニットを使用した。また、隔膜として、従
来の一般陽イオン交換膜M−1(ポリ塩化ビニル補強の
ポリスチレンスルホン酸系陽イオン交換膜、透過水量の
測定によって求めた平均巨孔径が20人)、同M−1(
M−2と同じ材質で平均巨孔径が9Å以下のもの)、お
よびパーフルオロスルホン酸系陽イオン交換111M−
3(平均巨孔系約25〜30Å以下)を用いた。
As the carbon electrodes, carbonaceous <x is diffraction pattern with no (112) diffraction peak observed) and graphite (with a (112) diffraction peak visible) carbon knit were used. In addition, as a diaphragm, the conventional general cation exchange membrane M-1 (polystyrene sulfonic acid-based cation exchange membrane reinforced with polyvinyl chloride, average macropore diameter determined by measuring the amount of permeated water is 20 people), the same M-1 (
Same material as M-2 with an average macropore diameter of 9 Å or less), and perfluorosulfonic acid cation exchange 111M-
3 (average macropore system of about 25 to 30 Å or less) was used.

これらの試験結果を第1表に示す。The results of these tests are shown in Table 1.

以下余白 第1表 [− 第1表の結果から、グラファイト質カーボンニフトを用
いたM−2系の電池セル構成が特に優れていることがわ
かる。
Table 1 below shows the results in Table 1, which show that the M-2 battery cell structure using graphitic carbon nift is particularly excellent.

実施例2 電池セルスタック構成要素として、実施例1に使用した
ものと同じグラファイト質カーボンニット電極および隔
膜としてM −21m!を用い、第1図に示す構成の電
池システムを製作した。活物質は4規定臭化水素圧2モ
ル/i塩化クロム水溶液を用いた。反応器10は燃焼方
式リアクター、モニター装置14は二段式ポテンシゴメ
トリーを用い、負極活物質電位は銀塩化銀電極基準で測
定し、また、小型単電池を用いて負極活物質基準の正極
活物質電位を測定し、両活物質の充放電状態を把握した
。過剰ハロゲン処理装置13はアルカリ吸収法によるも
のを用いた。
Example 2 As battery cell stack components, the same graphitic carbon knit electrode and diaphragm as those used in Example 1 were used. A battery system having the configuration shown in FIG. 1 was manufactured using the following. As the active material, a 4N hydrogen bromide pressure 2 mol/i chromium chloride aqueous solution was used. The reactor 10 is a combustion type reactor, the monitor device 14 is a two-stage potentiometer, and the potential of the negative electrode active material is measured with reference to a silver-silver chloride electrode. The material potential was measured to understand the charging and discharging states of both active materials. The excess halogen treatment device 13 used was one based on an alkali absorption method.

反応器10、過剰ハロゲン処理装置13等の全装置を良
好に稼動させた場合の繰返し充放電サイクル試験(1)
、反応器10、ハロゲン化水素貯蔵タンク11および過
剰ハロゲン処理装置13の機能を停止させたサイクル試
験(2)、ハロゲン化水素導入器12および過剰ハロゲ
ン処理装置13のみを停止させたサイクル試験(3)を
行った。
Repeated charge/discharge cycle test (1) when all devices such as reactor 10 and excess halogen treatment device 13 are operated well
, a cycle test (2) in which the functions of the reactor 10, hydrogen halide storage tank 11, and excess halogen treatment device 13 were stopped, and a cycle test (3) in which only the hydrogen halide introduction device 12 and excess halogen treatment device 13 were stopped. ) was carried out.

室温、40mA/一定電流充放電において、出力容量が
80%以下になるまでのサイクル数は第2表の通りであ
った。
The number of cycles until the output capacity decreased to 80% or less at room temperature and 40 mA/constant current charging/discharging was as shown in Table 2.

第2表 (発明の効果) 本発明の電池装置は、下記のような優れた特長を有する
Table 2 (Effects of the Invention) The battery device of the present invention has the following excellent features.

(1)高出力、かつ大型化が容易な二次電池(活物質再
生型燃料電池)が得られる。(2)保守が極めて容易で
あり、かつ無人の自動化操作が容易に図ることができる
。(3)電池反応に固相反応がないため、長寿命であり
、かつ事故要因が少ない。(4)負荷追随性が容易に図
れる。(5)高価な素材を使用してないため、安価に製
作できる。
(1) A secondary battery (active material regeneration type fuel cell) that has high output and can be easily enlarged can be obtained. (2) Maintenance is extremely easy, and unmanned automated operation can be easily achieved. (3) Since there is no solid phase reaction in the battery reaction, the battery has a long life and fewer causes of accidents. (4) Load followability can be easily achieved. (5) Since no expensive materials are used, it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す電池装置の説明図で
ある。 1・・・負極活物質貯蔵タンク、2・・・正極活物質貯
蔵タンク、3・・・電池セルスタック、4・・・負極、
5・・・正極、6・・・隔膜、10・・・反応器、11
・・・ノ10ゲン化水素貯蔵タンク、12・・・ハロゲ
ン化水素導入器、13・・・過剰ハロゲン処理装置、1
4・・・電池活物質濃度モニター装置。 代理人 弁理士  川 北 武 長 手続補正書く方式) %式% 1、事件の表示 昭和59年 特 許 願 第281657号2)発明の
名称 電池装置 3、補正をする者 事件との関係 特許出願人 住 所 東京都中央区築地5丁目6番4号名 称 (5
90)三井造船株式会社 代表者前田和雄 4、代理人〒103 住 所 東京都中央区日本橋茅場町−丁目11番8号(
紅萌ビルディング)電話03 (639)5592番氏
 名(7658)弁理士 川  北  武  長5、補
正命令の日付 昭和60年 4月10日(発送日 昭和
60年4月30日付) 6、補正の対象 明細書全文 7、補正の内容 願書に最初に添付した明細書の浄書・別紙のとおり(内
容に変更なし)。
FIG. 1 is an explanatory diagram of a battery device showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Negative electrode active material storage tank, 2... Positive electrode active material storage tank, 3... Battery cell stack, 4... Negative electrode,
5... Positive electrode, 6... Diaphragm, 10... Reactor, 11
... No. 10 Hydrogenated storage tank, 12... Hydrogen halide introduction device, 13... Excess halogen treatment device, 1
4...Battery active material concentration monitoring device. Agent Patent attorney Takeshi Kawakita Long procedural amendment writing method) % formula % 1. Indication of the case 1981 Patent Application No. 281657 2) Title of the invention Battery device 3, person making the amendment Relationship with the case Patent applicant Address: 5-6-4 Tsukiji, Chuo-ku, Tokyo Name (5)
90) Mitsui Engineering & Shipbuilding Co., Ltd. Representative Kazuo Maeda 4, Agent 103 Address 11-8 Nihonbashi Kayabacho, Chuo-ku, Tokyo (
Benimoe Building) Telephone 03 (639) 5592 Name (7658) Patent Attorney Takeshi Kawakita 5. Date of amendment order: April 10, 1985 (shipping date: April 30, 1985) 6. Subject: Full text of the specification 7. Contents of amendment: As per the engraving and attached sheet of the specification originally attached to the application (no change in content).

Claims (5)

【特許請求の範囲】[Claims] (1)負極における液状負極活物質の電極反応が2価ク
ロムおよび3価クロム間の酸化還元ならびに正極におけ
る液状正極活物質の電極反応が1価ハロゲンおよび0価
ハロゲン間の酸化還元によって電池が構成され、該両電
極反応を行なわしめる電極が溶液流通型の多孔質電極で
ある電池装置において、該両電極間を主として水素イオ
ンを選択的に透過する隔膜で分離し、かつ該電極反応で
副生するハロゲンおよび水素をそれぞれ気液分離し、反
応器に導入してこれらを反応せしめ、生成したハロゲン
化水素を元の正極活物質中に戻すようにしたことを特徴
とする電池装置。
(1) The electrode reaction of the liquid negative electrode active material at the negative electrode is the oxidation-reduction between divalent chromium and trivalent chromium, and the electrode reaction of the liquid positive electrode active material at the positive electrode is the oxidation-reduction between monovalent halogen and zero-valent halogen. In a battery device in which the electrodes that carry out the two-electrode reaction are solution-flowing porous electrodes, the two electrodes are separated by a diaphragm that selectively permeates mainly hydrogen ions, and the by-products of the electrode reaction are separated. 1. A battery device characterized in that halogen and hydrogen are separated into gas and liquid, introduced into a reactor to react, and the generated hydrogen halide is returned to the original positive electrode active material.
(2)特許請求の範囲第1項において、ハロゲン化水素
を適時導入する手段および余剰のハロゲンを適時電池シ
ステム外に放出して処理する手段を有することを特徴と
する電池装置。
(2) A battery device according to claim 1, characterized by having means for timely introducing hydrogen halide and means for timely discharging excess halogen outside the battery system.
(3)特許請求の範囲第2項において、正、負極活物質
量を測定し、これらのバランスが保持されるようにハロ
ゲン化水素の電池系内への導入量、およびハロゲンの電
池系外への放出量を決定する制御装置を設けたことを特
徴とする電池装置。
(3) In claim 2, the amount of positive and negative electrode active materials is measured, and the amount of hydrogen halide introduced into the battery system and the amount of halogen removed from the battery system are determined so as to maintain the balance between them. 1. A battery device comprising a control device that determines the amount of emitted.
(4)特許請求の範囲第1項において、該溶液流通型の
多孔質電極として、グラファイト炭素質体を用いること
を特徴とする電池装置。
(4) A battery device according to claim 1, characterized in that a graphite carbonaceous material is used as the solution flow type porous electrode.
(5)特許請求の範囲第1項において、該両電極間を分
離する隔膜がスルホン基を有する陽イオン交換膜であり
、該膜の平均巨孔径が100Å以下であることを特徴と
する電池装置。
(5) The battery device according to claim 1, wherein the diaphragm separating the two electrodes is a cation exchange membrane having a sulfone group, and the average macropore diameter of the membrane is 100 Å or less. .
JP59281657A 1984-12-25 1984-12-25 Battery apparatus Pending JPS61151971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59281657A JPS61151971A (en) 1984-12-25 1984-12-25 Battery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59281657A JPS61151971A (en) 1984-12-25 1984-12-25 Battery apparatus

Publications (1)

Publication Number Publication Date
JPS61151971A true JPS61151971A (en) 1986-07-10

Family

ID=17642155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59281657A Pending JPS61151971A (en) 1984-12-25 1984-12-25 Battery apparatus

Country Status (1)

Country Link
JP (1) JPS61151971A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2491610A1 (en) * 2009-10-23 2012-08-29 Redflow Pty Ltd Recombinator for flowing electrolyte battery
US9598263B2 (en) 2012-03-02 2017-03-21 Mitsubishi Electric Corporation Elevator device
JP2019201483A (en) * 2018-05-16 2019-11-21 株式会社大原興商 Power generation equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2491610A1 (en) * 2009-10-23 2012-08-29 Redflow Pty Ltd Recombinator for flowing electrolyte battery
EP2491610A4 (en) * 2009-10-23 2015-04-22 Redflow R & D Pty Ltd Recombinator for flowing electrolyte battery
US9598263B2 (en) 2012-03-02 2017-03-21 Mitsubishi Electric Corporation Elevator device
JP2019201483A (en) * 2018-05-16 2019-11-21 株式会社大原興商 Power generation equipment

Similar Documents

Publication Publication Date Title
US7119126B2 (en) Polymer matrix material
JP2649700B2 (en) Electrolyte regeneration device for redox flow battery
US4576878A (en) Method and apparatus for rebalancing a redox flow cell system
EP0664930B1 (en) Electrochemical apparatus for power delivery utilizing an air electrode
TW503598B (en) Catalytic air cathode for air-metal batteries
JP5207407B2 (en) Air electrode
AU772935B2 (en) Solid gel membrane
JP6549572B2 (en) Redox flow battery and method for balancing the charge state of the flow battery
JP5944906B2 (en) Regenerative fuel cell
AU2013200868B2 (en) System for energy generation or storage on an electrochemical basis
GB1580954A (en) Electric storage devices
WO2001047053A1 (en) Electrochemical cell system
JPH06260204A (en) Electrolyte circulating type battery with electrolyte reconditioner
JP2016517137A (en) Reactivation of flow battery electrodes by exposure to oxidizing solutions.
JP2018006057A (en) Iron-air battery system
US20020012848A1 (en) Electrochemical cell incorporating polymer matrix material
JP3163370B2 (en) Redox battery
JP4149728B2 (en) Fuel cell fuel supply cartridge and fuel cell comprising the cartridge
JP2001093560A (en) Redox (reduction-oxidation) flow battery
JPS61151971A (en) Battery apparatus
EA011221B1 (en) Gas blocking anode for a direct liquid fuel cell
WO2003092094A2 (en) Polymer matrix material and electrochemical cell incorporating polymer matrix material
CN108539187A (en) Alkaline secondary cell
JPS61211960A (en) Secondary cell
LU502543B1 (en) Energy storage devices