JPS6115159B2 - - Google Patents

Info

Publication number
JPS6115159B2
JPS6115159B2 JP53098247A JP9824778A JPS6115159B2 JP S6115159 B2 JPS6115159 B2 JP S6115159B2 JP 53098247 A JP53098247 A JP 53098247A JP 9824778 A JP9824778 A JP 9824778A JP S6115159 B2 JPS6115159 B2 JP S6115159B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
header
internal pressure
unit
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53098247A
Other languages
Japanese (ja)
Other versions
JPS5524969A (en
Inventor
Seiichi Shiragami
Yosuke Kakihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP9824778A priority Critical patent/JPS5524969A/en
Publication of JPS5524969A publication Critical patent/JPS5524969A/en
Publication of JPS6115159B2 publication Critical patent/JPS6115159B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、フイルタープレス型電解槽の各単位
電槽に均一に液を供給するための給液方法に関す
る。フイルタープレス型電解槽は通常複数個の単
位電槽に共通の入口ヘツダーより並列的に液を供
給し、同様に共通の排液ヘツダー(出口ヘツダー
という)に向けて並列的に抜き出す構造である。 このようなフイルタープレス型電解槽を効率よ
く運転するためには、各単位電槽に対して等量の
液の供給を行うことが一つの前提である。即ち、
例えばイオン交換膜法食塩電解槽においては各単
位電槽に供給される食塩水量に10%もバラツキが
生じると、各単位電槽間の脱塩率(濃度)や、PH
にバラツキを生じ、延いては電槽性能に悪影響を
及ぼす他、場合によつては生成塩素の純度をも低
下することもある。しかるに通常各単位電槽内で
は電解反応により生ずる気体のため等により、単
位電槽内は、各単位電槽ごとに異なつた形状の流
れが生じ、液体の流れ抵抗も等しくなることはな
い。また入口及び出口ヘツダーから単位電槽に至
る接合ホース(通常フレキシブルホースが用いら
れる)の長さ及び屈曲の度合等によつても流体抵
抗を生ずる。 これらの種々の要因によつて各単位電槽に対し
て等流量を保証することはなかなか困難である。
特に有効高さが1m以上にも及ぶ大型電槽更には
イオン交換膜法アルカリ金属塩電解槽にあつて
は、各単位電槽に対する等流量分配の必要性が一
段と大であるにかかわらず、むしろ、等流量分配
が困難となる傾向が大きい。 そこで本発明は、上記の如き困難性を解消する
一手段を提供するものである。即ち本発明はフイ
ルタープレス型電解槽特にイオン交換膜法アルカ
リ金属塩電解に用いる電解槽等であつて通常等流
量分配に困難を生ずる程の大型装置、例えば有効
高さが1m以上にも及ぶ電解槽の各単位電槽に対
してほぼ均等に液を供給する方法として、入口ヘ
ツダー内圧と出口ヘツダー内圧との差を1500mm水
柱以上、好ましくは2000mm水柱以上とするもので
ある。 また上記の如く、入口及び出口の両ヘツダー間
に圧力差を与える好ましい方法は、各単位電槽と
各ヘツダー間を接続するフレキシブルホースの形
状即ち内径及び長さによつて圧力差を付与する方
法である。 本発明は、上記の如く、入口ヘツダー内圧
(P1)及び出口ヘツダー内圧(P2)間の圧力差(P1
−P2=△P)をコントロールするだけで容易に各
単位電槽にほぼ等量の溶液を供給し得る点で極め
て有効である。通常、フイルタープレス型入口電
槽において各単位電槽及びこれに給、排液するた
めのホースは、可及的に同一形状となるよう製作
加工される。しかるに前記の如く各単位電槽ごと
の種々の相違を生じ、各単位電槽への等流量の供
給が保証し難いのであるが、本発明では、多くの
因子の中から、入口及び出口ヘツダー間の圧力差
をコントロールすることによつて、これらの種々
の因子の総和として流量分配をコントロールし得
ることを見い出したのである。従つて、本発明に
おいては、フイルタープレス型電解槽を構成する
各単位電槽のうちに極端に構造の異なるものが混
在する場合には適用されない。 以下図面を用いて本発明を説明する。第1図は
フイルタープレス型、イオン交換膜法電解槽の概
略図である。図中、1は陽極、2は陰極、3は陽
イオン交換膜、4は隔壁である。各単位電槽は、
陽極1を内在するイオン交換膜3〜隔壁4よりな
る陽極室Aと、陰極2を内在するイオン交換膜3
〜隔壁4よりなる陰極室Kとよりなる。ここで例
えば食塩水を入口ヘツダー5より供給し、各フレ
キシブルホース6によつて各陽極室に導入する。
また各陽極室からは、排出液が各フレキシブルホ
ース7によつて出口ヘツダー8に排出される。陰
極室側については同様に入口ヘツダー9より水又
は苛性ソーダ水溶液がフレキシブルホース10に
よつて陰極室に導入され苛性ソーダ水溶液がフレ
キシブルホース11を通して出口ヘツダー12へ
排出される。従つて本発明においては入口ヘツダ
ー5内圧と出口ヘツダー8内圧の差及び(又は)
入口ヘツダー9内圧と出口ヘツダー12内圧との
差を2000水柱以上とすることが必須である。 第2図は、単位電槽について示した図であり例
えば陽極室として説明すると入口ヘツダー5は、
これに取り付けられた圧力計PGによつてP1であ
ることが確認される。溶液はフレキシブルホース
6により単位電槽の陽極室入口ノズルに至る。本
図では槽内分配管13によつて、槽底より均一に
陽極室内に液が供給される。液は上昇する間に電
解反応を受け気泡を発生し、陽極室上部で気液混
合状態となり出口ノズルに至る。陽極室出口ノズ
ルからはフレキシブルホース7により気液混相流
として出口ヘツダー8に入る。出口ヘツダー内で
は大部分気−液が分離されるが、その内圧は圧力
計PGによつて知ることができる。またヘツダー
内圧の分布は、ヘツダー径が各単位電槽における
ノズル径よりも極めて大であるため、ほとんど無
視することができるため各圧力計の設置位置は特
に限定されない。 実施例 電極面積1.6m2のバイポーラ電極を有する単位
電槽26対よりなるフイルタープレス型イオン交換
膜法食塩電解槽を用い、この電解槽に別途測定し
て、電流効率78%±2%のナフイオン315(デユ
ポン社製陽イオン交換膜)を組み込み、食塩電解
を行う。また入口ヘツダーから各単位電槽までの
間及び各単位電槽から出口ヘツダーまでの間はい
ずれもテフロン製の蛇腹型フレキシブルホースを
用い、これらのホースの長さを変化させることに
よつて入口ヘツダー内圧P1と出口ヘツダー内圧P2
との間に種々の差を与え、各単位電槽への塩水供
給量のバラツキを検討した。塩水供給量のバラツ
キ具合は、各単位電槽出口のPHのバラツキによつ
て判定した。 また電解条件は原料塩水濃度は4.1規定PH=0.4
に調製し供給し、平均濃度4.0規定PH=2.0で回収
する。結果を次表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid supply method for uniformly supplying liquid to each unit cell of a filter press type electrolytic cell. A filter press type electrolytic cell usually has a structure in which liquid is supplied to a plurality of unit cells in parallel from a common inlet header, and is similarly drawn out in parallel to a common drain header (referred to as an outlet header). In order to operate such a filter press type electrolytic cell efficiently, one premise is to supply the same amount of liquid to each unit cell. That is,
For example, in an ion-exchange membrane salt electrolyzer, if there is a 10% variation in the amount of brine supplied to each unit cell, the desalination rate (concentration) and PH
This causes variations in the chlorine content, which in turn has an adverse effect on the performance of the battery cell, and in some cases may even reduce the purity of the produced chlorine. However, normally, due to gas generated by electrolytic reactions in each unit container, a flow of a different shape occurs in each unit container, and the flow resistance of the liquid is not equal. Fluid resistance also occurs depending on the length of the connecting hose (usually a flexible hose) extending from the inlet and outlet headers to the unit battery case, the degree of bending, etc. Due to these various factors, it is quite difficult to guarantee the same flow rate for each unit container.
In particular, for large batteries with an effective height of 1 m or more, and even for ion-exchange membrane method alkali metal salt electrolyzers, the need for equal flow distribution to each unit battery is even greater. , there is a strong tendency for equal flow rate distribution to become difficult. Therefore, the present invention provides a means for solving the above-mentioned difficulties. That is, the present invention is applicable to filter press type electrolyzers, particularly electrolyzers used for ion exchange membrane method alkali metal salt electrolysis, which are large-scale devices that normally have difficulty distributing equal flow rates, such as electrolyzers with an effective height of 1 m or more. As a method of supplying liquid almost equally to each unit cell of the tank, the difference between the internal pressure of the inlet header and the internal pressure of the outlet header is set to 1500 mm or more of water column, preferably 2000 mm of water column or more. Furthermore, as mentioned above, a preferred method for creating a pressure difference between both the inlet and outlet headers is to create a pressure difference by changing the shape, i.e., the inner diameter and length, of the flexible hose that connects each unit battery case and each header. It is. As described above, the present invention provides a pressure difference (P 1 ) between the inlet header internal pressure (P 1 ) and the outlet header internal pressure (P 2 ) .
-P 2 =ΔP), it is extremely effective in that almost the same amount of solution can be easily supplied to each unit container. Normally, in a filter press type inlet container, each unit container and the hoses for supplying and draining liquid thereto are manufactured to have the same shape as possible. However, as mentioned above, there are various differences between each unit container, and it is difficult to guarantee the supply of the same flow rate to each unit container.However, in the present invention, from among many factors, the They discovered that by controlling the pressure difference between the two, it is possible to control the flow rate distribution as a summation of these various factors. Therefore, the present invention is not applicable to a case where unit cells constituting a filter press electrolytic cell have extremely different structures. The present invention will be explained below using the drawings. FIG. 1 is a schematic diagram of a filter press type ion exchange membrane method electrolytic cell. In the figure, 1 is an anode, 2 is a cathode, 3 is a cation exchange membrane, and 4 is a partition wall. Each unit battery case is
An anode chamber A consisting of an ion exchange membrane 3 to a partition wall 4 containing an anode 1, and an ion exchange membrane 3 containing a cathode 2.
- A cathode chamber K consisting of a partition wall 4. Here, for example, saline solution is supplied from the inlet header 5 and introduced into each anode chamber through each flexible hose 6.
Further, the discharged liquid is discharged from each anode chamber to an outlet header 8 by each flexible hose 7. Similarly, on the cathode chamber side, water or an aqueous caustic soda solution is introduced into the cathode chamber from an inlet header 9 through a flexible hose 10, and the aqueous caustic soda solution is discharged through a flexible hose 11 to an outlet header 12. Therefore, in the present invention, the difference between the internal pressure of the inlet header 5 and the internal pressure of the outlet header 8 and/or
It is essential that the difference between the internal pressure of the inlet header 9 and the internal pressure of the outlet header 12 be 2000 water columns or more. FIG. 2 is a diagram showing a unit battery case. For example, if it is explained as an anode chamber, the inlet header 5 is
The pressure gauge PG attached to this confirms that it is P1 . The solution reaches the anode chamber inlet nozzle of the unit cell via a flexible hose 6. In this figure, the liquid is uniformly supplied into the anode chamber from the bottom of the tank by the tank internal distribution pipe 13. As the liquid rises, it undergoes an electrolytic reaction and generates bubbles, becoming a gas-liquid mixture at the top of the anode chamber and reaching the outlet nozzle. From the anode chamber outlet nozzle, it enters the outlet header 8 as a gas-liquid multiphase flow via a flexible hose 7. Most of the gas and liquid are separated within the outlet header, and the internal pressure can be determined by the pressure gauge PG. Furthermore, since the header internal pressure distribution can be almost ignored since the header diameter is extremely larger than the nozzle diameter in each unit container, the installation position of each pressure gauge is not particularly limited. Example A filter press type ion exchange membrane salt electrolytic cell consisting of 26 pairs of unit cells having bipolar electrodes with an electrode area of 1.6 m 2 was used. Separately measured Nafion electrolytic cell with a current efficiency of 78% ± 2% was used in this electrolytic cell. 315 (cation exchange membrane made by DuPont) is installed to perform salt electrolysis. In addition, Teflon bellows-type flexible hoses are used from the inlet header to each unit battery case and from each unit battery case to the outlet header, and by changing the length of these hoses, the inlet header Internal pressure P 1 and outlet header internal pressure P 2
We examined the variation in the amount of salt water supplied to each unit tank by giving various differences between The degree of variation in the amount of salt water supplied was determined by the variation in PH at the outlet of each unit cell. In addition, the electrolysis conditions are raw material salt water concentration 4.1 normal PH = 0.4
It is prepared and supplied, and recovered at an average concentration of 4.0 normal PH = 2.0. The results are shown in the table below. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオン交換膜を用いたフイルタープレ
ス型電解槽の例を示す概略図であり、第2図はフ
イルタープレス型電解槽の単位電槽についての説
明図である。 図中1は陽極、2は陰極、3はイオン交換膜、
4は隔壁、5及び9は入口ヘツダー、8及び12
は出口ヘツダー、6,7,10,11はフレキシ
ブルホースである。またPGは圧力計をあらわ
す。
FIG. 1 is a schematic diagram showing an example of a filter press type electrolytic cell using an ion exchange membrane, and FIG. 2 is an explanatory diagram of a unit cell of the filter press type electrolytic cell. In the figure, 1 is an anode, 2 is a cathode, 3 is an ion exchange membrane,
4 is a bulkhead, 5 and 9 are inlet headers, 8 and 12
is an outlet header, and 6, 7, 10, and 11 are flexible hoses. Also, PG represents a pressure gauge.

Claims (1)

【特許請求の範囲】 1 フイルタープレス型電解槽に液を供給するに
あたり、入口ヘツダー内圧と出口ヘツダー内圧と
の差を2000mm水柱以上とすることを特徴とする電
解槽の給液方法。 2 電解槽がバイポーラ電極を有する特許請求の
範囲第1項記載の方法。 3 電解槽がイオン交換膜法アルカリ金属塩の電
解用電槽である特許請求の範囲第1項記載の方
法。 4 電解槽と入口ヘツダー及び(又は)出口ヘツ
ダー間をフレキシブルホースとし、該ホースの内
径及び長さを調節することにより、入口ヘツダと
出口ヘツダーとの圧力差を適正に形成せしめるこ
とを特徴とする特許請求の範囲第1項記載の方
法。
[Scope of Claims] 1. A method for supplying liquid to an electrolytic cell, characterized in that when supplying liquid to a filter press type electrolytic cell, the difference between the internal pressure of the inlet header and the internal pressure of the outlet header is 2000 mm or more of water column. 2. The method according to claim 1, wherein the electrolytic cell has bipolar electrodes. 3. The method according to claim 1, wherein the electrolytic cell is a cell for electrolyzing alkali metal salts using an ion exchange membrane method. 4. A flexible hose is used between the electrolytic cell and the inlet header and/or the outlet header, and by adjusting the inner diameter and length of the hose, a pressure difference between the inlet header and the outlet header is created appropriately. A method according to claim 1.
JP9824778A 1978-08-14 1978-08-14 Liquid feed method Granted JPS5524969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9824778A JPS5524969A (en) 1978-08-14 1978-08-14 Liquid feed method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9824778A JPS5524969A (en) 1978-08-14 1978-08-14 Liquid feed method

Publications (2)

Publication Number Publication Date
JPS5524969A JPS5524969A (en) 1980-02-22
JPS6115159B2 true JPS6115159B2 (en) 1986-04-22

Family

ID=14214617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9824778A Granted JPS5524969A (en) 1978-08-14 1978-08-14 Liquid feed method

Country Status (1)

Country Link
JP (1) JPS5524969A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107216U (en) * 1982-01-11 1983-07-21 三菱重工業株式会社 Tension leveler stretching device
DE102010054643A1 (en) * 2010-12-15 2012-06-21 Bayer Material Science Ag Electrolyzer with spiral inlet hose

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142497A (en) * 1975-06-04 1976-12-08 Asahi Chem Ind Co Ltd The electrolytic bath for sodium chloride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142497A (en) * 1975-06-04 1976-12-08 Asahi Chem Ind Co Ltd The electrolytic bath for sodium chloride

Also Published As

Publication number Publication date
JPS5524969A (en) 1980-02-22

Similar Documents

Publication Publication Date Title
EP0725845B1 (en) Electrolytic cell for producing a mixed oxidant gas
JPS6315354B2 (en)
US4108742A (en) Electrolysis
US4557816A (en) Electrolytic cell with ion exchange membrane
US4065367A (en) Method of operating an electrolysis cell
US4375400A (en) Electrolyte circulation in an electrolytic cell
CA1074257A (en) Electrolytic system and novel electrolytic cells and reactors therefor
US5242564A (en) Device for removal of gas-liquid mixtures from electrolysis cells
JP2926272B2 (en) Target electrode for corrosion prevention of electrochemical tank
US4069128A (en) Electrolytic system comprising membrane member between electrodes
JPS58756B2 (en) electrolytic cell
CA1175780A (en) Internal downcomer for electrolytic recirculation
CA1117473A (en) Electrolytic cell
JPS6115159B2 (en)
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
US5593553A (en) Electrolytic cell and electrode therefor
US4556470A (en) Electrolytic cell with membrane and solid, horizontal cathode plate
JP3229266B2 (en) Bipolar filter press type electrolytic cell
JPS6046191B2 (en) vertical electrolyzer
US4271004A (en) Synthetic separator electrolytic cell
EP0110425A2 (en) An electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor
JPS599632B2 (en) electrolytic cell
JPS621237Y2 (en)
CA1086256A (en) Electrolysis cell and method of operation
JP2001003188A (en) Method for electrolyzing alkali chloride