JPS61151179A - Production of hexamethylene isocyanurate compound - Google Patents
Production of hexamethylene isocyanurate compoundInfo
- Publication number
- JPS61151179A JPS61151179A JP27197084A JP27197084A JPS61151179A JP S61151179 A JPS61151179 A JP S61151179A JP 27197084 A JP27197084 A JP 27197084A JP 27197084 A JP27197084 A JP 27197084A JP S61151179 A JPS61151179 A JP S61151179A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- catalyst
- parts
- hdi
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はへキサメチレンジイソシアナート(以下HpI
と略す)を三量化反応させ−c4られるヘキサメチレン
イソシアヌラート化合物の製造方法りご閲ナス−
11L旦!−
MDIを原料とするウレタン化組成物は耐光性に優れて
おり、その無黄変性を生かし、塗料などの用途に供され
ているが、一方芳香族ジイソシアナートを原料に用いた
ウレタン化組成物に比べて耐熱性に劣り、又t(DI自
体の毒性も問題がある。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to hexamethylene diisocyanate (hereinafter referred to as HpI
11L Dan! - Urethane compositions made from MDI as a raw material have excellent light resistance and are used for applications such as paints due to their non-yellowing properties; on the other hand, urethane compositions made from aromatic diisocyanates as raw materials It has poor heat resistance compared to DI, and there is also a problem with the toxicity of DI itself.
したがってMDIのこれらの欠点を改良して無HDI(
たはそのウレタン変性プレポリマー中妃イソシアヌラー
ト環を含、有させるため触媒の存在下、MDIまたはそ
のウレタン変性プレポリマーを三量化させる製造方法は
公知である。Therefore, these shortcomings of MDI can be improved and no-HDI (
A production method is known in which MDI or its urethane-modified prepolymer is trimerized in the presence of a catalyst in order to contain or have an isocyanurate ring in the middle of the urethane-modified prepolymer thereof.
一般に有機イソシアナートの三量化、即ちイ°ソシアヌ
ラート化については種々の触媒が用いられており、例え
ば第3級アミンを用いる方法(特公昭40−5838号
)、アセチルアセトン金属塩を用いる方法(特開昭5
2−69497号)、脂肪酸ナトリウム又はカリウム塩
(特開昭57−47319)、第3級アルキルホスフィ
ン(特開昭58−162623)などを用いる方法が知
られている。Generally, various catalysts are used to trimerize organic isocyanates, that is, to convert them into isocyanurates. Showa 5
2-69497), fatty acid sodium or potassium salt (Japanese Patent Application Laid-Open No. 57-47319), tertiary alkyl phosphine (Japanese Patent Application Laid-open No. 58-162623), and the like are known.
しかしこれら公知の触媒は脂肪族イソシアナートに対し
ては有効なものが少なく、MDIのイソシアナ−ト基は
殆んど進まないか、あるいは触媒を多量に用いなければ
ならず、そのために反応液の着色、不溶物の生成など好
ましくない現象が生じる。又三量化と並行して二重化反
応や高重合度の多環化合物が生じ、二量化物は不安定で
解離しやすく、また多環化合物は生成物中に濁りまたは
不溶物を生じるために、これらを含有しているイソシア
ヌラート化HDI反応物を塗料などに用いた場合、イソ
シアナ−ト基の有する優れた性能を落し、塗料としての
商品価値を低下させる。However, these known catalysts are rarely effective against aliphatic isocyanates, and the isocyanate group of MDI hardly progresses, or a large amount of catalyst must be used, and therefore the reaction solution is Undesirable phenomena such as coloring and the formation of insoluble substances occur. In addition, a duplex reaction and a polycyclic compound with a high degree of polymerization occur in parallel with trimerization, and the dimerized product is unstable and easily dissociated, and polycyclic compounds cause turbidity or insoluble matter in the product. When an isocyanurated HDI reaction product containing isocyanurate is used in a paint or the like, the excellent performance of the isocyanate group is degraded and the commercial value of the paint is reduced.
これらの改良方法として、MDIのポリオール付210
体のイソシアナ−ト化重合を行なう方法もまた提案され
ている。(特開昭57−47321、これらの方法はH
DIの相手ポリオールとして分子量3000以下、官能
度2〜3のものを用いて、)IDIのポリオール付加体
を生成させた後、三量化触媒を用いることを特徴として
いるが、HDIを先ずポリオールと反応させてその付り
0体とする工程が不可欠であり、ポリオールによるウレ
タン化反応も発熱をともない、その管理には細心の注意
を要する。この工程を省略してHDIに直接ポリオール
及び三量化触媒を添加して反応を行えば、発熱、不均一
反応が起り、不溶性の物質が生成して反応の円滑な進行
は内盤となる。As an improvement method for these, MDI polyol attached 210
Methods have also been proposed for carrying out isocyanate polymerization of bodies. (Japanese Patent Application Laid-Open No. 57-47321, these methods are
The method is characterized in that a polyol adduct of IDI is produced using a partner polyol with a molecular weight of 3000 or less and a functionality of 2 to 3, and then a trimerization catalyst is used.However, HDI is first reacted with a polyol. It is essential to carry out a step to reduce the amount of adhesion to zero, and the urethane reaction using polyol also generates heat, which requires careful management. If this step is omitted and the reaction is carried out by directly adding the polyol and trimerization catalyst to HDI, an exothermic and heterogeneous reaction will occur, and an insoluble substance will be produced, which will hinder the smooth progress of the reaction.
これはウレタン基形成時の活性水素とイソシアナート基
中の酸素原子との間で水素結合を形成するために、イソ
シアナート基の活性が高められるため、触媒存在下でジ
オールでウレタン化反応させた場合は反応がはげしくな
り不均一反応がさけられないためと推定される。This is because a hydrogen bond is formed between the active hydrogen during urethane group formation and the oxygen atom in the isocyanate group, increasing the activity of the isocyanate group. It is presumed that this is because the reaction becomes more rapid in this case and a heterogeneous reaction cannot be avoided.
発明が解決しようとする問題点
本発明者らはこれらの欠点を改善すべく鋭意検討の結果
、簡単でマイルドな反応が実施でき、しかも品質良好な
MDIのイソシアナ−ト化物が得られることを見出した
。Problems to be Solved by the Invention The present inventors have made extensive studies to improve these drawbacks, and have discovered that it is possible to carry out a simple and mild reaction, and to obtain isocyanate compounds of MDI of good quality. Ta.
すなわち本発明方法はMDIにモノオール化合物と三量
化触媒を一括して加えて反応させることが可能であり、
この場合MDIを直接三量化させる場合用いる触媒量よ
り少量で反応が進行し、触媒量増加にともなう反応液の
着色、にごすなどの欠点が軽減されると共に、反応が温
和なために1.異常な発熱、暴走反応が起らずに円滑に
進み、温度管理が極めて容易になり一定の制御された品
質のものが得られることがわかった。That is, in the method of the present invention, it is possible to add a monol compound and a trimerization catalyst to MDI all at once and cause the reaction to occur.
In this case, the reaction proceeds with a smaller amount of catalyst than that used when directly trimerizing MDI, and the disadvantages such as coloring and clouding of the reaction solution due to an increase in the amount of catalyst are alleviated, and the reaction is mild, so 1. It was found that the process proceeded smoothly without abnormal heat generation or runaway reactions, and that temperature control was extremely easy and products with a constant and controlled quality could be obtained.
問題を解決するための手段
本発明方法におけるMDIのイソシアナ−ト化反応は、
三量化触媒の存在下MDIに、MD1100重量部に対
し0.5〜5重量部の炭素数6〜9を有するモノオール
を添加して、MDIのNCO基の一部ウレタン化と同1
寺にイソシアヌラートへのトリマー化を行うものである
。Means for Solving the Problem The isocyanation reaction of MDI in the method of the present invention is as follows:
0.5 to 5 parts by weight of a monool having 6 to 9 carbon atoms per 1100 parts by weight of MD was added to MDI in the presence of a trimerization catalyst to partially urethanize the NCO groups of MDI.
Trimerization to isocyanurate is performed in the temple.
本発明において触媒としては、第3級アミン類、アルキ
ル置換エチレンイミン類、アセチルアセトン金属塩類、
■、■属金属類の配位化合物、各種有機酸の金属塩等公
知触媒を単独又は併用し、必要に応じて助触媒を用いて
も差し支えない。In the present invention, the catalysts include tertiary amines, alkyl-substituted ethyleneimines, acetylacetone metal salts,
Known catalysts such as coordination compounds of group (1) and (2) metals and metal salts of various organic acids may be used alone or in combination, and if necessary, a co-catalyst may be used.
またモノオールとしてはシクロヘキサノール。Cyclohexanol is a monool.
2−エチルヘキサノール、トリメチルヘキサノール、オ
クチルアルコールなどを用いることができる。これらC
&〜Q以外の脂肪族アルコールは不溶性成分が生成する
ために製品のにごりの原因となり好ましくない。2-ethylhexanol, trimethylhexanol, octyl alcohol, etc. can be used. These C
Aliphatic alcohols other than &~Q are undesirable because they produce insoluble components and cause the product to become cloudy.
また、モノオール添加によるウレタン基濃度はHDIの
全イソシアナート基の約5チ以下が望ましく、そのため
には添加される仕込みモノオールは、MD1100重量
部に対して0.5〜5.0重量部の範囲内で使用する必
要がある。何故ならば。In addition, it is desirable that the urethane group concentration due to monool addition be about 5 or less of the total isocyanate groups in HDI, and for that purpose, the added charge monool should be 0.5 to 5.0 parts by weight per 1100 parts by weight of MD. Must be used within the range. because.
モノオールはウレタン化反応に殆んど全部が消費される
ので、5.0重量部以上のモノオール添加ではウレタン
基濃度が全イソシアナート基の約5%以上となり、生成
物中のウレタン基濃度の増加はイソシアヌラートへのト
リマー化反応を促進させがあるからである。したがワて
本発明においては反応系中にはウレタン基はイソシアナ
ート基に対し約0.3−以上の微量存在していれば充分
であるが、モノオールの添加量が0.5重量部以下では
、反応系中にウレタン基含有量が不足して効果が発揮で
きない。Almost all of the monol is consumed in the urethanization reaction, so if 5.0 parts by weight or more of the monol is added, the urethane group concentration will be about 5% or more of the total isocyanate groups, and the urethane group concentration in the product will increase. This is because an increase in isocyanurate promotes the trimerization reaction to isocyanurate. However, in the present invention, it is sufficient that the urethane group is present in the reaction system in a trace amount of about 0.3 parts by weight or more relative to the isocyanate group, but if the amount of monool added is 0.5 parts by weight, it is sufficient. In the following, the effect cannot be exhibited due to insufficient urethane group content in the reaction system.
本発明においては、このように特定のモノオールを添加
することによりイソシアヌラート化反応系中にウレタン
化合物を生成含有させ、このウレタン基が均一な反応を
維持しながら助触媒的効果を発揮して、同一のイソシア
スラート化重合率を得るに必要な触媒量に対し、その減
少が可能となり、製品の着色、にごすなどの欠陥が改善
される。In the present invention, by adding a specific monool in this way, a urethane compound is produced and contained in the isocyanurate reaction system, and this urethane group exhibits a promoter effect while maintaining a uniform reaction. As a result, it is possible to reduce the amount of catalyst necessary to obtain the same isocyanate polymerization rate, and defects such as coloring and clouding of the product are improved.
前記特開昭58−162581号公報には、t(DIの
ウレタン化に使用されるアルコール性ヒドロキシ化合物
も又助触媒として用いてもよい記載があり、その添加量
はHDIに対して0.01〜0.2チの使用で十分であ
り、これより多いと副反応が起り高粘度の生成物を生じ
る欠点があると明記されているが、触媒の種類と関係な
く、少くともHDIに対し0.5重量−以上の多量使用
しても特定のモノオールは反応中にゲル化を起すことな
く均一な反応が維持できることは驚くべきことでありだ
。JP-A-58-162581 has a description that the alcoholic hydroxy compound used for urethanization of t(DI) may also be used as a co-catalyst, and the amount added is 0.01 to HDI. It is clearly stated that it is sufficient to use ~0.2 t, and that using more than this has the disadvantage of causing side reactions and producing highly viscous products, but regardless of the type of catalyst, at least 0 for HDI. It is surprising that even if a specific monool is used in a large amount of .5 weight or more, a uniform reaction can be maintained without causing gelation during the reaction.
本発明方法では触媒量は、用いるその触媒の活性度によ
って異なり、助触媒併用によりても触媒量を減少するこ
とができるが、触媒量はHDIに対して多くても0.2
%を超える必要はなく、また触媒の種類によりてはフェ
ノール、クレゾールなど公知の助触媒を使用したほうが
好ましいが、その量は触媒と同」−以下で十分である。In the method of the present invention, the amount of catalyst varies depending on the activity of the catalyst used, and the amount of catalyst can be reduced by using a co-catalyst, but the amount of catalyst is at most 0.2 with respect to HDI.
%, and depending on the type of catalyst it is preferable to use a known co-catalyst such as phenol or cresol, but it is sufficient that the amount is equal to or less than the amount of the catalyst.
本発明において反応温度は通常は100℃以下、好まし
くは40〜80℃で実施する。100”C以上ではイソ
シアナ−ト化物の高分子体などが生成しやすく、ゲル化
したり着色の原因となる。In the present invention, the reaction temperature is usually 100°C or lower, preferably 40 to 80°C. If the temperature is 100''C or higher, polymers of isocyanate compounds are likely to be formed, which may cause gelation or coloring.
反応時間は触媒の種類、量、あるいは反応温度によりて
異なるが通常3〜10時間で十分である。The reaction time varies depending on the type and amount of catalyst and the reaction temperature, but 3 to 10 hours is usually sufficient.
イソシアナ−ト基の進行にともなうN G Oキlの低
下は、滴定分析によって測定できるので所定のNCO含
量になった時に反応を停止すれば良いO
反応停止時のNCO含駄によってイソシアヌラート化反
応物のNGO含量、粘度などが自由に変更できる。The decrease in N G O as the isocyanate group progresses can be measured by titration analysis, so it is sufficient to stop the reaction when the predetermined NCO content is reached. The NGO content, viscosity, etc. of the reactant can be changed freely.
停止剤としては一般に使用されている酸性化合物、例え
ば塩酸、リン酸などが挙げられる。Examples of the terminator include commonly used acidic compounds such as hydrochloric acid and phosphoric acid.
得られた反応生成物は抽出、蒸留などの公知方法によっ
て未反応HDIを可及的に取り除いてイソシアナ−ト化
合物を得る。The obtained reaction product is subjected to known methods such as extraction and distillation to remove unreacted HDI as much as possible to obtain an isocyanate compound.
一般に生成物中のMDI含量は、単体として、又は生成
物を有機溶媒溶液として用いる場合には溶液中に、3,
0重量%以下、好ましくは1.0重量%以下とすること
がその毒性の上から好ましく、また二量体より以上の多
環生成物が製品中に多く存在すると、粘度や硬度など物
性上の問題の外に溶剤との相容性が低下して白濁を生ず
るので、通常は60チ以下に重合率を抑制することが知
られているが、本発明においても蒸留後の重合液中のN
CO基含基量有量0重量%前後となるよう前記停止剤を
用いて反応を調整するのが好ましい。Generally, the MDI content in the product, either as a pure substance or in solution when the product is used as a solution in an organic solvent, is 3.
From the viewpoint of toxicity, it is preferable that the content be 0% by weight or less, preferably 1.0% by weight or less, and if a large amount of polycyclic products (more than dimers) is present in the product, physical properties such as viscosity and hardness may be affected. In addition to this problem, the compatibility with the solvent decreases and cloudiness occurs, so it is known that the polymerization rate is usually suppressed to 60% or less. However, in the present invention, N
It is preferable to adjust the reaction using the above terminator so that the amount of CO group-containing groups is approximately 0% by weight.
定出来、また生成物中の二量体は液体クロマトグラフィ
ーにより分子量504附近に明確に現われるので、これ
を定量することができ、又赤外線吸収スペクトルにより
1680cmへこ明確な吸収が現われる。Furthermore, since the dimer in the product clearly appears with a molecular weight of around 504 by liquid chromatography, it can be quantified, and an infrared absorption spectrum shows a clear absorption at 1680 cm.
多環化合物含量も同様の方法により定量することができ
る。又二量体の生成は赤外吸収スペクトルにおける1
7 s彫澁3吸収により確認出来る。The polycyclic compound content can also be determined by a similar method. In addition, the formation of the dimer is indicated by 1 in the infrared absorption spectrum.
7 It can be confirmed by s carving 3 absorption.
本発明方法によって得られたイソシアナ−ト基を含有す
る製品は、濁りや着色が改善されるだけでなく、遊離H
DIが1−以下でありながら副反応による高分子化合物
が極めて少ないために従来のMDI重合体と比較して低
粘度で、またNCO含量も高くしかも、公知のジオール
使用に対し、モノオールなジオールと同−1用いてウレ
タン化及び三量化を行った場合、製品中のイソシアナ−
ト基とウレタン基の比率は、ジオール使用よりモノオー
ル使用の場合のほうがイソシアナ−ト環比率が高いので
、塗料組成物などとして用いた場合−耐#I−耐光峰な
/のナビ”ttシaI謹形りす物招得られるなどの利点
がある。Products containing isocyanate groups obtained by the method of the present invention not only have improved turbidity and coloration, but also free H
Although the DI is 1- or less, there are very few polymer compounds due to side reactions, so it has a lower viscosity than conventional MDI polymers, and has a higher NCO content. When urethanization and trimerization are carried out using
Regarding the ratio of isocyanate groups to urethane groups, the ratio of isocyanate rings is higher when using monools than when using diols, so when used as a coating composition etc. There are advantages such as being able to invite aI humiliated list.
製品のNMRスペクトルはMDI)−リマーのメチレン
プロトンが3.9ppmに、ウレタンのメチレンプロト
ンは4.1 ppmに現われるので、各シグナルの積分
比よりトリマーおよびウレタンのモル比を求めることが
できる。In the NMR spectrum of the product, methylene protons of MDI)-limer appear at 3.9 ppm and methylene protons of urethane appear at 4.1 ppm, so the molar ratio of trimer and urethane can be determined from the integral ratio of each signal.
以下に実施例によりさらに本発明を説明するが、本発明
はこれに制限される0のではなく、部又はチは重量部又
は重量%をあられす。゛
実施例1
温度計、撹拌機および窒素シール管を持つ500rnl
4ツロガラスフラスコにHDI200部を入れ、2−
エチルヘキサノール8.01i、カプリン酸ナトリウム
0.2部およびフェノール0.1部の混合物を添加する
。窒素気流下に撹拌しながら約80℃に5時間反応を行
なった。反応液のNGO含量は42.0%であつた。リ
ン酸0.14部を加え、この反応温度でさらに約1時間
撹拌した。生成物はごく僅かに黄味を帯びた透明液体で
あり、薄膜蒸留により遊11!MDIを留去した。The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto, and parts and parts refer to parts by weight and % by weight.゛Example 1 500rnl with thermometer, stirrer and nitrogen sealed tube
4Pour 200 parts of HDI into a glass flask and add 2-
A mixture of 8.01 i ethylhexanol, 0.2 part sodium caprate and 0.1 part phenol is added. The reaction was carried out at about 80° C. for 5 hours while stirring under a nitrogen stream. The NGO content of the reaction solution was 42.0%. 0.14 part of phosphoric acid was added, and the mixture was further stirred at this reaction temperature for about 1 hour. The product is a transparent liquid with a slight yellowish tinge, and is obtained by thin film distillation. MDI was distilled off.
得られた液は淡黄色透明で、そのNGO含量、粘度およ
び遊離HDIは表に示すとおりであった。The resulting liquid was pale yellow and transparent, and its NGO content, viscosity, and free HDI were as shown in the table.
この液の赤外吸収スペクトルでは1680−’amにイ
ソシアナ−ト基特有の強い吸収が見られ、二量体特有の
1780−1cIRの吸収は全く認められなかった。In the infrared absorption spectrum of this liquid, a strong absorption characteristic of isocyanate groups was observed at 1680-'am, and no absorption at 1780-1cIR, characteristic of the dimer, was observed.
尚、実施例1と同一の装置にHDI200部および2−
二手ルヘキサノール8部を入れ、70℃に2時間反応さ
せた。反応液には未反応の2−エチルヘキサノールは認
められず、反応液のNCO基含量は46.8%であった
。これは原料MDI中のイソシアナート基の約2.7
%がエチルヘキサノールとのウレタン化に消費されたこ
とになる。In addition, 200 parts of HDI and 2-
8 parts of dicarboxylic hexanol was added and reacted at 70°C for 2 hours. No unreacted 2-ethylhexanol was found in the reaction solution, and the NCO group content of the reaction solution was 46.8%. This is approximately 2.7 of the isocyanate groups in the raw material MDI.
% was consumed in urethanization with ethylhexanol.
実施例2
実施例1の装置を用いてMDI200部に2−エチルヘ
キサノール3.4部およびトリエチルアミン0.2部を
加え80℃に7時間反応した。反応液0ルOO含量は4
3.5チでありだ。Example 2 Using the apparatus of Example 1, 3.4 parts of 2-ethylhexanol and 0.2 parts of triethylamine were added to 200 parts of MDI, and the mixture was reacted at 80°C for 7 hours. Reaction solution 0lOO content is 4
It's 3.5 inches.
リン酸0,05部を用いて反応を停止させ、実施例1と
同様に処理して淡黄色透明の生成物を得た。The reaction was stopped using 0.05 parts of phosphoric acid and treated in the same manner as in Example 1 to obtain a pale yellow transparent product.
これらを表に示す。These are shown in the table.
実施例3
同じ<i(、DI200部に2−エチルヘキサノール1
.5部、およびアセチルアセトンリチウム塩0.1部を
加えて70℃に3時間反応した。反応液のN G O含
量は42.4俤であった。Example 3 Same <i(, 1 2-ethylhexanol in 200 parts DI
.. 5 parts and 0.1 part of acetylacetone lithium salt were added and reacted at 70°C for 3 hours. The N GO content of the reaction solution was 42.4.
リン@0.01部を添DI撹拌して反応を停止した。The reaction was stopped by adding 0.01 part of phosphorus and stirring.
以下実施例1と同様に処理して淡黄色透明の生成物を得
た゛。これらを表に示す。Thereafter, treatment was carried out in the same manner as in Example 1 to obtain a pale yellow and transparent product. These are shown in the table.
実施例4
1(DI200部にシクロヘキサノール10.0部を用
いた他は実施例3と同様に処理した。70℃5時間で反
応液のNGO含敬は41.8%であった。Example 4 1 (Processing was carried out in the same manner as in Example 3 except that 10.0 parts of cyclohexanol was used in 200 parts of DI. The NGO content of the reaction solution was 41.8% at 70° C. for 5 hours.
これらを表に示す。These are shown in the table.
実施例5
HDI200部にオクチルアルコール1.5部、アセ手
ルアセトンジルコニウム塩0.08部およびフェノール
0.04部を加え、窒素気流下に80℃で5時間反応し
た。淡黄色透明の反応液のN G O含量は43.9%
でありだ。リン酸0.016部を用いて反応を停止させ
、実施例1と同様に処理して淡黄色透明の生成物を得た
。これらを表に示す。Example 5 1.5 parts of octyl alcohol, 0.08 parts of acetal acetone zirconium salt and 0.04 parts of phenol were added to 200 parts of HDI, and the mixture was reacted at 80° C. for 5 hours under a nitrogen stream. The N GO content of the pale yellow and transparent reaction solution was 43.9%.
It's true. The reaction was stopped using 0.016 part of phosphoric acid and treated in the same manner as in Example 1 to obtain a pale yellow transparent product. These are shown in the table.
実施例6
実施例1と同じ<HDI200部の規模で2−エチルヘ
キサノール1.0部、ジルコニウムブトキシド0.03
部およびフェノール0.01部と80℃に6時間反応し
た反応液のNCO含t42.5%。Example 6 Same as Example 1 <1.0 part of 2-ethylhexanol, 0.03 part of zirconium butoxide on a scale of 200 parts of HDI
NCO content of the reaction solution reacted with 0.01 part of phenol and 0.01 part of phenol at 80°C for 6 hours.
停止剤としてリン酸0.008部を加え、同餞度に1時
間撹拌した後、濾過して薄膜蒸留により未反応MDIを
除去した。生成物はごく僅か黄色を帯びた透明液体でそ
のNCO含量は22.0チであった。これらを表に示す
。0.008 part of phosphoric acid was added as a terminator, and the mixture was stirred at the same consistency for 1 hour, filtered, and unreacted MDI was removed by thin film distillation. The product was a clear liquid with a slight yellow tinge, and its NCO content was 22.0 inches. These are shown in the table.
比較例1
実施例1の条件で2−エチルヘキサノールを用いずにカ
プリン酸ナトリウム0゜2部および助触媒としてフェノ
ール0.1部をI(DI200部に混合し、窒素気流下
に80℃に5時間反応した反応液のNGO含量は、i9
.a%で、赤外吸収スペクトルではイソシアナ−ト環特
有の吸収は全く認められず、イソシアナ−ト基は全く進
んでいないことを示していた。Comparative Example 1 Under the conditions of Example 1, without using 2-ethylhexanol, 0.2 parts of sodium caprate and 0.1 part of phenol as a cocatalyst were mixed with 200 parts of DI and heated to 80°C for 50 minutes under a nitrogen stream. The NGO content of the reaction solution reacted for a time is i9
.. a%, no absorption peculiar to the isocyanate ring was observed in the infrared absorption spectrum, indicating that the isocyanate group had not evolved at all.
比較例2
比較例1の条件で触媒のカプリン酸ナトリウムを0.5
部に増量した。反応は70℃付近で急激に温度上昇が起
り、反応液はカッ色高粘度から急速に固化して反応を維
持できなかった。Comparative Example 2 Under the conditions of Comparative Example 1, the catalyst sodium caprate was added to 0.5
The amount was increased to During the reaction, the temperature rapidly increased around 70°C, and the reaction solution changed from a deep brown color to a high viscosity and rapidly solidified, making it impossible to maintain the reaction.
比較例3
実施例3の条件で2−エチルヘキサノールを除いたほか
は同様に反応した。70℃に3時間反応後のNCO含竜
は47. a %に過ぎず、さらに3時間反応を続けて
もNGOは47.3%に止まり、この赤外吸収スペクト
ルはイソシアヌラート環の吸収はほとんど認められなか
、た。Comparative Example 3 The reaction was carried out in the same manner as in Example 3 except that 2-ethylhexanol was removed. After reacting at 70°C for 3 hours, the NCO content was 47. Even if the reaction was continued for an additional 3 hours, the NGO content remained at 47.3%, and in this infrared absorption spectrum, almost no absorption of isocyanurate rings was observed.
比較例4
実施例6の条件で、2−エチルヘキサノールを除いたほ
かは同様にして反応した。Comparative Example 4 A reaction was carried out in the same manner as in Example 6, except that 2-ethylhexanol was omitted.
反応液はほぼ無色透明、NGO含竜47.4%であった
が、赤外吸収スペクトルではイソシアヌラート環の吸収
は全く認められなかった。The reaction solution was almost colorless and transparent and contained 47.4% NGO water, but no absorption of isocyanurate rings was observed in the infrared absorption spectrum.
比較例5
比較例4の条件で、触媒のジルコニウムブトキシドを0
.06部に増加したほかは同様に80℃で反応した。反
応液のNGO含量は6時間反応で45.8%に達したが
1反応液は著しく黄味が強く、未反応の■DIを除いた
後はカッ色を帯びた黄色に強く着色し、赤外吸収スペク
トルではイソシアヌラート環の吸収は少々認められる程
度で、実用には適さないことが明らかであった。Comparative Example 5 Under the conditions of Comparative Example 4, the catalyst zirconium butoxide was
.. The reaction was carried out in the same manner at 80° C. except that the amount was increased to 0.06 parts. The NGO content of the reaction solution reached 45.8% after 6 hours of reaction, but the first reaction solution had a very strong yellowish tinge, and after removing unreacted ■DI, it was strongly colored to a brownish yellow and red. In the external absorption spectrum, the absorption of the isocyanurate ring was only slightly observed, and it was clear that it was not suitable for practical use.
以との結果を実施例とともに表に示す。The results are shown in the table together with Examples.
Claims (1)
三量化反応により、ヘキサメチレンイソシアヌラート化
合物を製造するに際し、炭素数6〜9を有する脂肪族モ
ノオールを、ヘキサメチレンジイソリアナート100重
量部に対し0.5〜5.0重量部を反応系中に存在させ
ることを特徴とするヘキサメチレンイソシアヌラート化
合物の製造方法。1. When producing a hexamethylene isocyanurate compound by the trimerization reaction of hexamethylene diisocyanate in the presence of a catalyst, an aliphatic monool having 6 to 9 carbon atoms is added to 100 parts by weight of hexamethylene diisocyanate. A method for producing a hexamethylene isocyanurate compound, characterized in that 0.5 to 5.0 parts by weight of hexamethylene isocyanurate compound is present in the reaction system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27197084A JPS61151179A (en) | 1984-12-25 | 1984-12-25 | Production of hexamethylene isocyanurate compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27197084A JPS61151179A (en) | 1984-12-25 | 1984-12-25 | Production of hexamethylene isocyanurate compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61151179A true JPS61151179A (en) | 1986-07-09 |
JPH0413350B2 JPH0413350B2 (en) | 1992-03-09 |
Family
ID=17507342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27197084A Granted JPS61151179A (en) | 1984-12-25 | 1984-12-25 | Production of hexamethylene isocyanurate compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61151179A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0456062A2 (en) * | 1990-05-11 | 1991-11-13 | Bayer Ag | Process for preparation of isocyanuratepolyisocyanates, the compounds prepared according to this process, and their use |
US5290902A (en) * | 1993-06-22 | 1994-03-01 | Miles Inc. | Polyisocyanates containing allophanate and isocyanurate groups, a process for their production from cyclic diisocyanates and their use in two-component coating compositions |
US5444146A (en) * | 1991-10-02 | 1995-08-22 | Bayer Corporation | Polyisocyanates containing allophanate and isocyanurate groups, a process for their production and their use in two-component coating compositions |
WO2002032979A1 (en) * | 2000-10-17 | 2002-04-25 | Asahi Kasei Kabushiki Kaisha | Process for preparation of polyisocyanate composition |
US8952120B2 (en) | 2005-09-22 | 2015-02-10 | Asahi Kasei Chemicals Corporation | Polyisocyanate composition and coating composition containing the same |
US9926402B2 (en) | 2013-12-10 | 2018-03-27 | Covestro Deutschland Ag | Iminooxadiazinedione polyisocyanates |
JP2018512488A (en) * | 2015-03-24 | 2018-05-17 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing porous material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5335799A (en) * | 1976-09-15 | 1978-04-03 | Bayer Ag | Process for producing polyisocyanate with isocyanurate structure and use thereof |
JPS5538380A (en) * | 1978-09-08 | 1980-03-17 | Bayer Ag | Manufacture of isocyanurate group contained polyisocyanate and its use |
-
1984
- 1984-12-25 JP JP27197084A patent/JPS61151179A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5335799A (en) * | 1976-09-15 | 1978-04-03 | Bayer Ag | Process for producing polyisocyanate with isocyanurate structure and use thereof |
JPS5538380A (en) * | 1978-09-08 | 1980-03-17 | Bayer Ag | Manufacture of isocyanurate group contained polyisocyanate and its use |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0456062A2 (en) * | 1990-05-11 | 1991-11-13 | Bayer Ag | Process for preparation of isocyanuratepolyisocyanates, the compounds prepared according to this process, and their use |
US5144031A (en) * | 1990-05-11 | 1992-09-01 | Bayer Aktiengesellschaft | Process for the production of isocyanurate polyisocyanates, the compounds obtained by this process and their use |
US5444146A (en) * | 1991-10-02 | 1995-08-22 | Bayer Corporation | Polyisocyanates containing allophanate and isocyanurate groups, a process for their production and their use in two-component coating compositions |
US5290902A (en) * | 1993-06-22 | 1994-03-01 | Miles Inc. | Polyisocyanates containing allophanate and isocyanurate groups, a process for their production from cyclic diisocyanates and their use in two-component coating compositions |
WO2002032979A1 (en) * | 2000-10-17 | 2002-04-25 | Asahi Kasei Kabushiki Kaisha | Process for preparation of polyisocyanate composition |
US6888028B2 (en) | 2000-10-17 | 2005-05-03 | Asahi Kasei Kabushiki Kaisha | Process for preparation polyisocyanate composition |
US8952120B2 (en) | 2005-09-22 | 2015-02-10 | Asahi Kasei Chemicals Corporation | Polyisocyanate composition and coating composition containing the same |
US9926402B2 (en) | 2013-12-10 | 2018-03-27 | Covestro Deutschland Ag | Iminooxadiazinedione polyisocyanates |
JP2018512488A (en) * | 2015-03-24 | 2018-05-17 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing porous material |
Also Published As
Publication number | Publication date |
---|---|
JPH0413350B2 (en) | 1992-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100511245B1 (en) | Polyisocyanates Containing Iminoxadiazine Dione Groups and a Process for Their Preparation | |
US6090939A (en) | Process for preparing polyisocyanates containing iminooxadiazinedione groups | |
CA2139376C (en) | Preparation of polyisocyanates containinig isocyanurate groups and use thereof | |
KR100549652B1 (en) | Catalyst and method for trimerization of isocyanates | |
JP4490813B2 (en) | Isocyanates containing uretdione groups | |
US7595396B2 (en) | Process for preparing polyisocyanates containing iminooxadiazinedione groups | |
KR102042563B1 (en) | Process for continuous isocyanate modification | |
DE4405054A1 (en) | Modified (cyclo) aliphatic polyisocyanate mixtures, process for their preparation and their use | |
JP7245166B2 (en) | Method for modifying at least pentamethylene diisocyanate using a spirocyclic ammonium salt as a catalyst | |
CN102442959A (en) | Process for the preparation of polyisocyanates and their use | |
JPH0357132B2 (en) | ||
US20070135608A1 (en) | Process for the preparation of polyisocyanates containing carbodiimide and/or uretonimine groups | |
US8134014B2 (en) | Preparation of uretdione polyisocyanates | |
CA2533080C (en) | Uretdione formation in solution | |
JPS61151179A (en) | Production of hexamethylene isocyanurate compound | |
JP2552462B2 (en) | Novel method for producing isocyanurate compound | |
US4656223A (en) | Process for the production of modified polyisocyanates, the compounds obtainable by this process and their use in polyurethane lacquers | |
JP3226597B2 (en) | Conditioning and / or purification method of organic isocyanate | |
US11548969B2 (en) | Process for the preparation of polyisocyanates with dimer, trimer and/or allophanate and optionally urethane structure | |
JPH0556366B2 (en) | ||
CA2459595A1 (en) | Process for preparing low-odor and storage-stable monomer-containing polyisocyanurates based on isophorone diisocyanate | |
JPS6393770A (en) | Production of isocyanurate compound | |
EP0177059B1 (en) | Modified polyisocyanates with biuret structure and process for their preparation | |
JPH0328448B2 (en) | ||
JPH07309926A (en) | Production of polyisocyanate containing uretedione group |