JPS6115111B2 - - Google Patents

Info

Publication number
JPS6115111B2
JPS6115111B2 JP52159131A JP15913177A JPS6115111B2 JP S6115111 B2 JPS6115111 B2 JP S6115111B2 JP 52159131 A JP52159131 A JP 52159131A JP 15913177 A JP15913177 A JP 15913177A JP S6115111 B2 JPS6115111 B2 JP S6115111B2
Authority
JP
Japan
Prior art keywords
polyester
mol
adhesive
adhesive strength
butanediol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52159131A
Other languages
Japanese (ja)
Other versions
JPS5488939A (en
Inventor
Keishiro Iki
Masao Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP15913177A priority Critical patent/JPS5488939A/en
Publication of JPS5488939A publication Critical patent/JPS5488939A/en
Publication of JPS6115111B2 publication Critical patent/JPS6115111B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は線状ポリ゚ステルを䞻剀ずするホツト
メルト接着剀に関するものである。曎に詳しくは
85モル以䞊100モル以䞋がテレフタル酞であ
る二塩基酞成分モルに察し、ゞオヌル成分ずし
お20モル以䞋モル以䞊のヘキサンゞ
オヌルを含むブタンゞオヌルを0.65モル以
侊0.97モル、および分子量150以䞊550以䞋のポリ
゚チレングリコヌルを0.03モル以䞊0.35モル以䞋
の割合で含有するポリ゚ステルを䞻剀ずするホツ
トメルト接着剀に関する。本発明のポリ゚ステル
組成物を甚いるこずにより匷力な接着匷床を発珟
する、耐熱、耐氎性のすぐれた接着剀がえられ
る。 線状ポリ゚ステルは繊維、フむルム、゚ラスト
マヌ等ずしお広く利甚されおきおいるが、接着剀
甚途ずしおは芳銙族系ポリ゚ステルの堎合分子が
剛盎なこずおよびその結晶性ず盞俟぀お䞍適圓な
点があり、脂肪族ポリ゚ステルの堎合は逆に柔軟
すぎるこず、䜎融点ずいう難点があり未だ重芁な
地䜍を占めるに到぀おいない。ホツトメルト接着
剀は無公害、省゚ネルギヌの特長が認められお、
近幎その䜿甚量は増倧し぀ゝある。ホツトメルト
接着剀は氎、有機溶剀等を䜿甚するこずなく接着
剀の熱溶融ず冷华固化のプロセスを利甚するこず
から䞍浞透性材料、ずくに金属やプラスチツクの
接着においおずくにその効甚を発揮するべきもの
である。ポリ゚ステルは基本的には二塩基酞ずゞ
オヌルずから成るが、その構成成分の遞択により
皮々の物性を有するこずが可胜である。ずくに工
業的にも早くから発展した合成繊維の分野では構
成成分の遞択により繊維ずしお重芁な物性がどの
ように倉化するに぀いお孊術文献、特蚱等に倚く
の報告や提案がなされおいる。しかしながらホツ
トメルト接着剀ずくに金属接着甚にどのような構
成成分から成るポリ゚ステルが適圓であるのかに
぀いおに報文や提案はきわめお少ない。ポリ゚ス
テルの特定の䞀物性を改良するためにその構成成
分の遞択を行なうこずは可胜であるが、その際同
時に他の物性をも改倉しおしたい、倚くの堎合改
悪するずいう結果に到るのである。皮々の物性を
適圓なレベルに保ちながらある物性を優れたもの
に改良するこずには倚倧の困難が䌎なうのであ
る。本発明者はかかる芳点から皮々の物性に配眮
し、本発明の組成に到達したもである。 埓来ポリ゚チレンテレフタレヌトにポリ゚チレ
ングリコヌルを共重合するこずは公知である。
D.ColemanJ.Polym.Sci.14151954によ
るず子量600〜2800のポリ゚チレングリコヌルを
ポリ゚チレンテレフタレヌトに共重合するず、融
点や二次転移点が䜎䞋するが染色性が向䞊する。
たた日特公昭48−16146号によれば分子量800〜
2500のポリオキシテトラメチレングリコヌルをポ
リ゚チレンテレフタレヌトに共重合したのち垃に
付䞎し、熱融着性接着垃ずしお䜿甚されるこずが
瀺されおいる。この皮ポリ゚ステルで䞍銹鋌同志
をホツトメルト接着したずきの匕匵剪断接着匷床
は数十Kgcm2であり、ポリ゚チレンテレフタレヌ
トのフむルムで同様に接したずきの匕匵剪断接着
匷床は数十乃至高々100Kgcm2である。すなわち
ポリオキシアルキレングリコヌルを共重合しおも
ポリ゚チレンテレフタレヌトの接着匷床を高める
こずはできないように思われた。たた金属同志の
接着にはその構造接着匷床ずしお想定される匕匵
剪断接着匷床150〜500Kgcm2以䞊が実甚䞊望たれ
るが䞊蚘の倀はこれを満たしおいない。ポリト
リメチレンテレフタレヌトポリテトラメチ
レンテレフタレヌトポリペンタメチレンテ
レフタレヌトポリヘキサメチレンテレフタ
レヌトず順次ゞオヌル成分のメチレン鎖長を延
長しおも匕匵剪断接着匷床は60〜〜110Kgcm2で
あ぀お䞀局の向䞊が望たれるのである。しかるに
本発明による接着剀組成物を䜿甚するず匕匵剪断
接着匷床は200Kgcm2前埌の倀が実珟するばかり
か、接着においおすでに良く知られおいるように
匕匵剪断接着匷床の高いもの剥離接着匷床が䜎い
ずいう通則に埓うこずなく良奜な剥離接着匷床を
も実珟するのである。 本発明の接着剀組成物においお䞻剀ずなる線状
ポリ゚ステルの二塩基酞成分ずしおはテレフタル
酞たたはその15モル以䞋が他の共重合可胜な二
塩基酞で眮き換えられたテレフタル酞である。共
重合可胜な二塩基酞ずしおはむ゜フタル酞
−ビス−カルボキシプノキシ゚タン
−ビス−カルボキシプニルプロパ
ンのごずき芳銙族系ゞカルボン酞コハク酞、ア
ゞピン酞、セバシン酞のごずき脂肪族ゞカルボン
酞である。これら共重合可胜な二塩基酞成分はポ
リ゚ステルの融点、結晶性を倧きく阻害しない範
囲で採甚され匕匵剪断接着匷床の僅かな䜎䞋を犠
性にしおも剥離匷床の向䞊が望たしい時に䜿甚可
胜である。かかる芳点から共重合量は二塩基酞成
分のうち零もしくは15モル以䞋であるがずくに
零もしくは10モル以䞋が奜適である。過倧な共
重量によ぀お匕匵剪断接着匷床は著しく䜎䞋し、
剥離匷床はもはや向䞊しない䞊、溶融ポリマヌの
冷华時の凝固速床が䜎䞋しお、ホツトメルト接着
剀のメリツトのひず぀である短時間高速接着が困
難になるし、接着剀の耐熱、耐氎性が著しく䜎䞋
しお䞍適圓である。以䞊ポリ゚ステルの二塩基酞
成分ずしおゞガルポン酞を挙げたが珟実のポリ゚
ステル補造においおはその䜎玚アルキル゚ステル
が同等に甚いられる。 本発明におけるポリ゚ステルのゞオヌル成分の
ひず぀は零および20モル以䞋の−ヘキサ
ンゞオヌルを含む−ブタンゞオヌルであ
り、他のひず぀は分子量150以䞊400以䞋のポリ゚
チレングリコヌルである。ゞオヌルの第䞀成分ず
しお−ブタンゞオヌルは必須である。
−ブタンゞオヌルを䜿甚しなければ良奜な接着
力はえられない。他皮ポリ゚チレングリコヌルの
堎合にはポリ゚ステルの融点が高いため溶融接着
時にポリマヌの熱に起因する分解であるずか皮々
の原因によるず思われる接着力の䞍足があるし、
たたポリ゚ステルの融点が䜎いため耐熱性が䞍足
で接着剀ずしお䞍適圓である等のため−ブ
タンゞオヌルが最適である。 たた、−ブタンゞオヌルからのテレフタ
レヌトポリ゚ステルの高結晶化速床に因るものず
考えられるが、−ブタンゞオヌルをゞオヌ
ルの必須成分ずするこずにより高速の接着が可胜
である。先述の二塩基酞成分の堎合ず同様に
−ブタンゞオヌルの䞀郚を−ヘキサンゞ
オヌルで眮換するこずが可胜で、その量は零以䞊
20モル以䞋である。ずくに零以䞊15モル以䞋
が奜適である。 本発明におけるポリ゚ステルのゞオヌル成分の
もうひず぀の必須成分は分子量150以䞊400以䞋の
ポリ゚チレングリコヌルである。皮々の分子量の
ポリ゚チレングリコヌルが共重合可胜であるが、
その分子量をこの範囲に遞び、しかも埌述の量で
共重合されおいる堎合にのみ高床の接着匷床がえ
られるのである。テレフタヌル酞ず−ブタ
ンゞオヌルずからの先述のごずきポリ゚ステル組
成にさらにこの分子量範囲のポリ゚チレングリコ
ヌルを䞀構成成分ずしお遞ぶずき初めお高床の接
着匷床のえられる可胜性が実珟するのである。し
かもこの堎合接着匷床ずしお実甚䞊重芁な匕匵剪
断接着匷床ず剥離接着匷床の䞡者ずもに高い倀が
えられるこずは驚くべきこずである。分子量が䞊
蚘範囲を逞脱するず接着匷床が䜎く䞍適圓であ
り、䞊蚘範囲が奜適である。ずくに150以䞊300以
䞋が奜適である。分子量150はトリ゚チレングリ
コヌルに盞圓する。分子量が高くなるず分子量的
に単䞀成分から成るポリ゚チレングリコヌルは埗
にくくなるがその堎合実質的にすべおが䞊蚘範囲
の分子量を有するポリ゚チレングリコヌルの混合
物が䜿甚される。ポリ゚チレングリコヌルの類瞁
物であるポリプロピレングリコヌルやポリテトラ
メチルグリコヌルも共重合可胜ではあるがえられ
るポリ゚ステルの接着力がり䞍適圓である。 本発明におけるポリ゚ステル䞭のゞオヌル成分
は二塩基酞成分モルに察し、分子量150以䞊400
以䞋のポリ゚チレングリコヌルが0.03モル以䞊
0.28モル以䞋であり、−ヘキサンゞオヌル
を零以䞊20モル以䞋含む−ブタンゞオヌ
ル成分が0.72モル以䞊0.97モル以䞋である。䞊蚘
ポリ゚チレングリコヌル成分量が少いず接着力ず
くに剥離接着匷床が䜎く、適倧でも接着力が䜎い
䞊に溶離ポリ゚ステルの冷华時の凝固速床が遅く
お高速の接着に䞍適圓であるし、耐熱、耐氎性も
劣るようになる。ポリ゚チレングリコヌル成分は
ずくに0.05以䞊0.2モル以䞋がずくに望たしい。 以䞊に述べた組成から成るポリ゚ステルは溶離
埌の冷华に際し、ごく短時間内に凝固し、耐熱、
耐氎性に富む匷固な接着を実珟するものである。
ポリ゚ステルはモノマヌ組成によりその融点が異
なるが䞊述のポリ゚ステルにおいおは抂しお160
℃以䞊210℃以䞋の範囲に存する。本発明におけ
るポリ゚ステルは、その重合時䜿甚された埮量の
觊媒や安定化剀を含有しおいおもよい。これらの
䟋ずしおはTiZrZnCaMgSbSn
、などの元玠の化合物げが挙げられる。ポリ゚
ステルの重合床は重芁であり、プノヌルずテト
ラクロロ゚タンの混合溶剀重量比䞭、
30℃で極限粘床が玄0.5以䞊の、ずくに0.6以䞊の
高粘床物が望たしい。 本発明におけるポリ゚ステルはホツトメルト接
着剀ずしおその䜿甚を䟿ならしめるために、酞化
防止剀ずくに−ゞ−tert−ブチル−パラク
レゟヌルや−メチレン−ビス−メチル
−−tert−ブチルプノヌルのごずきプノ
ヌル系酞化防止剀、電導性を賊䞎するための物質
たずえば金属や炭玠の粉末、誘電加熱溶融を可胜
ならしめるための金属酞化物たずえば酞化鉄、た
た着色剀ずしお酞化チタン等の各皮顔料、あるい
は溶融粘床調節や増量等の目的で皮々のポリマ
ヌ、たずえばポリオレフむンポリアミドポリ
カヌボネヌトなどをそれぞれの接着目的に応じお
適宣遞択しお混和するこずが可胜である。かくし
おえられる接着剀組成物は溶融成型法によりフむ
ルム、板、繊維、玐、チツプ、粉末等に賊圢され
る。あるいは䞀床溶剀に溶かしたのち溶剀を蒞発
させるか、非溶剀を加えお析出、賊圢するこずも
可胜であるが溶融法に比しお煩雑である。 本発明の接着剀で接着される物質ずしおは金
属、プラスチツク、繊維、フむルム、朚、玙、等
であるがずくに金属同志の接着に秀れた効果を発
揮する。金属面は埓来公知の䞋塗り剀でコヌトし
たものでもよい。たずえば金属面同志の接着に際
し、金属衚面にプノヌル暹脂をコヌトしたのち
プノヌル暹脂面同志を本発明の接着剀で接着し
おもよい。 本発明の接着剀は固圢のたゝ被着䜓間にはさ
み、党䜓を熱圧し、接着剀が溶融したら、所定の
接着䜍眮を保぀たたゝ被着䜓を冷华し、接着剀を
凝固させるか、あらかじめ被着䜓の䞀方の接着郚
䜍に接着剀融液を付着させ、他方の被着䜓ず接
合、冷华しお接着させるか、融液を䞀床冷华固化
しおのち他方の被着䜓ず合わせお、党䜓を熱圧し
お接着剀を再床溶融し冷华するこずにより接着す
るか、あるいはさらに被着䜓の盞方にあらかじめ
接着剀を付䞎しおおいお同様の方法にお接着する
などの方法により䜿甚される。接着剀を溶融する
ための枩床はポリ゚ステルの融点より数床ないし
50℃高い枩床ずくに10〜40℃高い枩床範囲が適圓
である。圧力は0.5〜30Kgcm2ずくに〜20Kg
cm2の範囲が適圓である。熱圧の時間はポリ゚ステ
ルが溶融し、流動性を瀺すようになる迄の時間が
確保されればよい。流動性を瀺すに到るたでの時
間は被着䜓の圢状、倧きさにより皮々異なるので
䞀意的に定められないが流動性を瀺すようにな぀
おから埌はごく短時間でよい。過床に長時間溶融
状態に保぀こずはポリ゚ステルの熱酞化分解を招
き䞍適圓である。本発明における接着剀の加熱溶
融および冷华の手段は埓来公知のものが応甚さ
れ、ずくに新芏なものは芁しない。 実斜䟋 実斜䟋〜および参考䟋〜1525 テレフタル酞ゞメチル、−ブタンゞオヌ
ル、ポリ゚チレングリコヌルをテレフタル酞ゞメ
チル察しお0.03wtに盞圓する解媒テトラ−−
ブチルチタネヌトずずもにガラス補反応装眮内に
仕蟌み、撹拌䞋に200℃に加熱した。発生するメ
タノヌルを連続的に系倖に陀去しながら90分間反
応を続けたのち260℃に昇枩し、0.2〜0.6mm
Hgabs.の枛圧䞋に〜時間重合し、ポリ゚ステ
ルをえた。ポリ゚ステルを反応噚から取り出し粉
末ずしたのち、二枚のテフロンシヌトの間に入れ
お、ポリ゚ステルの融点より20〜30℃高い枩床の
熱プレスで溶融しおから、冷华プレスにおフむル
ム状に成型した。フむルムの厚みは玄120Όであ
぀た。䞀方日本工業芏栌JIS−−6848−1976、
JIS−−6850−1976、JIS−−6854−1973に定
めるずころに順぀お接着匷床詊隓を行なうべく、
同芏栌に定める被着䜓金属片を準備し、枚の金
属片間に前蚘フむルムを挟み、これを二枚のより
倧きな抌え板の間に眮き、党䜓をポリ゚ステルの
融点より40℃高い枩床に蚭定された熱プレスにお
熱圧した。接着剀が溶融したら玄30秒埌に詊隓片
を取りだし、氎冷するこずにより接着を完了し
た。接着剀局の厚みは100Όずなるようにスペヌ
サヌを甚いお調節した。被着䜓は氎分を拭き、詊
隓宀内で日間颚也、調湿したのち接着匷床枬定
に䟛した。接着匷床枬定は20±℃、65±20
RHにお実斜した。結果は比范参考䟋ずずもに第
衚にたずめた。なおポリ゚ステルの組成分析は
H1−NMRおよび゚タノヌル分解物のガスクロマ
トグラフによ぀お行な぀た。
The present invention relates to a hot melt adhesive containing linear polyester as a main ingredient. For more details
0.65 mol or more of 1,4-butanediol containing 20 mol% or more of 0 mol% or more of 1,6 hexanediol as a diol component for 1 mol of dibasic acid component of which 85 mol% or more and 100 mol% or less is terephthalic acid. The present invention relates to a hot melt adhesive based on a polyester containing 0.97 mol and polyethylene glycol having a molecular weight of 150 to 550 in a proportion of 0.03 mol to 0.35 mol. By using the polyester composition of the present invention, it is possible to obtain an adhesive that exhibits strong adhesive strength and has excellent heat resistance and water resistance. Linear polyesters have been widely used as fibers, films, elastomers, etc., but aromatic polyesters are unsuitable for adhesive applications due to their rigid molecules and crystallinity. In the case of aliphatic polyester, on the other hand, it has the disadvantages of being too flexible and having a low melting point, so it has not yet achieved an important position. Hot melt adhesives have been recognized for their pollution-free and energy-saving features.
Its usage has been increasing in recent years. Hot melt adhesives utilize the process of heat melting and cooling solidification of adhesives without using water or organic solvents, so they should be particularly effective in bonding impermeable materials, especially metals and plastics. be. Polyester basically consists of a dibasic acid and a diol, but it can have various physical properties depending on the selection of its constituent components. In particular, in the field of synthetic fibers, which developed industrially from an early stage, there have been many reports and proposals in academic literature, patents, etc. about how important physical properties of fibers change depending on the selection of constituent components. However, there are very few reports or proposals regarding the composition of polyester suitable for hot melt adhesives, particularly for metal bonding. Although it is possible to select the constituent components of polyester in order to improve one specific physical property, doing so also alters other physical properties, often resulting in a worsening of the property. . It is very difficult to improve certain physical properties while maintaining them at appropriate levels. From this point of view, the present inventors determined various physical properties and arrived at the composition of the present invention. It is conventionally known to copolymerize polyethylene terephthalate with polyethylene glycol.
According to D.Coleman (J.Polym.Sci., 14, 15 (1954)), when polyethylene glycol with a molecular weight of 600 to 2800 is copolymerized with polyethylene terephthalate, the melting point and secondary transition point decrease, but the dyeability improves. .
Also, according to Nittoku Koko No. 16146, the molecular weight is 800~
It has been shown that 2500 polyoxytetramethylene glycol is copolymerized with polyethylene terephthalate and then applied to a fabric to be used as a heat-fusible adhesive fabric. The tensile shear adhesive strength when hot-melt bonding of stainless steel with this type of polyester is several tens of kg/cm 2 , and the tensile shear adhesive strength when similarly bonded with polyethylene terephthalate film is several tens to 100 kg/cm 2 at most. It is. That is, it seemed that the adhesive strength of polyethylene terephthalate could not be increased even if polyoxyalkylene glycol was copolymerized. Furthermore, for adhesion between metals, it is practically desired to have a tensile shear adhesive strength of 150 to 500 Kg/cm 2 or more, which is assumed to be the structural adhesive strength, but the above value does not satisfy this. Even if the methylene chain length of the diol component is sequentially extended to poly(trimethylene terephthalate), poly(tetramethylene terephthalate), poly(pentamethylene terephthalate), and poly(hexamethylene terephthalate), the tensile shear adhesive strength is 60 to 110 Kg/ cm2 , and further improvement is desired. However, when using the adhesive composition according to the present invention, not only a tensile shear adhesive strength of around 200 kg/cm 2 is achieved, but also, as is already well known in adhesives, those with high tensile shear adhesive strength have a high peel adhesive strength. Good peel adhesion strength is also achieved without following the general rule that it is low. In the adhesive composition of the present invention, the dibasic acid component of the linear polyester as the main ingredient is terephthalic acid or terephthalic acid in which 15 mol% or less of terephthalic acid has been replaced with another copolymerizable dibasic acid. Isophthalic acid, 1,
2-bis(p-carboxyphenoxy)ethane,
These are aromatic dicarboxylic acids such as 2,2-bis(p-carboxyphenyl)propane, and aliphatic dicarboxylic acids such as succinic acid, adipic acid, and sebacic acid. These copolymerizable dibasic acid components are employed within a range that does not significantly inhibit the melting point and crystallinity of the polyester, and can be used when it is desired to improve peel strength even at the expense of a slight decrease in tensile shear adhesive strength. From this point of view, the amount of copolymerization is preferably 0 or 15 mol % or less of the dibasic acid component, but preferably 0 or 10 mol % or less. Due to excessive co-weight, the tensile shear bond strength decreases significantly;
Peel strength no longer improves, and the solidification rate of the molten polymer decreases when it cools, making short-term, high-speed bonding, one of the advantages of hot-melt adhesives, difficult, and the heat and water resistance of the adhesive decreases significantly. It is inappropriate to do so. Although digalponic acid has been mentioned above as a dibasic acid component of polyester, its lower alkyl ester is equally used in actual polyester production. One of the diol components of the polyester in the present invention is 1,4-butanediol containing 0 and 20 mol% or less of 1,6-hexanediol, and the other is polyethylene glycol having a molecular weight of 150 to 400. 1,4-butanediol is essential as the first diol component. 1,
Good adhesion cannot be obtained unless 4-butanediol is used. In the case of other types of polyethylene glycol, due to the high melting point of polyester, there is a lack of adhesive strength that may be due to various causes such as decomposition due to the heat of the polymer during melt bonding.
Furthermore, since polyester has a low melting point, it lacks heat resistance and is therefore unsuitable as an adhesive, so 1,4-butanediol is most suitable. Furthermore, high-speed adhesion is possible by using 1,4-butanediol as an essential component of the diol, which is thought to be due to the high crystallization rate of terephthalate polyester from 1,4-butanediol. As in the case of the dibasic acid component mentioned above, 1,
It is possible to replace a part of 4-butanediol with 1,6-hexanediol, and the amount is zero or more.
It is 20 mol% or less. In particular, it is preferably 0 or more and 15 mol% or less. Another essential component of the diol component of the polyester in the present invention is polyethylene glycol having a molecular weight of 150 to 400. Although polyethylene glycols of various molecular weights can be copolymerized,
A high degree of adhesive strength can be obtained only if the molecular weight is selected within this range, and if the amount is copolymerized as described below. It is only when polyethylene glycol in this molecular weight range is selected as a constituent of the polyester composition described above from terephthalic acid and 1,4-butanediol that the possibility of obtaining a high degree of adhesive strength is realized. Moreover, in this case, it is surprising that both the tensile shear adhesive strength and the peel adhesive strength, both of which are important in practical terms, have high values. If the molecular weight is outside the above range, the adhesive strength will be low and unsuitable, and the above range is preferable. In particular, 150 or more and 300 or less are preferable. A molecular weight of 150 corresponds to triethylene glycol. As the molecular weight increases, it becomes difficult to obtain a polyethylene glycol consisting of a single component in terms of molecular weight, but in that case a mixture of polyethylene glycols, substantially all of which have a molecular weight within the above range, is used. Although polypropylene glycol and polytetramethyl glycol, which are analogs of polyethylene glycol, can be copolymerized, the adhesive strength of the resulting polyester is unsuitable. The diol component in the polyester in the present invention has a molecular weight of 150 to 400 per mole of the dibasic acid component.
0.03 mol or more of the following polyethylene glycols
The 1,4-butanediol component containing 0 to 20 mol% of 1,6-hexanediol is 0.72 to 0.97 mol. If the amount of polyethylene glycol component is small, the adhesive strength, especially the peel adhesive strength, will be low, and even if the amount is appropriately large, the adhesive strength will be low, and the solidification rate of the eluted polyester will be slow when cooling, making it unsuitable for high-speed bonding. Sexuality also becomes inferior. The polyethylene glycol component is preferably 0.05 or more and 0.2 mole or less. The polyester having the composition described above solidifies within a very short time upon cooling after elution, and has excellent heat resistance and
This realizes strong adhesion with excellent water resistance.
The melting point of polyester differs depending on the monomer composition, but the above-mentioned polyester generally has a melting point of 160
Exists in the range of ℃ or higher and 210℃ or lower. The polyester in the present invention may contain trace amounts of catalysts and stabilizers used during its polymerization. Examples of these are Ti, Zr, Zn, Ca, Mg, Sb, Sn,
Examples include compounds of elements such as P. The degree of polymerization of polyester is important, and in a mixed solvent of phenol and tetrachloroethane (weight ratio 1:1),
A high viscosity material with an intrinsic viscosity of about 0.5 or more at 30°C, particularly 0.6 or more is desirable. In order to facilitate its use as a hot-melt adhesive, the polyester in the present invention contains antioxidants, particularly 2,6-di-tert-butyl-para-cresol and 2,2-methylene-bis(4-methyl-6-tert). - Phenolic antioxidants such as butylphenol), substances to impart conductivity such as metal or carbon powders, metal oxides to enable dielectric heating melting such as iron oxide, and titanium oxide as a coloring agent. It is possible to appropriately select and mix various pigments such as , and various polymers such as polyolefin, polyamide, polycarbonate, etc. for the purpose of adjusting melt viscosity or increasing the amount, depending on the purpose of adhesion. The adhesive composition thus obtained is molded into films, plates, fibers, strings, chips, powders, etc. by melt molding. Alternatively, it is possible to dissolve the material in a solvent and then evaporate the solvent or add a non-solvent to precipitate it into a shape, but this is more complicated than the melting method. Substances that can be bonded with the adhesive of the present invention include metals, plastics, fibers, films, wood, paper, etc., and it exhibits particularly excellent adhesion effects between metals. The metal surface may be coated with a conventionally known primer. For example, when bonding metal surfaces together, the metal surfaces may be coated with phenolic resin and then the phenolic resin surfaces may be bonded together using the adhesive of the present invention. The adhesive of the present invention is sandwiched in a solid state between adherends, and the entire body is hot-pressed. Once the adhesive has melted, the adherends are cooled while maintaining the predetermined bonding position, and the adhesive is solidified. Either apply the adhesive melt to the bonding site of one of the adherends in advance, join it with the other adherend, and then cool and bond, or cool and solidify the melt once and then combine it with the other adherend. The adhesive can be bonded by hot-pressing the whole, melting the adhesive again and cooling it, or by applying adhesive to the other side of the adherend in advance and bonding in a similar manner. Ru. The temperature for melting the adhesive is several degrees or more than the melting point of polyester.
A temperature range of 50°C higher, particularly a temperature range of 10 to 40°C higher, is suitable. Pressure is 0.5 to 30Kg/cm 2 , especially 2 to 20Kg/
A range of cm 2 is appropriate. The heat-pressing time is sufficient as long as the time required for the polyester to melt and exhibit fluidity is sufficient. The time it takes to show fluidity varies depending on the shape and size of the adherend, so it cannot be uniquely determined, but it may be a very short time after it starts to show fluidity. Keeping the polyester in a molten state for an excessively long time is unsuitable because it causes thermal oxidative decomposition of the polyester. As the means for heating, melting and cooling the adhesive in the present invention, conventionally known means are applied, and no new methods are required. Examples Examples 1 to 8 and Reference Examples 1 to 15, 25 Dimethyl terephthalate, 1,4-butanediol, and polyethylene glycol were added to dimethyl terephthalate in an amount equivalent to 0.03 wt% of tetra-n-
It was charged into a glass reactor together with butyl titanate and heated to 200°C while stirring. After continuing the reaction for 90 minutes while continuously removing the generated methanol from the system, the temperature was raised to 260℃, and the temperature was increased to 0.2 to 0.6 mm.
Polymerization was carried out under reduced pressure of Hgabs. for ~2 hours to obtain polyester. After taking the polyester out of the reactor and turning it into powder, it was placed between two Teflon sheets, melted using a hot press at a temperature 20 to 30 degrees Celsius higher than the melting point of polyester, and then formed into a film using a cooling press. . The thickness of the film was approximately 120Ό. On the other hand, Japanese Industrial Standard JIS-K-6848-1976,
In order to conduct adhesive strength tests in accordance with JIS-K-6850-1976 and JIS-K-6854-1973,
Prepare an adherend metal piece specified in the same standard, sandwich the film between the two metal pieces, place it between two larger holding plates, and set the entire body to a temperature 40°C higher than the melting point of polyester. It was hot pressed using a hot press. After about 30 seconds after the adhesive melted, the test piece was taken out and cooled with water to complete the adhesion. The thickness of the adhesive layer was adjusted to 100ÎŒ using a spacer. The adherend was wiped of water, air-dried in the test room for two days, and the humidity was controlled before it was subjected to adhesive strength measurement. Adhesive strength measurement: 20±5℃, 65±20%
It was conducted at RH. The results are summarized in Table 1 along with comparative reference examples. The composition analysis of polyester is
The analysis was carried out by H 1 -NMR and gas chromatography of the ethanol decomposition product.

【衚】【table】

【衚】 第衚から、テレフタル酞ず−ブタンゞ
オヌルず特定の分子量および共重合量のポリ゚チ
レングリコヌルが高い接着匷床を䞎えるこずが明
らかである。 実斜䟋11および参考䟋16〜2224 前蚘実斜䟋ず同様の方法により、ただしアルキ
レングリコヌルの皮類を倉えおポリ゚ステルを合
成し、接着詊隓を行な぀た。結果を第衚にたず
めお瀺すが、第衚からは本発明におけるポリ゚
ステルの構成成分が本文蚘茉の堎合にのみ高い接
着力が䞎えられるこずが明らかである。
[Table] It is clear from Table 1 that terephthalic acid, 1,4-butanediol, and polyethylene glycol of a specific molecular weight and copolymerization amount give high adhesive strength. Examples 9 and 11 and Reference Examples 16 to 22 and 24 Polyesters were synthesized using the same method as in the above examples, but using different alkylene glycols, and an adhesion test was conducted. The results are summarized in Table 2, and it is clear from Table 2 that high adhesive strength is provided only when the constituent components of the polyester in the present invention are as described in the text.

【衚】 実斜䟋 12 実斜䟋においおテレフタル酞ゞメチルの10モ
ルをむ゜フタル酞ゞメチルに眮き換えお、実斜
䟋の方法を繰返した。鋌板同志の接着においお
匕匵剪断接着匷床および−剥離接着匷床はそれ
ぞれ164Kgcm2ず5.3Kg25mmであ぀た。䞀方む゜
フタル酞ゞメチルを20モルずした堎合には、䞊
蚘接着匷床がそれぞれ78Kgcm2ず5.8Kg25mmで
あ぀た。なおむ゜フタル酞ゞメチルの代わりにア
ゞピン酞ゞメチル、たたはセバシン酞ゞメチルを
甚いおも䞊蚘ず同様の結果がえられた。 参考䟋 23 参考䟋においおテレフタル酞ゞメチルの10た
たは20モルを10−デカンゞカルボン酞ゞメ
チルに眮き換えお参考䟋の方法を繰返したが、
鋌板同志の接着においお匕匵剪断接着匷床は63た
たは55Kgcm2、−剥離接着匷床は0.1および0.8
Kg25mmであ぀た。 実斜䟋 13 前蚘実斜䟋及び参考䟋䞭のいく぀かの接着詊隓
片を100℃煮沞氎䞭に時間浞挬し、この熱氎浞
挬により匕匵剪断接着匷床がどのように倉るかを
みた。実斜䟋の堎合には実質的な
匷床䜎䞋はなか぀たが、参考䟋の
堎合には倧巟な匷床䜎䞋、堎合によ぀おは詊隓片
の自動によ぀お浞挬凊理䞭に接着砎壊が起぀おし
た぀た。なお実斜䟋に蚘茉の本発明におけるポリ
゚ステルずその比范参考䟋に぀いおも熱氎浞挬の
結果は同様であ぀た。 以䞊本発明の接着剀の効果を、その効果が最も
明瞭に珟れる圢で具䜓的に瀺したが、すでに述べ
たごずく、本発明の特定のポリ゚ステルを䞻剀ず
し、これに他の物質を混合した堎合にも同様の効
果えられる。
Table: Example 12 The method of Example 2 was repeated, substituting 10 mole % of dimethyl terephthalate in Example 2 with dimethyl isophthalate. The tensile shear adhesive strength and T-peel adhesive strength of the steel plates bonded together were 164 Kg/cm 2 and 5.3 Kg/25 mm, respectively. On the other hand, when dimethyl isophthalate was 20 mol %, the adhesive strengths were 78 Kg/cm 2 and 5.8 Kg/25 mm, respectively. Note that the same results as above were obtained when dimethyl adipate or dimethyl sebacate was used instead of dimethyl isophthalate. Reference Example 23 The method of Reference Example 1 was repeated by replacing 10 or 20 mol% of dimethyl terephthalate with dimethyl 1,10-decanedicarboxylate.
When adhering steel plates together, the tensile shear adhesive strength is 63 or 55 Kg/cm 2 and the T-peel adhesive strength is 0.1 and 0.8.
Kg/25mm. Example 13 Several adhesive test pieces from the above examples and reference examples were immersed in boiling water at 100°C for 1 hour to see how the tensile shear adhesive strength changed as a result of immersion in hot water. In the cases of Examples 2, 3, 4, and 6, there was no substantial decrease in strength, but in the cases of Reference Examples 5, 6, 8, and 9, there was a large decrease in strength, and in some cases, the strength of the test piece decreased. Adhesion failure occurred during the automatic immersion process. It should be noted that the results of hot water immersion were similar for the polyester according to the present invention described in Examples and its comparative reference examples. The effects of the adhesive of the present invention have been specifically shown above in a form in which the effects are most clearly manifested, but as already mentioned, when the specific polyester of the present invention is used as the main ingredient and other substances are mixed with it, A similar effect can be seen in

Claims (1)

【特蚱請求の範囲】[Claims]  酞成分ずしお、テレフタル酞たたは85モル
以䞊がテレフタル酞である二塩基酞成分モルず
ゞオヌル成分ずしお、−ブタンゞオヌルた
たは20モル以䞋の−ヘキサンゞオヌルを
含むブタンゞオヌルを0.72モル以䞊0.97モ
ル以䞋、および分子量150以䞊400以䞋のポリ゚チ
レングリコヌルを0.03モル以䞊0.28モル以䞋を重
瞮合しお埗られるポリ゚ステルを䞻剀ずする金属
甚ホツトメルト接着剀。
1 As an acid component, terephthalic acid or 85 mol%
1 mole of the dibasic acid component of which the above is terephthalic acid and 1,4-butanediol or 1,4-butanediol containing 20 mol% or less of 1,6-hexanediol as the diol component, 0.72 mol or more and 0.97 mol or less, and a hot melt adhesive for metals whose main ingredient is a polyester obtained by polycondensing 0.03 mol to 0.28 mol of polyethylene glycol with a molecular weight of 150 to 400.
JP15913177A 1977-12-26 1977-12-26 Polyester hot melt adhesive Granted JPS5488939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15913177A JPS5488939A (en) 1977-12-26 1977-12-26 Polyester hot melt adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15913177A JPS5488939A (en) 1977-12-26 1977-12-26 Polyester hot melt adhesive

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27156584A Division JPS60248784A (en) 1984-12-21 1984-12-21 Polyester-based hot-melt adhesive

Publications (2)

Publication Number Publication Date
JPS5488939A JPS5488939A (en) 1979-07-14
JPS6115111B2 true JPS6115111B2 (en) 1986-04-22

Family

ID=15686914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15913177A Granted JPS5488939A (en) 1977-12-26 1977-12-26 Polyester hot melt adhesive

Country Status (1)

Country Link
JP (1) JPS5488939A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125278A (en) * 1981-01-28 1982-08-04 Toagosei Chem Ind Co Ltd Hot-melt adhesive for fiber
JPS57212228A (en) * 1981-06-23 1982-12-27 Nippon Synthetic Chem Ind Co Ltd:The Preparation of amorphous polyester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225421A (en) * 1975-08-22 1977-02-25 Kikusui Kagaku Kogyo Kk Method of ornamenting building with roller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225421A (en) * 1975-08-22 1977-02-25 Kikusui Kagaku Kogyo Kk Method of ornamenting building with roller

Also Published As

Publication number Publication date
JPS5488939A (en) 1979-07-14

Similar Documents

Publication Publication Date Title
JPH0127856B2 (en)
EP0164910B1 (en) Copolyester film and a hot melt adhesive comprising it
US4066600A (en) Friction-activatable adhesive and articles thereof
JPS6017359B2 (en) Polyester hot melt adhesive
US4132690A (en) Adhesive polyamide resin compositions containing high acid number copolymers
JPH082950B2 (en) Copolyester film
US4173506A (en) Bonding method utilizing polyester adhesive exhibiting "open time"
JP2000096025A (en) Hot melt type adhesive
JPS6222879A (en) Thermosetting adhesive film
US3423281A (en) Copolyesters of mixed phthalic acids,aliphatic dicarboxylic acids and tetramethylene glycol
US3616963A (en) Polyamide epoxy resin reaction product adhesive
JPS6115111B2 (en)
JPH06184515A (en) Adhesive composition
US20230383053A1 (en) Crosslinked aromatic polyester resin composition and production method therefor
JPS60248784A (en) Polyester-based hot-melt adhesive
GB2135684A (en) Glue stick adhesives
JPH0422954B2 (en)
US3629360A (en) Copolyester/phenol-modified coumarone-indene blend compositions
JPH0424384B2 (en)
JP2510145B2 (en) Hot melt adhesive
US4554206A (en) Polyester hot-melt adhesives
JPH0552874B2 (en)
KR910006391B1 (en) Composition of polyester adhersives
US3374137A (en) Adhesion of paper materials
DE2660878C2 (en) Thermoplastic segmented copolyesters and their uses