JPS61150148A - Reproducing device of composite signal recording medium - Google Patents

Reproducing device of composite signal recording medium

Info

Publication number
JPS61150148A
JPS61150148A JP27266484A JP27266484A JPS61150148A JP S61150148 A JPS61150148 A JP S61150148A JP 27266484 A JP27266484 A JP 27266484A JP 27266484 A JP27266484 A JP 27266484A JP S61150148 A JPS61150148 A JP S61150148A
Authority
JP
Japan
Prior art keywords
signal
optical
light
magneto
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27266484A
Other languages
Japanese (ja)
Inventor
Akihiro Takagi
高木 晶弘
Kiyoshi Kimoto
木本 輝代志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP27266484A priority Critical patent/JPS61150148A/en
Publication of JPS61150148A publication Critical patent/JPS61150148A/en
Priority to US07/145,704 priority patent/US4858218A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate both signals without increasing the number of components of the optical system by reproducing an photomagnetic signal and an optical intensity signal based on the difference and sum of outputs of a photoelectric converting element photoelctric-converting two-split lights respectively. CONSTITUTION:A linearly polarized output from a laser light source L is irradiated to a composite signal recording medium recorded by the photomagnetic signal and the optical intensity signal on a disk D via a beam splitter BS. The reflected light is made incident to a polarized beam splitter PBS via the splitter BS and a lambda/2 plate J, and divided into the S and P deflections. The luminous flux shared by the splitter PBS is converted into a current in response to the photo intensity by photoelectric converting elements T1, T2 and converted into a voltage signal by buffer amplifiers Amp1, Amp2. The amplifiers Amp1, Amp2 are connected respectively to a differential amplifier M and a summing amplifier N, and an excellent photomagnetic signal whose noise component is suppressed is outputted from the amplifier M and the in-phase component, i.e., the optical intensity signal is outputted from the amplifier N.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は光磁気信号と光強度信号とが同−記録媒体の同
一トラック或いは別トラックに記録されたものを再生す
る再生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a reproducing apparatus for reproducing a magneto-optical signal and an optical intensity signal recorded on the same track or different tracks of the same recording medium.

(発明の背景) 本願出願人は一つの記録媒体に光磁気信号トラックと光
強度信号トラックとを交互に配設する如くして記録密度
を上げる提案を特願昭59−! 1913◆0にて既になしている、 この様な光磁気信号と光強度信号とで信号を記録した記
録媒体を再生する再生装置としては45゜差動法として
知られている再生方式を用いて、第11図及び第12図
忙示すものが考えられる、45°差動法は同相ノイズを
除去可能の再生方法として知られる差動法の一種である
。第11図、第12図に於いてDは光磁気及び光強度の
両信号により記録されたディスク状の記録媒体C以下デ
ィスクという)、Lはレーザー光源、10は対物レンズ
でレーザー光源りからの光をビームスポットとして前記
ディスクDに照射する。BSはビームスプリッタ、PB
Sは偏光ビームスプリッタ、Jl−1’/2板、T1〜
T3ハ光電変換素子、Amp l〜Amp3iバッファ
アンプ、Mは差動アンプ、Sl。
(Background of the Invention) The applicant of the present application proposed in a patent application filed in 1983 that the recording density could be increased by alternately arranging magneto-optical signal tracks and optical intensity signal tracks on one recording medium. 1913◆0, a reproduction system known as the 45° differential method was used as a reproduction device for reproducing a recording medium in which signals were recorded using such a magneto-optical signal and an optical intensity signal. The 45° differential method, which can be considered as shown in FIGS. 11 and 12, is a type of differential method known as a reproduction method that can remove common mode noise. In FIGS. 11 and 12, D is a disk-shaped recording medium C (hereinafter referred to as a disk) recorded using both magneto-optical and optical intensity signals, L is a laser light source, and 10 is an objective lens that is used to detect light from the laser light source. The disk D is irradiated with light as a beam spot. BS is beam splitter, PB
S is polarizing beam splitter, Jl-1'/2 plate, T1~
T3 is a photoelectric conversion element, Amp1 to Amp3i is a buffer amplifier, M is a differential amplifier, and Sl is a differential amplifier.

は光磁気信号の再生信号、S11は光強度信号の再生信
号である。
is a reproduced signal of the magneto-optical signal, and S11 is a reproduced signal of the optical intensity signal.

しかし第11図によると再生光学系に2つのビームスプ
リッタBSI、BS2が挿入される構成である為光電変
換素子T、〜T3への光量が減少する。
However, as shown in FIG. 11, since two beam splitters BSI and BS2 are inserted in the reproduction optical system, the amount of light to the photoelectric conversion elements T and T3 is reduced.

特に光磁気信号の再生に於いては光量が減少すると再生
信号のS/N比が充分でなくなる恐れがある。また第1
2図によるとレーザー光源りからディスクDに至る光路
中にビームスプリッタBSIが挿入される構成である為
ディスクDへの光量が減少する。従って前記同様特に光
磁気信号の再生信号のS/N比が低下する恐れがある。
Particularly in the reproduction of magneto-optical signals, if the amount of light decreases, the S/N ratio of the reproduced signal may become insufficient. Also the first
According to FIG. 2, since the beam splitter BSI is inserted in the optical path from the laser light source to the disk D, the amount of light to the disk D is reduced. Therefore, as described above, there is a possibility that the S/N ratio of the reproduced signal, especially the magneto-optical signal, may be reduced.

又、第11図、第12図いずれのものも光磁気再生装置
の構成要素にビームスプリッタBS2と光電変換素子T
3とを加えたものとなシ素子数が増加して結局コストが
高くなるという欠点を有する。
In addition, in both FIGS. 11 and 12, the components of the magneto-optical reproducing device include a beam splitter BS2 and a photoelectric conversion element T.
This has the disadvantage that the number of elements increases, resulting in an increase in cost.

特に光学系の構成要素の増加は装置の大型化も招くこと
となる。
In particular, an increase in the number of components of the optical system also results in an increase in the size of the device.

尚、45°差動法以外に光量を等分に分割しない差動法
による再生に上述の技術を適用しても同様の欠点を有す
ることとなることは明らかである。
It is clear that even if the above-mentioned technique is applied to reproduction using a differential method other than the 45° differential method in which the amount of light is not divided into equal parts, the same drawbacks will occur.

(発明の目的) 本発明は光学系の構成要素を増加せずにS/N比の充分
高い再生信号(特に光磁気信号の再生信号)を得ること
ができる光磁気信号と光強度信号とで信号を記録した複
合信号記録媒体の信号再生に好適な、差動法による再生
装置を得ることを目的とする。
(Objective of the Invention) The present invention provides a magneto-optical signal and an optical intensity signal that can obtain a reproduction signal (especially a reproduction signal of a magneto-optical signal) with a sufficiently high S/N ratio without increasing the number of components of an optical system. It is an object of the present invention to obtain a reproducing apparatus using a differential method, which is suitable for reproducing signals from a composite signal recording medium on which signals are recorded.

(実施例) 第1図は光磁気信号と光強度信号とが同一のらせん状又
は同心円状トラックに重複して記録された複合信号記録
媒体(ディスク)の拡大一部平面図である。
(Embodiment) FIG. 1 is an enlarged partial plan view of a composite signal recording medium (disc) in which a magneto-optical signal and a light intensity signal are recorded in an overlapping manner on the same spiral or concentric track.

第1図に於いて実線で示すピット列は光強度信号で例え
ば凹凸状のピット列を表わし、点線で示すピット列は垂
直磁気記録による磁気ピットを表わす。該磁気ピットは
予め一定方向に磁化された垂直磁化層の磁化方向を反転
することによって形成される。
In FIG. 1, the pit array indicated by a solid line represents a light intensity signal, for example, an uneven pit array, and the pit array indicated by a dotted line represents a magnetic pit due to perpendicular magnetic recording. The magnetic pits are formed by reversing the magnetization direction of a perpendicular magnetization layer that has been previously magnetized in a certain direction.

第1図T P a 、、〜Pa ts及びPb、、〜P
b、6/fiそれぞれ第1トラツクの凹凸ピット列及び
磁気ピット列である。又、Pa2.〜Pa25及びpb
2.−pb27はそれぞれ第2トラツクの凹凸ピット列
及び磁気ピット列である。
Figure 1 T P a , ~ Pats and Pb , ~ P
b and 6/fi are the uneven pit row and magnetic pit row of the first track, respectively. Also, Pa2. ~Pa25 and pb
2. -pb27 are a concavo-convex pit row and a magnetic pit row of the second track, respectively.

第2図Fi第1図に於けるA−A矢視断面図である、第
2図で1は透明プラスチック円板の一方の面に射出成形
等の公知の方法によって凹凸ピット列による信号を形成
した透明基板、2Fi前記透明基板1の凹凸ピット列の
形成された面にスパッタリング等の公知の方法によって
積層形成された垂直磁化層である。3Fi前記垂直磁化
層にさらにスパッタリング等の公知の方法によって積層
形成された保護層で例えばSiO2やAIN等が使用さ
れる。
Fig. 2 Fi is a cross-sectional view taken along the line A-A in Fig. 1. In Fig. 2, 1 is a signal formed by an uneven pit row on one surface of a transparent plastic disk by a known method such as injection molding. The transparent substrate 2Fi is a perpendicular magnetization layer laminated on the surface of the transparent substrate 1 on which the uneven pit array is formed by a known method such as sputtering. The protective layer is formed by laminating the 3Fi perpendicular magnetization layer by a known method such as sputtering, and is made of, for example, SiO2 or AIN.

4はガラス、プラスチック、アルミニウム等の剛性の高
い円板状の基板であって接着剤5によって貼着されて一
体化し、円板状の記録媒体を構成する。この様に構成さ
れた光磁気記録媒体は、凹凸ピット列に全く無関係に従
来の光磁気記録媒体同様に光磁気信号を記録し、再生し
、消去し、再記録することが可能である。勿論光強度信
号については凹凸ピット列であるから再生のみで、記録
Reference numeral 4 denotes a highly rigid disc-shaped substrate made of glass, plastic, aluminum, or the like, which is adhered and integrated with an adhesive 5 to form a disc-shaped recording medium. The magneto-optical recording medium configured in this manner can record, reproduce, erase, and re-record magneto-optical signals in the same way as conventional magneto-optical recording media, completely independent of the concavo-convex pit array. Of course, since the light intensity signal is a concave and convex pit array, it can only be reproduced and recorded.

消去、再記録は不可能である。It is impossible to erase or re-record.

第3図は上述した記録媒体の再生回路の一実施例であっ
て45差動法として知られている再生方法を用いる例で
ある。第3図でディスクDは図示しない駆動装置により
回転駆動される。該ディスクDKは牛導体レーザーを使
用したレーザー光源りからの直線偏光出力がビームスプ
リッタBSで一部を反射、残りを透過され、対物レンズ
10で光の回折限界程度迄絞シ込まれた後にビームスポ
ットとして前記記録媒体に照射される。該ディスクDか
らの反射光は凹凸ピット列による光強度信号と垂直磁気
記録による磁気ピット列による光磁気信号即ちカー効果
による偏光面の回転を含んでいる。前記反射光はビーム
スプリッタ−BSを透過してλ/2板(但しλは前記レ
ーザー光源りの光出力の波長)Jに入射する。該λ/2
板Jは偏光面の回転機能を有する光学素子であり、その
回転によって偏光ビームスプリッタ−PBSへ入射する
光束の偏光面を回転させており、基準面に対する両側の
回転角をいずれも45°に調整して、光電変換素子例え
ばPINフォトダイオードT1 及びT2への平均光量
が等しくなる様に振り分ける如く構成される。ここで偏
光ビームスプリッタ−PBSけS偏光の入射光は全反射
、P偏光の入射光は全透過する機能をもつ光学素子であ
り、換言すれば基準面に対する入射光の偏光面の回転偏
位を光強度に変換する光学素子である。偏光ビームスプ
リッタ−PBSで振り分けられた光束は光電変換素子T
、 、 T2で光強度に応じた電流に変換されて出力さ
れ、バッファアンプ、にmpl 、Amp 2 テ電圧
信号に変換される。バッファアンプAm p 2の出力
S2はP偏光の出力であって差動アンプMの+端子及び
加算アンプNの中端子に印加され、バッファアンプAm
plの出力S1はS偏光の出力であって差動アンプMの
一漏子及び加算アンプNのもう一方の+端子に印加され
る。
FIG. 3 shows an embodiment of the reproducing circuit for the recording medium described above, and is an example in which a reproducing method known as the 45 differential method is used. In FIG. 3, the disk D is rotationally driven by a drive device (not shown). The disk DK is a linearly polarized light output from a laser light source using a conductor laser, part of which is reflected by a beam splitter BS, the rest transmitted, and the beam is narrowed down to the diffraction limit by an objective lens 10. The recording medium is irradiated as a spot. The reflected light from the disk D includes a light intensity signal due to the uneven pit array and a magneto-optical signal due to the magnetic pit array due to perpendicular magnetic recording, that is, a rotation of the plane of polarization due to the Kerr effect. The reflected light passes through the beam splitter BS and enters the λ/2 plate J (where λ is the wavelength of the optical output of the laser light source). The λ/2
Plate J is an optical element that has the function of rotating the plane of polarization, and its rotation rotates the plane of polarization of the light beam incident on the polarizing beam splitter - PBS, and the rotation angles on both sides relative to the reference plane are adjusted to 45°. The photoelectric conversion elements, for example, the PIN photodiodes T1 and T2 are configured to distribute the light so that the average amount of light is equal. Here, the polarizing beam splitter - PBS is an optical element that has the function of total reflection of S-polarized incident light and total transmission of P-polarized incident light. It is an optical element that converts light intensity. The light flux distributed by the polarizing beam splitter-PBS is transferred to the photoelectric conversion element T
, , T2 converts it into a current according to the light intensity and outputs it, and converts it into a voltage signal at a buffer amplifier. The output S2 of the buffer amplifier Am p 2 is an output of P-polarized light and is applied to the + terminal of the differential amplifier M and the middle terminal of the summing amplifier N.
The output S1 of pl is an output of S-polarized light, and is applied to one leaker of the differential amplifier M and the other + terminal of the summing amplifier N.

この再生光学系に於けるλ/2板Jと偏光ビームス7’
リツターPBSによる反射光束の偏光面に応じた光の振
り分は機能を以下に詳細に説明する。
In this reproduction optical system, the λ/2 plate J and the polarization beam 7'
The function of distributing light according to the plane of polarization of the reflected light beam by the Ritter PBS will be explained in detail below.

まず直線偏光としてディスクDに入射した光はディスク
Dにおける磁化方向(上向きまたは下向き)カー に応じて弗−効果により、反射光の偏光面力壮θkf。
First, the light incident on the disk D as linearly polarized light changes the polarization plane force θkf of the reflected light due to the fluoro effect depending on the direction of magnetization (upward or downward) in the disk D.

の範囲で変化する。Varies within the range of .

また、該ディスクDには凹凸ピット列による光強度信号
が記録されている為に、反射光量9体も変化している。
Furthermore, since a light intensity signal based on a concavo-convex pit array is recorded on the disc D, the amount of reflected light 9 also changes.

即ち第8図のベクトル図で示せば、入射直線偏光をOr
とすると、反射光は、該ディスクDよりの反射光量大の
時には、偏光面が磁化方向に応じてベクトルOK、OF
に示す様に±θにの範囲で回転し、反射光量小の時には
、偏光面がやはプ磁化方向に応じてベクトルOE/、 
OF/に示スヨウに回転する。この様に入射光に対し、
偏光面が±θにの範囲で変化し、かつ反射光量が変化し
ている反射光束はλ/2板Jに入射される、前述の様に
偏光面はλ/2板Jによって、基準面から両側ともに4
5°に調整されているために光電変換素子TInT2へ
の平均光量は等しく振りわけられる。この時、光電変換
素子T2上には、反射光量大のと今第8図中のベクトル
OE、OFのOH軸上の射影であるQC,ODの間を変
化する光が、光電変換素子T、上にはベクトルOE、O
FのOG輪軸上射影である、OA、OH間を変化する光
が照射されている。また、反射光量小のときには、光電
変換素子T2の上には、第8図中のベクトルOE/、O
F’のOH軸上の射影であるQC’、OD’の間を変化
する光が、光電変換素子T、上にはベクトルOE’、 
OF’のOG輪軸上射影であるOA/、087間を変化
する光が照射されている。
That is, if shown in the vector diagram of Fig. 8, the incident linearly polarized light is Or
Then, when the amount of reflected light from the disk D is large, the plane of polarization becomes the vector OK or OF depending on the magnetization direction.
As shown in , it rotates within the range of ±θ, and when the amount of reflected light is small, the plane of polarization changes to the vector OE/, depending on the direction of magnetization.
Rotate as shown in OF/. In this way, for the incident light,
The reflected light beam whose polarization plane changes within the range of ±θ and whose amount of reflected light changes is incident on the λ/2 plate J. As mentioned above, the polarization plane is changed from the reference plane by the λ/2 plate J. 4 on both sides
Since the angle is adjusted to 5°, the average amount of light to the photoelectric conversion element TInT2 is distributed equally. At this time, on the photoelectric conversion element T2, light that changes between the large amount of reflected light and QC, OD, which is the projection of the vectors OE and OF on the OH axis in FIG. Above are vectors OE, O
Light that changes between OA and OH, which is a projection of F on the OG wheel axis, is irradiated. Furthermore, when the amount of reflected light is small, the vectors OE/, O in FIG.
The light that changes between QC' and OD', which are the projections of F' on the OH axis, is on the photoelectric conversion element T, and the vector OE',
Light that changes between OA/ and 087, which is a projection of OF' on the OG wheel axis, is irradiated.

第4図は第3図に示す再生回路の各所に於ける信号波形
図である。(a)はバッファアンプAm l) 2の出
力信号波形、(b)はバッファアンプAmplの出力信
号波形、(C)は差動アンプMの出力信号波形、(d)
は加算アンプNの出力信号波形を示すものでるる。
FIG. 4 is a diagram of signal waveforms at various locations in the reproducing circuit shown in FIG. 3. (a) is the output signal waveform of buffer amplifier Aml) 2, (b) is the output signal waveform of buffer amplifier Ampl, (C) is the output signal waveform of differential amplifier M, (d)
shows the output signal waveform of the summing amplifier N.

第3図に示す再生回路で光電変換素子T2.T。In the reproducing circuit shown in FIG. 3, photoelectric conversion element T2. T.

にはそれぞれ垂直磁気記録の磁気ピットによる光磁気信
号と、凹凸ピットによる反射光量変化の光強度信号がそ
れぞれ含まれており、それぞれバッファアンプAmp2
 、 Amp 1で電圧信号に変換されて、第4図(&
) 、 (b)K示す出力信号波形となっている。第4
図では光磁気信号が光強度信号より高周波信号である場
合を示しているが、勿論これに限られるものではなく、
両信号の周波数帯域の制約は全く無い。差動アンプMで
は光強度信号の2つの入力信号は同相である為打ち消さ
れ、逆相成分即ち光磁気信号だけがfi!J4図(c)
に示す如く出力される、 また、この時、平均光量に比例する雑音成分(例えば光
源雑音、ディスクD上のほこりや傷等による光量変動雑
音)Fi、同相である為、差動アンプMで抑圧され、良
質の光磁気信号が再生される。
contains a magneto-optical signal due to magnetic pits of perpendicular magnetic recording and a light intensity signal of changes in the amount of reflected light due to uneven pits, respectively, and buffer amplifier Amp2 includes
, is converted into a voltage signal by Amp 1, and is shown in Fig. 4 (&
), (b) The output signal waveform is shown as K. Fourth
Although the figure shows a case where the magneto-optical signal is a higher frequency signal than the optical intensity signal, it is of course not limited to this.
There are no restrictions on the frequency bands of both signals. In the differential amplifier M, the two input signals of the optical intensity signal are in phase, so they are canceled out, and only the opposite phase component, that is, the magneto-optical signal is fi! J4 diagram (c)
Also, at this time, noise components proportional to the average light amount (for example, light source noise, light amount fluctuation noise due to dust or scratches on the disk D), Fi, are in phase, so they are suppressed by the differential amplifier M. and a high-quality magneto-optical signal is reproduced.

ここで同相成分によって極〈わずか光磁気信号がAM変
調されるが磁気ピットの有無又はピットの長さを検出判
定するには何ら支障は無い。
Although the in-phase component slightly AM-modulates the magneto-optical signal, this does not pose any problem in detecting and determining the presence or absence of magnetic pits or the length of the pits.

一方加算アンプNでは光磁気信号の2つの入力信号は逆
相である為打ち消され、同相成分即ち光強度信号だけが
第4図(d)に示す如く出力される。
On the other hand, in the summing amplifier N, the two input signals of the magneto-optical signals are of opposite phases and are therefore canceled out, and only the in-phase component, that is, the optical intensity signal is outputted as shown in FIG. 4(d).

このようにして、第3図に示す実施例のような光磁気再
生装置を使用すれば光学系の部材を増加させることなく
、光磁気信号と光強度信号をS/N比良くきわめて簡単
に分離することができる。
In this way, if a magneto-optical reproducing device such as the embodiment shown in Fig. 3 is used, the magneto-optical signal and the optical intensity signal can be separated very easily with a good S/N ratio without increasing the number of components in the optical system. can do.

第5図は本発明の他の実施例である。第5図では、λ/
2板Jの設定角が、第3図とは異っており、基準面に対
する両側の回転角が45°になっておらず、光電変換素
子T、 、 T3への光量が等しくなるようには振り分
けられていない本実施例では第9図のベクトル図に示す
ようにλ/2板Jの設定角θを例えばθ=10°になる
ように設定している。
FIG. 5 shows another embodiment of the invention. In Figure 5, λ/
The setting angle of the two plates J is different from that shown in Fig. 3, and the rotation angles on both sides with respect to the reference plane are not 45 degrees, so that the amount of light to the photoelectric conversion elements T, , T3 is equal. In this embodiment, where no distribution is made, the set angle θ of the λ/2 plate J is set to, for example, θ=10°, as shown in the vector diagram of FIG.

また一方の゛光電変換素子T3はアバランシェフォトダ
イ;−ドc以下APDと約す)を用いている、また、第
3図とは違い、加算アンプ40は設けらこのような′第
5図に示す再生光学系に於ける、ディスクDからの反射
”光束のふるまいは、先の実施例第3図に示す光学系と
同様でるる。すなわち、A P D T3上には、反射
光量大のとき第9図中のベクトルOE、OFのOH軸上
の射影であるQC、ODの間を変化する光が、光電変換
素子T1上にはベクトルOE、OFのOG細軸上射影で
あるOA、OBの間を変化する光が照射されている。ま
た反射光1小のときには、APDT3上には、第9図中
のベクトルOE/、 OF/のOH軸上の射影であるo
c’。
Also, one of the photoelectric conversion elements T3 uses an avalanche photodiode (hereinafter referred to as APD), and unlike in Fig. 3, an summing amplifier 40 is not provided. In the reproduction optical system shown, the behavior of the reflected light beam from the disk D is similar to that of the optical system shown in FIG. 3 of the previous embodiment. That is, when the amount of reflected light is large, The light that changes between QC and OD, which are the projections of the vectors OE and OF on the OH axis in FIG. In addition, when the reflected light is 1 small, the projections of the vectors OE/ and OF/ in FIG. 9 on the OH axis are shown on the APDT3.
c'.

OD/の間を変化する光が、光電変換素子T1上にはベ
クトルOE/、 OF’のOG細軸上射影であるOA’
The light that changes between OD/ is on the photoelectric conversion element T1 as OA', which is the projection of vector OE/, OF' on the OG thin axis.
.

OB’間を変化する光が照射されている。Light that changes between OB' is irradiated.

ここで Z10E=ZIOF=θにである。Here, Z10E=ZIOF=θ.

この時、第5図における実施例では、第3図の実施例と
違い、APD T、上と光電変換素子T1上での平均光
量は等しくならない。その為、このまま各々バッファア
ンプでAmp2 、 Amplで電流・電圧変換し、差
動アンプMで差動を取っても、2つの入力で平均光量に
比列する同相雑音成分の大きさが等しくならず、雑音が
抑圧されないので良質な光磁気信号が再生されない、そ
のため雑音抑圧効果を発揮するために本実施例では平均
光量の少ない方をAPDT3を用いて増幅する。この時
、雑音抑圧効果を発揮する為には、両方の光電変換素子
T3. T、から出力され不平均光電流が等しくなるよ
うにすればよいか”ら、第9図中のθを用いると、AP
DO増倍率mけ以下のようにすれば良い。つまり、 APDT3側平均光量   th2θ 光電変換素子T1側平均光41   cas2θである
から、 例えば θ=10°に選ぶと m=”/210°中32.2 セI となる。
At this time, in the embodiment shown in FIG. 5, unlike the embodiment shown in FIG. 3, the average light amount on the APDT T and on the photoelectric conversion element T1 are not equal. Therefore, even if you convert the current to voltage with Amp2 and Ampl with the buffer amplifiers and take the differential with the differential amplifier M, the magnitude of the common-mode noise component proportional to the average light intensity will not be equal between the two inputs. Since the noise is not suppressed, a high-quality magneto-optical signal cannot be reproduced. Therefore, in order to exhibit the noise suppression effect, in this embodiment, the one with the smaller average light amount is amplified using the APDT 3. At this time, in order to exhibit the noise suppression effect, both photoelectric conversion elements T3. What should we do so that the asymmetric photocurrents output from T are equal? Using θ in Figure 9, AP
The DO multiplication factor may be set as below. In other words, since the average light amount on the APDT3 side th2θ and the average light amount on the photoelectric conversion element T1 side 41 cas2θ, for example, if θ=10° is chosen, m=”/210° will be 32.2 s I .

このようにAPDT3の増倍率mを設定した時の再生回
路の各所に於ける信号波形図を示したのが第6図である
。第4図と同様に(a)FiバッフコアンプAr11p
2の出力信号波形、(b)FiバッフコアンプAm p
 1の出力信号波形、を示す。差動アンプMでは、同相
雑音成分の大きさが等しくなるようにAPDT3の増倍
率mを設定しているので、やはり同相成分である光強度
信号も打ち消され、第6図(e)に示す如く出力される
。ここで同相成分によって極〈わずか光磁気信号がAM
変調されるが磁気ピットの有無又はピットの長さを検出
判定するには何ら支障はない。−刀先強度信号は第6図
(′b)に示ス、バッファアンプ38の出力である信号
SIを用いれば良い0 第3図に示した実施例と違い、第5図に示した実施例で
は加算アンプNを設けていない。これはλ/2 板JK
よる光量のふりわけ比が等しく1い為、第6図(b)に
示す信号には実際光磁気信号による成分も含まれている
が、光磁気効果による信号は一般に変調度が低いため、
変調度が大きく取れ良質の信号再生が出来る光強度信号
に対しては、無視する事が可能だからである。このため
第3図の実施例に比べて、加算アンプNを省略できる利
点がある。
FIG. 6 shows signal waveform diagrams at various points in the reproducing circuit when the multiplication factor m of the APDT 3 is set in this manner. Similarly to Fig. 4, (a) Fi buffer core amplifier Ar11p
2 output signal waveform, (b) Fi buffer core amplifier Amp
The output signal waveform of No. 1 is shown. In the differential amplifier M, the multiplication factor m of the APDT 3 is set so that the magnitude of the common-mode noise component is equal, so the optical intensity signal, which is the common-mode component, is also canceled, as shown in FIG. 6(e). Output. Here, due to the in-phase component, the polar (slightly magneto-optical signal becomes AM
Although it is modulated, there is no problem in detecting and determining the presence or absence of magnetic pits or the length of the pits. - The tip strength signal is shown in FIG. 6 ('b), and the signal SI which is the output of the buffer amplifier 38 may be used. Unlike the embodiment shown in FIG. 3, the embodiment shown in FIG. 5 In this case, the summing amplifier N is not provided. This is λ/2 board JK
Since the distribution ratio of the amount of light caused by the magneto-optical effect is equal to 1, the signal shown in FIG. 6(b) actually includes a component due to the magneto-optical signal.
This is because it is possible to ignore optical intensity signals that have a large degree of modulation and can reproduce high-quality signals. Therefore, compared to the embodiment shown in FIG. 3, there is an advantage that the addition amplifier N can be omitted.

以上のように第5図に示した実施例は、第3図に示した
実施例よりも、光磁気信号成分の変調度が低いとき、つ
まり光磁気再生信号のカー回転角θkが小さい時に適し
ているといえる。また実際に使用する面でも、使用する
差動増幅器が理想的で同相信号除去比(CMRR: C
ommon ModeRejectionRatio 
)が無限大であれば、大きさのバランスした同相雑音成
分もしくは同相信号成分を完全に除去することができる
が、実際の差動増幅器にあっては同相信号除去比(CM
RR)が無限大とならず、この場合、第8図に示したθ
=45 として振り分は光量を同じにするよりは、第9
図に示した様にθを45°以下としてAPDT3側の振
り分は光量を少なくした方がAPDT3側の再生信号の
中に占める同相成分の割合が少なくなり、差動増幅によ
る同相成分の除去に有利である。
As described above, the embodiment shown in FIG. 5 is more suitable than the embodiment shown in FIG. 3 when the degree of modulation of the magneto-optical signal component is lower, that is, when the Kerr rotation angle θk of the magneto-optical reproduction signal is small. It can be said that In addition, in actual use, the differential amplifier used is ideal and has a common mode rejection ratio (CMRR: C
ommonModeRejectionRatio
) is infinite, it is possible to completely remove the common-mode noise component or the common-mode signal component, which is balanced in size. However, in an actual differential amplifier, the common-mode signal rejection ratio (CM
RR) does not become infinite, and in this case, θ shown in FIG.
= 45, rather than making the amount of light the same, the distribution is the 9th
As shown in the figure, when θ is set to 45 degrees or less and the amount of light distributed on the APDT3 side is reduced, the proportion of the common-mode component in the reproduced signal on the APDT3 side will be smaller, and the removal of the common-mode component by differential amplification will be easier. It's advantageous.

もちろん光磁気信号の変調度が高くなり光強度信号に対
して無視出来なくなった場合には、加算アンプを設けて
、光強度信号に対して光磁気信号成分を抑圧すれば良い
−この時には第10図に示すように加算アンプNのほか
に、加算アンプNの2つの入力での光磁気信号成分の大
きさを等しくするような1ノベル調節機構Kを設けねば
ならない。
Of course, if the degree of modulation of the magneto-optical signal becomes high enough that it cannot be ignored with respect to the optical intensity signal, it is sufficient to provide a summing amplifier to suppress the magneto-optical signal component with respect to the optical intensity signal. As shown in the figure, in addition to the summing amplifier N, a one-novel adjustment mechanism K must be provided to equalize the magnitudes of the magneto-optical signal components at the two inputs of the summing amplifier N.

具体的にId Amp lの出力信号SIに対する増幅
器に2であっても、ArrIp2の出力信号S2に対す
る減衰器に、であっても良い。また場合によっては両方
使用しても良い。
Specifically, it may be used as an amplifier for the output signal SI of IdAmp1, or as an attenuator for the output signal S2 of ArrIp2. In some cases, both may be used.

尚、第5図の実施例として、増幅機能をもった光電変換
素子としてAPDを用いたが、通常の光電変換素子(例
えばPINフォトダイオード)と増幅器を用いて構成し
ても良い。
In the embodiment shown in FIG. 5, an APD is used as a photoelectric conversion element having an amplification function, but a normal photoelectric conversion element (for example, a PIN photodiode) and an amplifier may be used.

その場合は、一般にAPD自体で発生するノイズ再生信
号のS/N比が十分に確保できない恐れがある。また、
振、り分けた2つの光のそれぞれをAPDで光電変換す
るようにしても良い。この様に2つのAPDで光電変換
を行う場合には、2つのAPDに対する温度条件が同じ
になる様に設置する毒でAPDに対する温度補償回路を
不要にすることができる。即ち、2つのAPDの温度条
件が等しい事から、温度に対し同じ増幅率の変化を生じ
、この結果、差動増幅器Mの入力における2つの入力信
号に含まれる同相成分の相対差がなく、APDの温度条
件が変わっても、差動増幅器Mに入力する同相成分を常
に一致させることが出来る。
In that case, there is a possibility that a sufficient S/N ratio of the noise reproduction signal generated by the APD itself cannot be ensured. Also,
Each of the two separated lights may be photoelectrically converted by an APD. When photoelectric conversion is performed using two APDs in this manner, a temperature compensation circuit for the APDs can be made unnecessary by installing the circuit so that the temperature conditions for the two APDs are the same. That is, since the temperature conditions of the two APDs are the same, the same amplification factor changes with respect to temperature, and as a result, there is no relative difference in the common mode components contained in the two input signals at the input of the differential amplifier M, and the APD Even if the temperature conditions change, the common mode components input to the differential amplifier M can always be matched.

また、第3図、第5図、第10図の実施例では、λ/2
板Jと偏光ビームスプリッタ−PBSとの組み合わせに
より反射光の偏光面を回転して2つの光路に振り分けて
いるが、偏光ビームスプリッタ−PBS自体を光軸を中
心に回転させることでλ/2 板Jを省略することが出
来る。
In addition, in the embodiments shown in FIGS. 3, 5, and 10, λ/2
The combination of Plate J and Polarizing Beam Splitter-PBS rotates the polarization plane of the reflected light and distributes it into two optical paths.By rotating the Polarizing Beam Splitter-PBS itself around the optical axis, a λ/2 plate is created. J can be omitted.

第7図は本発明で使用できる他の媒体例であって垂直磁
気記録による光磁気信号I/′iあらかじめらせん状或
いは同心円状に記録された凹凸ビット列による光強度信
号トラックの間に記録するものである。この様に光強度
信号トラックと光磁気信号トラックとを別々に設けるも
のにあっては光強度信号として凹凸ピット列でなく、例
えば垂直磁化層をアモルファスで構成し、大出力のレー
ザービームを照射することによって該照射部分を結晶化
することによって光の反射率を異ならしめ、これによっ
て光強度信号を得る様にしても宜しい。
FIG. 7 shows another example of a medium that can be used in the present invention, in which a magneto-optical signal I/'i by perpendicular magnetic recording is recorded between optical intensity signal tracks by concave and convex bit strings previously recorded in a spiral or concentric manner. It is. In the case where the optical intensity signal track and the magneto-optical signal track are separately provided in this way, the optical intensity signal is not formed by a concave-convex pit array, but for example, the perpendicular magnetization layer is made of an amorphous material, and a high-output laser beam is irradiated. By crystallizing the irradiated portion, the reflectance of light may be varied, thereby obtaining a light intensity signal.

この様な光強度信号と光磁気信号とを別々のトラックに
記録したディスクを再生する場合の再生回路としても、
先に説明した実施例が適用できる。
It can also be used as a reproducing circuit when reproducing a disc in which such optical intensity signals and magneto-optical signals are recorded on separate tracks.
The embodiments described above are applicable.

この媒体例のような光磁気信号と光強度信号を交互に配
する媒体にあっては、両信号は同時に再生する′ことは
出来ない。しかし、光磁気信号と光強度信号を先の実施
例のように分離することが出来る為に、光磁気信号トラ
′ツクと光強度信号のトラックのピッチを、同一種類信
号のトラックピッチの1/2にすることができる これ
によって情報信号の密度を同一のビームスポットを用い
た従来の光学系に対して2倍にひきあげることができる
In a medium such as this example in which magneto-optical signals and optical intensity signals are arranged alternately, it is not possible to reproduce both signals at the same time. However, since the magneto-optical signal and the optical intensity signal can be separated as in the previous embodiment, the pitch of the track of the magneto-optical signal track and the optical intensity signal is set to 1/1/2 of the track pitch of the same type of signal. 2. This makes it possible to double the density of the information signal compared to a conventional optical system using the same beam spot.

尚上記実施例では全て円板状の記録媒体を示したが画論
外形形状はこれに限るものではなく記録・再生用光ビー
ムと媒体が相対的に移動できるものであれば良く、例え
ばカード状として記録再生用光ビームと媒体とが相対的
に直線移動する様構成しても宜しい。
In the above embodiments, all disc-shaped recording media are shown, but the external shape of the image is not limited to this, and may be any shape as long as the recording/reproducing light beam and the medium can move relative to each other. Alternatively, the recording/reproducing light beam and the medium may be configured to move relatively linearly.

(発明 浄秦の効果) 以上の様に本発明によれば、光磁気信号と光強度信号と
が同一記録媒体の同−或いは別のトラックに記録された
複合信号記録媒体を光学部材を増加せずにS/N比の充
分高い再生信号を得ることができる。
(Effects of the Invention Joqin) As described above, according to the present invention, a composite signal recording medium in which a magneto-optical signal and an optical intensity signal are recorded on the same or different tracks of the same recording medium can be realized by increasing the number of optical members. Therefore, it is possible to obtain a reproduced signal with a sufficiently high S/N ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合信号記録媒体の拡大一部平面図、第2図は
第1図に於けるA−A矢視断面図、第3図は本発明の一
実施例、第4図は第3図に示す実施例の各所に於ける信
号波形図、第5甲は本発明の他の実施例、第6図は第5
図に示す実施例の各所に於ける信号波形図、第7図は他
の例による複合信号記録媒体の拡大一部平面図、第8図
は45゜差動法による再生動作を説明するベクトル図、
第9図は光量の分割が不均等な場合の再生動作を説明す
るベクトル図、第10図は本発明の他の実施例、第11
図、第12図は複合信号記録媒体の再生装置である。 (主要部分の符号の説明) D・・・・・・ディスク 10・・・・・・対物レンズ BS・・・・・・ビームスプリッタ J ・・・・・・λ/2板 PBS・・・・・・偏光ビームスプリッタT、 、 I
’2・・・・・・光電変換素子Amp 1 、 Amp
 2・・・・・・バッファアンプM ・・・・・・差動
アンプ N ・・・・・・加算アンプ L ・・・・・・レーザー光源 T3・・・・・・APD
FIG. 1 is an enlarged partial plan view of a composite signal recording medium, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, FIG. 3 is an embodiment of the present invention, and FIG. Signal waveform diagrams at various points in the embodiment shown in the figures, No. 5 A is another embodiment of the present invention, and FIG.
FIG. 7 is an enlarged partial plan view of a composite signal recording medium according to another example; FIG. 8 is a vector diagram illustrating reproduction operation using the 45° differential method. ,
FIG. 9 is a vector diagram explaining the reproducing operation when the amount of light is divided unevenly, FIG. 10 is another embodiment of the present invention, and FIG.
12 shows a reproducing apparatus for a composite signal recording medium. (Explanation of symbols of main parts) D... Disk 10... Objective lens BS... Beam splitter J... λ/2 plate PBS... ...Polarizing beam splitter T, , I
'2...Photoelectric conversion element Amp1, Amp
2...Buffer amplifier M...Differential amplifier N...Additional amplifier L...Laser light source T3...APD

Claims (2)

【特許請求の範囲】[Claims] (1)レーザー光源;該レーザー光源を光磁気信号と光
強度信号とにより記録された複合信号記録媒体にスポッ
ト状に照射する光学系;該複合信号記録媒体からの反射
光を偏光面に基いて2つの光路に分割する光路分割部材
;該光路分割部材によつて分割された光をそれぞれ光電
変換する2つの光電変換素子;該2つの光電変換素子の
出力の差に基いて光磁気信号を再生する光磁気信号再生
手段;該2つの光電変換素子の一方の出力に基いて光強
度信号を再生する光強度信号再生手段を含む複号信号記
録媒体の再生装置。
(1) Laser light source; an optical system that irradiates the laser light source in a spot shape onto a composite signal recording medium recorded with a magneto-optical signal and a light intensity signal; An optical path splitting member that splits the light into two optical paths; two photoelectric conversion elements that photoelectrically convert the light split by the optical path splitting member; reproducing a magneto-optical signal based on the difference in output of the two photoelectric conversion elements; A reproducing apparatus for a multiple signal recording medium, including a magneto-optical signal reproducing means for reproducing an optical intensity signal based on the output of one of the two photoelectric conversion elements.
(2)前記光路分割部材は2つの光路に不均等の光量で
分割する特許請求の範囲第1項記載の複合信号記録媒体
の再生装置。
(2) The apparatus for reproducing a composite signal recording medium according to claim 1, wherein the optical path dividing member divides the light into two optical paths with unequal amounts of light.
JP27266484A 1984-09-12 1984-12-24 Reproducing device of composite signal recording medium Pending JPS61150148A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27266484A JPS61150148A (en) 1984-12-24 1984-12-24 Reproducing device of composite signal recording medium
US07/145,704 US4858218A (en) 1984-09-12 1988-01-15 Optical recording medium and reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27266484A JPS61150148A (en) 1984-12-24 1984-12-24 Reproducing device of composite signal recording medium

Publications (1)

Publication Number Publication Date
JPS61150148A true JPS61150148A (en) 1986-07-08

Family

ID=17517063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27266484A Pending JPS61150148A (en) 1984-09-12 1984-12-24 Reproducing device of composite signal recording medium

Country Status (1)

Country Link
JP (1) JPS61150148A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234250A (en) * 1986-03-20 1987-10-14 Nec Home Electronics Ltd Magneto-optical recording and reproducing device
JPS62164626U (en) * 1986-04-07 1987-10-19
JPS63102031U (en) * 1986-12-22 1988-07-02
JPH03187040A (en) * 1989-12-11 1991-08-15 Internatl Business Mach Corp <Ibm> Optomagnetic disc reader, detection of signal recorded on optomagnetic disc and optomagnetic disc
JPH09106591A (en) * 1996-10-23 1997-04-22 Hitachi Ltd Magneto-optical disk device
US5959961A (en) * 1997-02-19 1999-09-28 Nec Corporation Optical recording medium having multiple recording layers and method for recording and reproducing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142751A (en) * 1984-08-03 1986-03-01 Sanyo Electric Co Ltd Information reader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142751A (en) * 1984-08-03 1986-03-01 Sanyo Electric Co Ltd Information reader

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234250A (en) * 1986-03-20 1987-10-14 Nec Home Electronics Ltd Magneto-optical recording and reproducing device
JPS62164626U (en) * 1986-04-07 1987-10-19
JPS63102031U (en) * 1986-12-22 1988-07-02
JPH03187040A (en) * 1989-12-11 1991-08-15 Internatl Business Mach Corp <Ibm> Optomagnetic disc reader, detection of signal recorded on optomagnetic disc and optomagnetic disc
JPH09106591A (en) * 1996-10-23 1997-04-22 Hitachi Ltd Magneto-optical disk device
US5959961A (en) * 1997-02-19 1999-09-28 Nec Corporation Optical recording medium having multiple recording layers and method for recording and reproducing thereof

Similar Documents

Publication Publication Date Title
US4858218A (en) Optical recording medium and reproducing apparatus
JPH09161347A (en) Optical information detecting device
KR100225305B1 (en) Optical scanning device
JPS61150148A (en) Reproducing device of composite signal recording medium
JPS63298734A (en) Magneto-optical disk reproducing device
JP3626003B2 (en) Optical information storage device
JPS63161541A (en) Optical pickup device
US5898661A (en) Optical information storage unit
US20030002423A1 (en) Information medium with multi-layered structure, and apparatus and method using this medium
JPH11176019A (en) Optical information storage device
WO1995029483A1 (en) Magnetooptic recording medium and magnetooptic recording head
US6504811B1 (en) Optical information storage unit
US6091693A (en) Optical recording medium and optical information storage unit
JPH04506722A (en) Magneto-optical recording and/or reproducing device
JP2578796B2 (en) Magneto-optical disk device
JPH0327978B2 (en)
JP2903554B2 (en) Multi-beam magneto-optical head device
JPS63200346A (en) Magneto-optical recording and reproducing head
JP2551129B2 (en) Magneto-optical disk device
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPH1021596A (en) Magneto-optical recording medium and optical reproducing device
JPH01125727A (en) Disk reproducing method
JP2574915B2 (en) Optical device for reproducing magneto-optical recording media
JPS5828656B2 (en) Reading device for light-transmissive information carrier
KR100207645B1 (en) Optical beam control method of optical device and optical device for optical head therefor