JPS61149673A - Flow control mechanism in flow control valve - Google Patents

Flow control mechanism in flow control valve

Info

Publication number
JPS61149673A
JPS61149673A JP26952384A JP26952384A JPS61149673A JP S61149673 A JPS61149673 A JP S61149673A JP 26952384 A JP26952384 A JP 26952384A JP 26952384 A JP26952384 A JP 26952384A JP S61149673 A JPS61149673 A JP S61149673A
Authority
JP
Japan
Prior art keywords
nozzle inner
flow rate
valve body
inner hole
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26952384A
Other languages
Japanese (ja)
Other versions
JPH0461228B2 (en
Inventor
Yasuo Kimura
木村 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gadelius KK
Original Assignee
Gadelius KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gadelius KK filed Critical Gadelius KK
Priority to JP26952384A priority Critical patent/JPS61149673A/en
Publication of JPS61149673A publication Critical patent/JPS61149673A/en
Publication of JPH0461228B2 publication Critical patent/JPH0461228B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the constitution of a flow control mechanism and to set flow characteristic arbitrarily by forming a flow throttle surface on the side opening and closing a nozzle inner hole of a piston valve element sliding in the axial direction a cage valve body. CONSTITUTION:A piston valve element 4 is inserted in a cage valve body 1 and slid in the axial direction by a valve shaft 5, thereby to sequentially open or close nozzle inner holes 2. A flow throttle surface 4a is formed on the outer peripheral portion of the side of the piston valve element 4 that is adapted to open and close a nozzle inner hole. A flow characteristic can be set arbitrarily by simply changing a flow throttle surface, and especially the mechanism can be designed with allowance for the deterioration of a characteristic change depending upon fluid erosion abrasion to contribute to lengthening the life of a product.

Description

【発明の詳細な説明】 [発明の目的1 上の1 本発明は、プロセスオートメーション等の配管系に使わ
れる流量制御弁、特に弁胴の内面に多数のノズル内孔を
有する円筒状のケージ弁胴と、該ケージ弁胴内を軸方向
に摺動してノズル内孔を開閉するピストン弁体から成る
流量制御弁に於ける流量側WI槻構に関するものである
Detailed Description of the Invention [Objective of the Invention 1 Above 1] The present invention relates to a flow control valve used in piping systems such as process automation, particularly a cylindrical cage valve having a large number of nozzle inner holes on the inner surface of the valve body. This invention relates to a flow rate side WI lug structure in a flow rate control valve consisting of a cylinder and a piston valve element that slides in the axial direction within the cage valve body to open and close a nozzle inner hole.

聚迷!す1劃 従来、この種の流量制御弁の内、特にノズル内孔を軸方
向に接触或いはオーバーラツプさせて配置することがで
きないものは、ピストン弁体の移動にともなって増減す
るノズル内孔の開口総面積が不連続に変化するため、ピ
ストン弁体の変位量とノズルからの噴出量とは完全な線
形状態で比例することはなく、段階的に変化してしまう
ため流量制御値の安定性や制御精度に問題があった。
Hesitation! 1. Conventionally, among these types of flow control valves, especially those that cannot be arranged so that the nozzle inner holes contact or overlap in the axial direction, the opening of the nozzle inner hole increases and decreases as the piston valve body moves. Since the total area changes discontinuously, the amount of displacement of the piston valve body and the amount of ejection from the nozzle are not completely linearly proportional, but change in stages, which may affect the stability of the flow rate control value. There was a problem with control accuracy.

これを解決するため、例えば第9図(A)(B)に示す
よう、ケージ弁胴20の内壁に多数のノズル内孔21を
半円状にあけ、このノズル内孔21をピストン弁体(図
示せず)によって順次開口又は閉鎖せしめることにより
、ピストン弁体の変位に伴なってノズル22からの流量
を微細に変化せしめるようにしたり、或いは第10図に
示すようにノズル内孔23をスリット状に形成して流量
を連続的に調節せしめようとする流11羽節手段があっ
た。
In order to solve this problem, for example, as shown in FIGS. 9(A) and 9(B), a large number of nozzle inner holes 21 are formed in the inner wall of the cage valve body 20 in a semicircular shape, and these nozzle inner holes 21 are connected to the piston valve body ( (not shown), the flow rate from the nozzle 22 can be minutely changed in accordance with the displacement of the piston valve body, or the nozzle inner hole 23 can be opened or closed with a slit as shown in FIG. There are 11 flow control means which are formed into a shape to continuously adjust the flow rate.

明が  しようとする  ヴ しかしながら、上記従来の流量調節手段は、ノズル内孔
21.23の構造が複雑で加工がしにくく、多大の加工
時間や専用の加工装置等を要し、製造費が高くつくばか
りでなく、異物による目詰まりの心配があったり、また
流量特性も不充分である等の欠点があった。
However, in the conventional flow rate adjustment means described above, the structure of the nozzle inner hole 21, 23 is complicated, making it difficult to process, requiring a large amount of processing time, special processing equipment, etc., and resulting in high manufacturing costs. In addition to this, there is also the risk of clogging due to foreign matter, and the flow characteristics are insufficient.

本発明は、上記従来の流量制御弁の欠点を解消するため
になされたもので、その目的とするところは、構造が簡
単で安価に製造出来、流量特性に優れた流量調節機構を
有する流量制御弁を提供するにある。
The present invention has been made in order to eliminate the drawbacks of the conventional flow control valves described above.The purpose of the present invention is to provide a flow control valve that has a simple structure, can be manufactured at low cost, and has a flow rate adjustment mechanism with excellent flow characteristics. There is a valve to provide.

[発明の構成] ヴを  するための 本発明の流量制御弁に於ける流量調節機構は、軸方向に
離れた多数のノズル内孔を有する円筒状のケージ弁胴と
、該ケージ弁胴内を軸方向に摺動して゛前記ノズル内孔
を開閉するピストン弁体から成る流量制御弁に於いて、
上記ピストン弁体のノズル内孔開閉作用側に流量絞り面
を形成したことを特徴とするものである。
[Structure of the Invention] The flow rate adjustment mechanism in the flow rate control valve of the present invention for controlling the flow rate includes a cylindrical cage valve body having a large number of axially spaced nozzle inner holes, and a tube inside the cage valve body. In a flow control valve consisting of a piston valve body that slides in the axial direction to open and close the nozzle inner hole,
The present invention is characterized in that a flow rate restricting surface is formed on the nozzle inner hole opening/closing side of the piston valve body.

実1■吐 以下、本発明の実施例を図面を参照しながら説明する。fruit 1 ■ vomit Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は円筒状のケージ弁胴であって、そ
の下方−側内面部には多数のノズル内孔2が開口されて
いる。該ノズル内孔2は第2図に示すように、3列に軸
方向に少しずつずらせて配列されていて、PIIJ3図
に示すようにそれぞれ噴霧ノズル3が放射状に嵌挿され
ている。該ノズル内孔2は円孔の他に長短比が2以下の
楕円、四角、分割円で形成した四角、四角以上の正多角
形状の孔であってもよい。
In FIG. 1, reference numeral 1 denotes a cylindrical cage valve body, and a number of nozzle inner holes 2 are opened in the lower inner surface of the cage valve body. As shown in FIG. 2, the nozzle inner holes 2 are arranged in three rows that are slightly shifted in the axial direction, and spray nozzles 3 are fitted radially into each row as shown in FIG. PIIJ3. In addition to a circular hole, the nozzle inner hole 2 may be an ellipse with an length ratio of 2 or less, a square, a square formed by divided circles, or a regular polygon having a square or more shape.

上記ケージ弁胴1内にはピストン弁体4が内挿されてい
て、弁軸5により軸方向に摺動し、上記ノズル内孔2を
順次間いたり或いは閉じたりするようになっている。
A piston valve body 4 is inserted into the cage valve body 1, and is slid in the axial direction by a valve shaft 5 to sequentially open or close the nozzle inner hole 2.

上記ピストン弁体4のノズル内孔開閉作用側(本実施例
では上側)の外周部には流量絞り面4aが形成されてい
る。
A flow rate restricting surface 4a is formed on the outer periphery of the piston valve body 4 on the nozzle inner hole opening/closing side (upper side in this embodiment).

14図は、上記流量絞り面4aの第1実施例を示すもの
で、以下のような寸法で規定される円錐面4a’が形成
されている。即ち、 円錐面4a’の稜線が軸となす角θが、jan−’0.
06d/ p≦θ≦tan−10.3d/ pであって
、 円錐面4a’の軸方向長さHが、 H≧p−dここに、
dはノズル内孔2の直径、pはノズル内孔2の軸方向ピ
ッチであり、20d≧p≧2dの範囲とする。
FIG. 14 shows a first embodiment of the flow rate restricting surface 4a, in which a conical surface 4a' defined by the following dimensions is formed. That is, the angle θ between the ridgeline of the conical surface 4a' and the axis is jan-'0.
06d/p≦θ≦tan-10.3d/p, and the axial length H of the conical surface 4a' is H≧p-d, where,
d is the diameter of the nozzle inner hole 2, p is the axial pitch of the nozzle inner hole 2, and the range is 20d≧p≧2d.

また、第5図は第2実施例を示すもので、流量絞り面4
aが下記のような寸法に規定されている外側に向って凸
曲線の回転体面である紡錘面4a″に形成されている。
Moreover, FIG. 5 shows a second embodiment, in which the flow restricting surface 4
A is formed on a spindle surface 4a'' which is an outwardly convex rotating body surface defined by the following dimensions.

即ち、 紡錘面4a″の上端位置と下端位置での半径の差δが、
 0,06d≦δ≦0.5d であって、 紡錘面4a#の軸方向の長さHが、H=p−d/2ここ
に、dはノズル内孔2の直径、pばノズル内孔2の軸方
向のピッチであって、20d≧p≧2dの範囲とする。
That is, the difference δ in radius between the upper and lower end positions of the spindle surface 4a'' is
0.06d≦δ≦0.5d, and the axial length H of the spindle surface 4a# is H=p-d/2, where d is the diameter of the nozzle inner hole 2, and p is the nozzle inner hole. The pitch in the axial direction of 2 is in the range of 20d≧p≧2d.

尚、第1図において、6は液流入路、7はピストンリン
グである。
In FIG. 1, 6 is a liquid inflow path, and 7 is a piston ring.

第6図は、上記流量調節8%構を備えた流量制御弁によ
る過熱蒸気の温度低減装置を示すもので、ボイラー等か
らの過熱蒸気を導入した蒸気管8の途中にケージ弁胴1
を臨ませ、その下流側に感熱筒9を臨ませである。
Fig. 6 shows a temperature reduction device for superheated steam using a flow rate control valve equipped with the above-mentioned 8% flow rate adjustment mechanism.
The thermosensitive tube 9 is placed on the downstream side thereof.

該感熱筒9によr)#定した蒸気温度は熱電対リード線
10を通って、温度設定調節器11に伝えられ、設定さ
れた蒸気温度と比較される。
The steam temperature determined by the heat sensitive cylinder 9 is transmitted to the temperature setting regulator 11 through the thermocouple lead wire 10, and compared with the set steam temperature.

ここで、設定蒸気温度との差が検知されると、リード線
12を通って注水量操作信号が弁ボジシ5ナー13に伝
えられ、グイラフラム14を操作することにより弁軸5
を介してピストン弁体4を摺動させるようになっている
Here, when a difference from the set steam temperature is detected, a water injection amount operation signal is transmitted to the valve body 5 knob 13 through the lead wire 12, and by operating the Giraflam 14, the valve stem 5 is
The piston valve body 4 is made to slide through the piston.

上記ケージ弁胴1内の液流入路6には冷水が導入されて
いて、上記ピストン弁体4により開口されたノズル内孔
2から蒸気管8内に噴霧され、過熱蒸気を減温する。
Cold water is introduced into the liquid inflow path 6 in the cage valve body 1, and is sprayed into the steam pipe 8 from the nozzle inner hole 2 opened by the piston valve body 4 to reduce the temperature of the superheated steam.

第7図は第10図に示す従来のスリット型ノズル内孔に
よる流量特性を示すもので、随所に急開特性が見られ、
中央部に流量不感帯も見られるのに対し、第8図は本発
明の上記実施例の流量II節機構による流量特性を示す
もので、実用上十分に線型化されているのが解る。
Figure 7 shows the flow rate characteristics of the conventional slit-type nozzle inner hole shown in Figure 10, where rapid opening characteristics can be seen everywhere.
Although a flow rate dead zone is also seen in the central part, FIG. 8 shows the flow rate characteristics due to the flow rate node II mechanism of the above embodiment of the present invention, and it can be seen that the flow rate is sufficiently linearized for practical use.

[発明の効果] 次に、本発明の効果を列記する。[Effect of the invention] Next, the effects of the present invention will be listed.

(1)ピストン弁体の一側に例えば円錐状の流量絞り面
を形成するだけなので、簡便且つ安価に製造することが
出来る。
(1) Since a conical flow restricting surface, for example, is simply formed on one side of the piston valve body, it can be manufactured easily and at low cost.

(2)ノズル内孔の大きさ形状や配列等に制約がないの
で、必要に応じて弁胴な短くし、ピストン弁体のストロ
ークを短小化し得る等、設計上有利に適応出来る。
(2) Since there are no restrictions on the size, shape, arrangement, etc. of the nozzle inner holes, the valve body can be shortened as necessary, and the stroke of the piston valve body can be shortened, which can be advantageously applied in terms of design.

(3)流量絞り面をWRlに変更することにより、流量
特性を任意に設定出来、特に流体二ローブタン摩耗に基
づ(特性変化の劣化を見込んで設計出来るので製品の長
寿命化に資することが出来る。
(3) By changing the flow restricting surface to WRl, the flow rate characteristics can be set arbitrarily, and in particular, it can be designed based on fluid two-lobed tongue wear (by anticipating the deterioration of characteristic changes), which contributes to a longer life of the product. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流量調節機構を備えた流量制御弁の一
実施例を示す縦断面図であって、右半分は全開状態を、
左半分は全閉状態を示す。第2図は第1図のノズルの配
列を示す正面図、第3図はtJ&1図のノズルの放射状
配向を示す横断面図、第4図はピストン弁体に於ける流
量絞り面の第1実施例を示す説明図、第5図は流量絞り
面のv!J2実施例を示す説明図、第6図は過熱蒸気の
減温装置の説明図、第7図は従来の流量制御弁の流量特
性を示すグラフ、@8図は本発明の流量制御機構による
流量特性を示すグラフ、第9,101Jは従来の流量制
御弁の説明図である。 1・・・ケージ弁胴、2・・・ノズル内孔、3・・・噴
霧ノズル、4・・・ピストン弁体、4a・・・流量絞り
面、4a’・・・円錐面、4a″・・・紡錘面、5・・
・弁軸、6・・・液流入路、7・・・ピストンリング、
8・・・蒸気管、9・・・感温前、10−・・熱電対リ
ード線、11・・・温度設定調節器、12・・・リード
線、13・・・弁ボジシaナー、14・・・グイラフラ
ム。      ″ 第4図 第5図 第6図 d                    8第7図 一噴射水1 4’hr (差圧10 kg/cm”常温水) 第8図 〜噴射水量 j/hr (差圧10 kg/l:r+v’常温水)第9図 (A) 第10図
FIG. 1 is a longitudinal sectional view showing an embodiment of a flow control valve equipped with a flow rate adjustment mechanism of the present invention, with the right half showing a fully open state;
The left half shows the fully closed state. Fig. 2 is a front view showing the arrangement of the nozzles in Fig. 1, Fig. 3 is a cross-sectional view showing the radial orientation of the nozzles in Fig. tJ & 1, and Fig. 4 is a first implementation of the flow restricting surface in the piston valve body. An explanatory diagram showing an example, FIG. 5 is v! of the flow restricting surface. An explanatory diagram showing the J2 embodiment, Fig. 6 is an explanatory diagram of a superheated steam temperature reduction device, Fig. 7 is a graph showing the flow rate characteristics of a conventional flow control valve, and Fig. 8 is a flow rate by the flow control mechanism of the present invention. Graph No. 9, 101J showing the characteristics is an explanatory diagram of a conventional flow control valve. DESCRIPTION OF SYMBOLS 1... Cage valve body, 2... Nozzle inner hole, 3... Spray nozzle, 4... Piston valve body, 4a... Flow rate restricting surface, 4a'... Conical surface, 4a''・・Spindle surface, 5・・
・Valve shaft, 6...Liquid inflow path, 7...Piston ring,
8... Steam pipe, 9... Before temperature sensing, 10-... Thermocouple lead wire, 11... Temperature setting controller, 12... Lead wire, 13... Valve positioner, 14 ... Guiraflam. '' Figure 4 Figure 5 Figure 6 Figure 6 d 8 Figure 7 - Injection water 1 4'hr (Differential pressure 10 kg/cm" room temperature water) Figure 8 - Injection water amount j/hr (Differential pressure 10 kg/l: r+v' room temperature water) Figure 9 (A) Figure 10

Claims (1)

【特許請求の範囲】 (1)軸方向に離れた多数のノズル内孔を有する円筒状
のケージ弁胴と、該ケージ弁胴内を軸方向に摺動して前
記ノズル内孔を開閉するピストン弁体から成る流量制御
弁に於いて、上記ピストン弁体のノズル内孔開閉作用側
に流量絞り面を形成したことを特徴とする流量調節機構
。 (2)上記流量絞り面が、以下の寸法で規定されている
円錐面であることを特徴とする前記特許請求の範囲第1
項記載の流量調節機構。 円錐面の稜線が軸となす角θが、 tan^−^10.06d/p≦θ≦tan^−^10
.3d/pであって、 円錐面の軸方向長さHが、H≧p−d ここに、dはノズル内孔の直径、pはノズル内孔の輪方
向ピッチであり、20d≧p≧2dの範囲とする。 (3)上記流量絞り面が、以下の寸法で規定されている
紡錘面であることを特徴とする前記特許請求の範囲第1
項記載の流量調節機構。 上記紡錘面の上端位置と下端位置での半径の差δが、 0.06d≦δ≦0.5d であって、 上記紡錘面の軸方向の長さHが、H=p−d/2ここに
、dはノズル内孔の直径、pはノズル内孔の輪方向のピ
ッチであって、20d≧p≧2dの範囲とする。
[Scope of Claims] (1) A cylindrical cage valve body having a large number of axially spaced nozzle inner holes, and a piston that opens and closes the nozzle inner holes by sliding in the axial direction within the cage valve body. 1. A flow rate control valve comprising a valve body, characterized in that a flow rate restricting surface is formed on the nozzle inner hole opening/closing side of the piston valve body. (2) Claim 1, wherein the flow rate restricting surface is a conical surface defined by the following dimensions:
Flow rate adjustment mechanism described in section. The angle θ between the ridgeline of the conical surface and the axis is tan^-^10.06d/p≦θ≦tan^-^10
.. 3d/p, and the axial length H of the conical surface is H≧p−d, where d is the diameter of the nozzle inner hole, p is the annular pitch of the nozzle inner hole, and 20d≧p≧2d. The range shall be . (3) The first aspect of claim 1, wherein the flow rate restricting surface is a spindle surface defined by the following dimensions.
Flow rate adjustment mechanism described in section. The difference δ in radius between the upper end position and the lower end position of the spindle face is 0.06d≦δ≦0.5d, and the axial length H of the spindle face is H=p−d/2 where where d is the diameter of the nozzle inner hole, p is the pitch of the nozzle inner hole in the annular direction, and is in the range of 20d≧p≧2d.
JP26952384A 1984-12-20 1984-12-20 Flow control mechanism in flow control valve Granted JPS61149673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26952384A JPS61149673A (en) 1984-12-20 1984-12-20 Flow control mechanism in flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26952384A JPS61149673A (en) 1984-12-20 1984-12-20 Flow control mechanism in flow control valve

Publications (2)

Publication Number Publication Date
JPS61149673A true JPS61149673A (en) 1986-07-08
JPH0461228B2 JPH0461228B2 (en) 1992-09-30

Family

ID=17473575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26952384A Granted JPS61149673A (en) 1984-12-20 1984-12-20 Flow control mechanism in flow control valve

Country Status (1)

Country Link
JP (1) JPS61149673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612757U (en) * 1991-12-12 1994-02-18 本田技研工業株式会社 Air amount adjusting device for bypass intake passage in multiple throttle body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194029U (en) * 1975-01-27 1976-07-28
JPS5597581A (en) * 1979-01-18 1980-07-24 Tokyo Keiki Co Ltd Fluid pressure digital throttle valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194029U (en) * 1975-01-27 1976-07-28
JPS5597581A (en) * 1979-01-18 1980-07-24 Tokyo Keiki Co Ltd Fluid pressure digital throttle valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612757U (en) * 1991-12-12 1994-02-18 本田技研工業株式会社 Air amount adjusting device for bypass intake passage in multiple throttle body

Also Published As

Publication number Publication date
JPH0461228B2 (en) 1992-09-30

Similar Documents

Publication Publication Date Title
EP2174050B1 (en) Valve with cage
JPS6246071Y2 (en)
US4249574A (en) Orifice trim and backpressure plate for high pressure valves
US2049141A (en) Multiple spray shower head
US2685294A (en) Wide range flow rate metering valve
JP3307919B2 (en) Valve device for fluid piping
US10690253B2 (en) Multi-stage, multi-path rotary disc
US5205533A (en) Ball valve
US3080885A (en) Variable area valve
US4651775A (en) Three-way ball valve
JPH0854071A (en) Configuration of regulating valve
US6637668B2 (en) Thermostatic control valve with fluid mixing
US20160223099A1 (en) Axial Resistance Valve Trim Design
US4825906A (en) Angle pattern control valve
US3326242A (en) Fluid flow control device
JPH02133805A (en) Flow rate limiter
US4830277A (en) Thermostatic valve
US3752188A (en) Valve with controlled flow characteristics
US4790480A (en) Liquid fuel atomiser
JPS61149673A (en) Flow control mechanism in flow control valve
EP0742876B1 (en) Radiator valve
US3948479A (en) Labyrinth type valve for high pressure drop applications
US3402739A (en) Valve for gas burner
US2320050A (en) Deflector ring
JPS6032810B2 (en) Spool type metering valve