JPS61149614A - Static pressure bearing - Google Patents

Static pressure bearing

Info

Publication number
JPS61149614A
JPS61149614A JP26855984A JP26855984A JPS61149614A JP S61149614 A JPS61149614 A JP S61149614A JP 26855984 A JP26855984 A JP 26855984A JP 26855984 A JP26855984 A JP 26855984A JP S61149614 A JPS61149614 A JP S61149614A
Authority
JP
Japan
Prior art keywords
bearing
load
supplying hole
diameter
air supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26855984A
Other languages
Japanese (ja)
Inventor
Tsutomu Goto
勉 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26855984A priority Critical patent/JPS61149614A/en
Publication of JPS61149614A publication Critical patent/JPS61149614A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To reduce driving energy of power source of fluid supplied without changing load capacity of a bearing by making effective area of supplying hole of the side to which load of static pressure bearing is applied smaller than that of supplying hole of the side to which load is applied. CONSTITUTION:A bearing 1 is divided into two upper and lower sections by a horizontal plane X passing the center, and an air supplying hole 2 is provided on the upper half side 6 to which load is not applied, and an air supplying hole 2a is provided on the lower half side to which load is applied. And the diameter of the air supplying hole 2a of the side to which a bearing is applied is set to an optimum designing condition, that is, a diameter d of an air supplying hole which gives maximum load capacity M, and the hole is drilled. As a diameter of the air supplying hole 2 of the side to which load of the bearing 1 is not applied is made smaller than that of the air supplying hole 2a as load capacity can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、静圧軸受に関し、より詳しくは、静圧気体
シレーナル軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrostatic bearing, and more particularly to a hydrostatic gas syringal bearing.

〔従来技術〕[Prior art]

一般に、静圧軸受は、始動S擦や、低速rfl擦等によ
る軸受の摩耗又は焼けつきを防止するため、外部から軸
受とジャーナル(軸)との軸受すきまに圧力をかりて流
体(通常は空気を用いるので以下空気として説明する)
を送り、軸が静止のまま又は、低速等の状態で軸を軸受
内に浮上又は浮遊させるものである。
In general, static pressure bearings use a fluid (usually air) that applies pressure from the outside to the bearing clearance between the bearing and the journal (shaft) in order to prevent bearing wear or seizure due to startup S friction, low-speed RFL friction, etc. is used, so it will be explained below as air)
The shaft is suspended or floated within the bearing while the shaft remains stationary or at low speed.

この従来の静圧気体ジャーナル軸受を第3図及び第4図
に示すと、軸受11には複数の給気孔(供給孔)12が
設(プられ、外部空気源から圧送される空気が給気孔1
2を通り軸受すきま13内に圧力を生じさせる。軸受す
きま13内に発生する圧力により軸14は浮上し、回転
時においては、気体の持つ極めて小さい粘度(油の持つ
粘度の1/1000〜1/10000)のため低摩擦で
の回転が可能である(例えば、日本機械学会論文集第3
部33巻−255@、昭和42年11月発行「静圧気体
ジャーナル軸受の安定性J参照)。
When this conventional static pressure gas journal bearing is shown in FIGS. 3 and 4, a plurality of air supply holes (supply holes) 12 are provided in the bearing 11, and air fed under pressure from an external air source is supplied to the air supply holes. 1
2 to create pressure in the bearing gap 13. The shaft 14 floats due to the pressure generated within the bearing clearance 13, and during rotation, it is possible to rotate with low friction due to the extremely low viscosity of gas (1/1000 to 1/10000 of the viscosity of oil). (For example, Japan Society of Mechanical Engineers Transactions No. 3
Part 33-255 @, November 1962 issue (Refer to Stability of Hydrostatic Gas Journal Bearings J).

(発明が解決しようとする問題点) しかしながら、このような従来の静圧気体ジャーナル軸
受にあっては、給気孔径の寸法がすべて等しい構造とな
っていたため、軸受にかかる負荷の方向が重力のように
、下方、一方向に限る使用状況の下では、負荷のかから
ない軸受側も負荷側と同量の空気が圧送されることにな
り、その分、空気を供給する外部動力を余分に消費して
しまうという問題点があった。
(Problem to be solved by the invention) However, in such conventional hydrostatic gas journal bearings, all the diameters of the air supply holes are the same, so the direction of the load applied to the bearing is determined by the direction of gravity. As shown in the figure, when the bearing is used only downward and in one direction, the same amount of air is forced into the unloaded bearing side as the loaded side, which consumes extra external power to supply the air. There was a problem with this.

この発明は、このような従来の問題点に着目してなされ
たもので、軸受の負荷容−をあまり変えることなく、供
給流体の動力源の駆動エネルギを減らすことができる静
圧軸受を提供することを目的とする。
The present invention was made in view of these conventional problems, and provides a hydrostatic bearing that can reduce the driving energy of the power source for supply fluid without significantly changing the load capacity of the bearing. The purpose is to

(発明の構成) この発明は前記目的を達成するため、静圧軸受の負荷の
かからない側の供給孔の有効面積を、負荷のかかる側の
供給孔の有効面積よりも小さく形成したものである。
(Structure of the Invention) In order to achieve the above object, the present invention is such that the effective area of the supply hole on the unloaded side of the hydrostatic bearing is made smaller than the effective area of the supply hole on the loaded side.

(作用) 供給孔の有効径に対する負荷容量の変化はある値に対し
て最大値を与える曲線となり、このため、これよりも寸
法を小さくしても、また、大きくしても負荷容量は減少
することが判った。そこでこの発明では負荷のかかる側
の供給孔径を最大負荷容量を与える寸法に設定し、負荷
のかからない側の供給孔径をこれより小とした。この結
果負荷側は最大容量となり、負荷のかからない側も相応
の容量となり、結局、軸受は全体的な負荷容量を保持し
たままでしかも供給孔径の小さくなった分、供給動力源
の駆動エネルギを減らすことができ′た。
(Function) The change in load capacity with respect to the effective diameter of the supply hole forms a curve that gives the maximum value for a certain value, so even if the dimensions are made smaller or larger than this, the load capacity will decrease. It turned out that. Therefore, in this invention, the diameter of the supply hole on the side where the load is applied is set to a size that provides the maximum load capacity, and the diameter of the supply hole on the side where the load is not applied is set smaller than this. As a result, the loaded side has the maximum capacity, and the non-loaded side has a corresponding capacity.In the end, the bearing maintains its overall load capacity, and the smaller supply hole diameter reduces the drive energy of the power supply source. I was able to do that.

〔実施例〕〔Example〕

第1図は、この発明の一実施例を示す図である。 FIG. 1 is a diagram showing an embodiment of the present invention.

まず構成を説明すると、軸受1は中心を通る水平面Xで
上下に区分され、上半分の負荷のかからない側6に4個
の給気孔2を有し、下半分の負荷のかかる側5に4個の
給気孔2aを有している。給気孔2の径の寸法は給気孔
2aの径の寸法より小さく設計する。ここで負荷の方向
は重力の方向であり、下向きの矢印で示すものである。
First, to explain the structure, the bearing 1 is divided into upper and lower parts by a horizontal plane It has an air supply hole 2a. The diameter of the air supply hole 2 is designed to be smaller than the diameter of the air supply hole 2a. Here, the direction of the load is the direction of gravity, which is indicated by a downward arrow.

この場合、負荷側5の給気孔2aの径の寸法は最適設計
(後述)であるように設計する。
In this case, the diameter of the air supply hole 2a on the load side 5 is designed to be an optimal design (described later).

ジャーナル4は軸受1との間に軸受すきま3を形成し、
このすきま3に給気孔2及び2aがら空気が圧送される
。これによりジャーナルは浮上する。
A bearing clearance 3 is formed between the journal 4 and the bearing 1,
Air is forced into this gap 3 through the air supply holes 2 and 2a. This causes the journal to surface.

次に作用を説明する。軸径、軸受づきまなどの設剖パラ
メータを固定し、給気孔径りのみを変化させた場合、負
荷容@Wは第2図に示すように、最大fl1Mを有する
山形曲線を呈する。
Next, the effect will be explained. When the shaft diameter, bearing clearance, and other geometrical parameters are fixed and only the air supply hole diameter is changed, the load capacity @W exhibits a chevron curve with a maximum fl1M, as shown in FIG.

そこで、軸受1の負荷のかかる15の給気孔2aの径を
最適設計条件、即ち、最大負荷容IMを与える給気孔径
dに設定し穿孔する。そして、軸受1の負荷のかからな
い側6の給気孔2の径は負荷容量は少なくて済むため、
給気孔2aより小さくして穿孔する。
Therefore, the diameters of the 15 air supply holes 2a on which the load of the bearing 1 is applied are set to the optimal design conditions, that is, the air supply hole diameter d that provides the maximum load capacity IM, and the holes are bored. The diameter of the air supply hole 2 on the non-loaded side 6 of the bearing 1 requires a small load capacity;
The hole is made smaller than the air supply hole 2a.

従っC1軸受1の負荷方向の負荷容量については、従来
同様の最大負荷容量を得ることができる。
Therefore, regarding the load capacity of the C1 bearing 1 in the load direction, it is possible to obtain the same maximum load capacity as in the conventional case.

また、負荷のかからない側6の負荷容量については、負
荷側はどの容量は必要がなく相応の負荷容量を得るので
ある。これにより、軸受1は全体として、従来同様の負
荷容量を維持する。
Furthermore, regarding the load capacity on the side 6 on which no load is applied, there is no need for any capacity on the load side, and a corresponding load capacity is obtained. As a result, the bearing 1 as a whole maintains the same load capacity as the conventional bearing.

しかも、負荷のかからない116の給気孔2が小さくな
っているので供給空気流潰を減少することができ、もっ
て、空気供給動力源の駆動エネルギをそれだけ小さくす
ることができる。
Furthermore, since the air supply holes 2 of 116 which are not loaded are small, the collapse of the supply air flow can be reduced, thereby making it possible to reduce the driving energy of the air supply power source accordingly.

第5図は前述の実施例を自動車用ターボチャージャに適
用した例である。
FIG. 5 shows an example in which the above-described embodiment is applied to an automobile turbocharger.

タービン21は軸22によりコンプレッサ23と一体に
結合し、スクロール24を通って出口部25aに流れる
排気により回転し、これによりコンプレッサ23を回し
て給気を任縮し、スクロール25から図示せざるエンジ
ンに送る。
The turbine 21 is integrally connected to a compressor 23 by a shaft 22, and is rotated by the exhaust gas flowing through the scroll 24 to the outlet portion 25a, thereby rotating the compressor 23 to compress the supply air, and from the scroll 25 to an engine (not shown). send to

軸即ちジャーナル22は軸受26に支持され、この軸受
26はセンタハウジング27に勘合している。センタハ
ウジング27と右側スクロール24との間にはヒートイ
ンシルレータ28が設けられ、また、左側スクロール2
5との間にはバックプレート29.30及び31が順次
設けられる。
The shaft or journal 22 is supported in a bearing 26 which fits into a center housing 27. A heat insillator 28 is provided between the center housing 27 and the right scroll 24, and a heat insulator 28 is provided between the center housing 27 and the right scroll 24.
5, back plates 29, 30 and 31 are sequentially provided.

バックプレート30.31の両側には、〇−タ32の左
右のスラストを受けるスラストカラー33及び、34が
接している。
Thrust collars 33 and 34, which receive left and right thrust of the rotor 32, are in contact with both sides of the back plate 30, 31.

空気は供給動力源Pからジャーナル用人口35及びスラ
スト用人口36に至る。
Air is supplied from the supply power source P to the journal port 35 and the thrust port 36.

ジャーナル用人口35は環状通路37を介して軸方向に
4列に、かつ、円周上に等分に8個づつ配置される給気
孔38に連通ずる。軸受作用終了後の排気は排気口39
及び出口40より外部に排出される。
The journal holes 35 communicate through annular passages 37 with air supply holes 38 arranged in four rows in the axial direction and eight equally spaced on the circumference. Exhaust after the bearing action is completed is through the exhaust port 39.
and is discharged to the outside from the outlet 40.

ここで、上記例では、ロータ32を水平に設置しである
ので、重力方向には0−タ32の自重の分だけ余計に負
荷がかかる。設計の際は、重力方向を考慮して下側の給
気孔38の径を最適寸法に設定し、上側の給気孔38の
径をこれより小さく設定する。こうすることにより、供
給気体の流量を減らし、ポンプ動力を軽減できるもので
ある−0なお、スラスト用入口36はバックプレート3
1に設けられた円環状通路41を介し、バックプレート
30及び31に円周上等分に8個配置された給気孔42
及び43に通じて、スラストカラー33及び34のスラ
スト部分に空気を供給し、その排気はセンタハウジング
27のフランジ(図示せず)等から適宜排出する。なお
、スラスト軸受については重力は関係ないので、給気孔
は一様であり夫々の負荷容量に応じた最適設計とする。
In the above example, since the rotor 32 is installed horizontally, an additional load is applied in the direction of gravity by the weight of the rotor 32. At the time of design, the diameter of the lower air supply hole 38 is set to an optimum size in consideration of the direction of gravity, and the diameter of the upper air supply hole 38 is set smaller than this. By doing so, the flow rate of the supplied gas can be reduced and the pump power can be reduced.
Eight air supply holes 42 are arranged equally on the circumference of the back plates 30 and 31 through an annular passage 41 provided in the
and 43, air is supplied to the thrust portions of the thrust collars 33 and 34, and the exhaust air is appropriately discharged from a flange (not shown) of the center housing 27, etc. Note that since gravity has no bearing on the thrust bearing, the air supply holes are uniform and optimally designed according to each load capacity.

以上は自動車用ターボチャージャに適用した例であるが
、他の具体例としては乗用又はバス用ガスタービン1ン
ジン等の大型ターボ機械などのように、軸径が太く、軸
の重量が大きく、自重による偏心が大きな軸受に適用す
ると、特に効果を発揮する。
The above is an example of application to an automobile turbocharger, but other specific examples include large turbo machines such as gas turbine engines for passenger cars or buses, which have a large shaft diameter, a large shaft weight, and are heavy due to their own weight. It is particularly effective when applied to bearings with large eccentricity.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、この発明によれば、その構成
を静圧軸受の負荷のかからない側の供給孔の有効面積を
、負荷のかかる側の供給孔の有効面積より小さく形成す
る構造としたため、軸受の負荷容量を維持しつつ、供給
圧力流量を減少し、もうて、供給動力源の駆動エネルギ
を減少することができるという効果が得られる。
As explained above, according to the present invention, the structure is such that the effective area of the supply hole on the non-loaded side of the hydrostatic bearing is smaller than the effective area of the supply hole on the loaded side. While maintaining the load capacity of the bearing, the supply pressure flow rate can be reduced, and the driving energy of the supply power source can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明□の一実施例を示す断面図、第2図は
給気孔径に対する負荷容量性能図、第3図は従来装置の
横断面図、第4図は第3図の■−■線による断面図、第
5図は自動重用ターボチャージャの適用例の断面図であ
る。 図面に表わした符号の説明 1.11・・・軸受、 2.12.12a・・・供給孔(給気孔)3.13・・
・軸受すきま 4.14・・・軸(ジV−ナル)、 5・・・負荷のかかる側 6・・・負荷のかからない側 特許出願人 日産自動車株式会社 si図        第2図 二■
Fig. 1 is a sectional view showing one embodiment of this invention □, Fig. 2 is a load capacity performance diagram with respect to the air supply hole diameter, Fig. 3 is a cross-sectional view of a conventional device, and Fig. 4 is a - of Fig. 3. 5 is a cross-sectional view of an application example of an automatic heavy-duty turbocharger. Explanation of symbols shown in the drawings 1.11...bearing, 2.12.12a...supply hole (air supply hole) 3.13...
・Bearing clearance 4.14...Shaft (Ginal), 5...Loaded side 6...Non-loaded side Patent applicant Nissan Motor Co., Ltd. si Figure 2 Figure 2■

Claims (1)

【特許請求の範囲】[Claims] 軸受に複数個の供給孔を持ち、前記軸受とこれに支持さ
れる軸が軸受すきまを形成し、外部から圧送された流体
が前記供給孔を通って軸受すきま内に圧力を生じ軸を浮
上する静圧軸受において、軸受の負荷のかからない側の
供給孔の有効面積を、負荷のかかる側の供給孔の有効面
積よりも小さく形成したことを特徴とする静圧軸受。
The bearing has a plurality of supply holes, the bearing and the shaft supported by the bearing form a bearing clearance, and fluid pumped from the outside passes through the supply holes and generates pressure in the bearing clearance, causing the shaft to float. What is claimed is: 1. A hydrostatic bearing, characterized in that the effective area of the supply hole on the unloaded side of the bearing is smaller than the effective area of the supply hole on the loaded side.
JP26855984A 1984-12-21 1984-12-21 Static pressure bearing Pending JPS61149614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26855984A JPS61149614A (en) 1984-12-21 1984-12-21 Static pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26855984A JPS61149614A (en) 1984-12-21 1984-12-21 Static pressure bearing

Publications (1)

Publication Number Publication Date
JPS61149614A true JPS61149614A (en) 1986-07-08

Family

ID=17460208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26855984A Pending JPS61149614A (en) 1984-12-21 1984-12-21 Static pressure bearing

Country Status (1)

Country Link
JP (1) JPS61149614A (en)

Similar Documents

Publication Publication Date Title
US3811741A (en) Bearing
US4415280A (en) Hydrodynamic fluid film bearing
CN101809299B (en) Hydrodynamic axial bearing
US4640630A (en) Turbocharger bearing assembly
KR101990883B1 (en) Turbocharger with thrust bearing providing combined journal and thrust bearing functions
CN101069023A (en) Multi-thickness film layer bearing cartridge and housing
JPS61211519A (en) Bearing structure of turbocharger
CN105492739A (en) Flexure pivot tilting pad journal bearing for use in a turbocharger
JP2008232289A (en) Bearing device, and rotation driving device having the same
CN104014823A (en) Electric spindle of bidirectional herringbone groove hydrodynamic/hydrostatic integrated gas bearing support
US10077802B2 (en) Tilting pad journal bearing assembly
JP2002349551A (en) Thrust bearing device and turbocharger
CN103237992A (en) Bearing arrangement for shaft of turbine wheel
JP6469716B2 (en) Bearing device for exhaust gas turbocharger and exhaust gas turbocharger
US6241392B1 (en) Hybrid bearing
US2440890A (en) Turbine bearing
US4767265A (en) Turbomolecular pump with improved bearing assembly
KR100723040B1 (en) Bearing assembly for high speed rotary body
US5451147A (en) Turbo vacuum pump
CN109027002B (en) High-speed floating ring bearing and rotor system supporting mode
CA1240302A (en) Turbomolecular pump with improved bearing system
CN113107893A (en) Axial air suspension bearing, compressor and air conditioner
JPS61149614A (en) Static pressure bearing
US5449236A (en) Fluid bearing device
JPS61189317A (en) Air bearing device