JPS61149526A - Air-turbine generator system - Google Patents

Air-turbine generator system

Info

Publication number
JPS61149526A
JPS61149526A JP26857284A JP26857284A JPS61149526A JP S61149526 A JPS61149526 A JP S61149526A JP 26857284 A JP26857284 A JP 26857284A JP 26857284 A JP26857284 A JP 26857284A JP S61149526 A JPS61149526 A JP S61149526A
Authority
JP
Japan
Prior art keywords
air
tank
turbine
air turbine
air compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26857284A
Other languages
Japanese (ja)
Inventor
Yukinori Kawamoto
幸徳 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP26857284A priority Critical patent/JPS61149526A/en
Publication of JPS61149526A publication Critical patent/JPS61149526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To enhance the efficiency of a generator, by rotating an air turbine with the use of high speed air stream which is generated due to the pressure differential between two tanks connected respectively to the discharge and suction sides of an air compressor. CONSTITUTION:A first tank 2 which is connected to discharge ports 1a, 1b of an air compressor 1 through pipe lines, is connected to a suction port 4a of an air turbine 4 through a valve 3. A discharge port 4b of the air turbine 4 is connected to a second tank 5 which is connected to suction ports 1c, 1d of the air compressor 1. Further, the air compressor 1 is reciprocated by means of, for example, wave power in such a condition that the valve 3 is closed, and therefore, the first tank 2 is set to be in a high pressure condition while the second tank 2 is set to be in a low pressure condition. Thereafter, when the valve 3 is opened, the air turbine 4 is rotated by air which flows from the first tank 1 to the second tank 5 at a high speed, and therefore, a generator 7 is driven.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空気圧縮機とタービンを用いた空気タービン発
電システムに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air turbine power generation system using an air compressor and a turbine.

(従来の技術) 一般に、空気タービン発電システムでは、空気圧縮機と
エアータービンを有し、空気圧縮機からの圧縮空気によ
ってエアータービンを駆動させ。
(Prior Art) Generally, an air turbine power generation system includes an air compressor and an air turbine, and the air turbine is driven by compressed air from the air compressor.

エアータービンに連結された発電機により発電を行って
いる。
Power is generated by a generator connected to an air turbine.

ところで、従来の空気タービン発電システムでは、空気
圧縮機は吸入口よシ大気から空気を取り入れ、この空気
を圧縮して圧縮空気としてエアータービンに給送し、こ
の圧縮空気でエアータービンを駆動することによシ発電
をする。そしてエアータービンを駆動させた圧縮空気は
大気中へ放出される。即ち、従来の空気タービン発電シ
ステムでは、圧縮空気と外部空気の圧力差を利用してエ
アータービンを駆動させているわけである。
By the way, in conventional air turbine power generation systems, the air compressor takes in air from the atmosphere through its inlet, compresses this air, supplies it as compressed air to the air turbine, and drives the air turbine with this compressed air. Generates good power. The compressed air that drives the air turbine is then released into the atmosphere. That is, in conventional air turbine power generation systems, the air turbine is driven using the pressure difference between compressed air and external air.

(発明が解決しようとする問題点) ところが、上述の空気タービン発電システムの場合、空
気圧縮機からの圧縮空気と外部空気との圧力差を利用し
ているため、エアータービンの出力を向上させようとす
る場合、空気圧縮機の圧縮率を高めねばならず、いずれ
にしても発電効率があまシよくなかった。
(Problem to be solved by the invention) However, in the case of the above-mentioned air turbine power generation system, since the pressure difference between the compressed air from the air compressor and the outside air is used, it is difficult to improve the output of the air turbine. In this case, the compression ratio of the air compressor had to be increased, and in any case, the power generation efficiency was not very good.

本発明の目的はエアータービンの出力を向上させて1発
電効率が高い空気タービン発電システムを提供すること
である。
An object of the present invention is to provide an air turbine power generation system with high power generation efficiency by improving the output of the air turbine.

(問題点を解決するための手段) 本発明は、空気圧縮機と、この空気圧縮機に連結された
エアータービンと、このエアータービンに連結された発
電機とを有し、空気圧縮機からの圧縮空気によって上記
のエアータービンを回転させて発電を行うようにした空
気タービン発電システムにおいて、空気圧縮機の吐出口
とエアータービンの吸入口との間に第1のタンクを配置
するとともに、空気圧縮機の吸入口とエアータービンの
吐出口との間に第2のタンクを配置し、第1のタンクと
第2のタンクとの圧力差によってエアータービンを駆動
させて発電を行うようにしたことを特徴とする空気ター
ビン発電システムである。
(Means for Solving the Problems) The present invention includes an air compressor, an air turbine connected to the air compressor, and a generator connected to the air turbine. In an air turbine power generation system that uses compressed air to rotate the air turbine to generate electricity, a first tank is disposed between the outlet of the air compressor and the inlet of the air turbine, and A second tank is placed between the inlet of the machine and the outlet of the air turbine, and the air turbine is driven by the pressure difference between the first tank and the second tank to generate electricity. This is a unique air turbine power generation system.

(発明の実施例) 以下本発明について実施例によって説明する。(Example of the invention) The present invention will be explained below with reference to Examples.

図面を参照して、空気圧縮機1の吐出口1a及び1bは
配管によりて第1のタンク2に接続されている。この第
1のタンク2はパルプ3を介してエアータービン4の吸
入口4aに接続され、さらにエアータービン4の吐出口
4bは第2のタンク5に接続さ′れている。この第2の
タンク5は空気圧縮機1の吸入口IC及び1dに接続さ
れている。
Referring to the drawings, discharge ports 1a and 1b of an air compressor 1 are connected to a first tank 2 via piping. This first tank 2 is connected to an inlet 4a of an air turbine 4 via a pulp 3, and an outlet 4b of the air turbine 4 is further connected to a second tank 5. This second tank 5 is connected to the inlet IC and 1d of the air compressor 1.

次にこの空気タービン発電システムの動作について説明
する。
Next, the operation of this air turbine power generation system will be explained.

まずパルプ3を閉じた状態で、空気圧縮機1を図示しな
い例えば波力を利用した駆動装置により駆動する。なお
、この時第1及び第2のタンクは所定圧(例えば大気圧
)の空気で満たされているものとする。ピストン1eの
上下運動によシ、第2のタンク5の空気は吸入口IC及
び1dから交互にシリンダー1f内に取シ入れられ、圧
縮されて吐出口1a及び1bより吐出される。即ち、ピ
ストン1eが図中上方へ運動中には吸入口1dよシ空気
が取シ入れられ、吐出口1aから圧縮空気が吐出される
。またピストン1eが図中下方へ運動中には吸入口1c
よシ空気が吸入され、吐出口1bから圧縮空気が吐出さ
れる。
First, with the pulp 3 closed, the air compressor 1 is driven by a drive device (not shown) that uses wave power, for example. At this time, it is assumed that the first and second tanks are filled with air at a predetermined pressure (for example, atmospheric pressure). As the piston 1e moves up and down, air in the second tank 5 is alternately taken into the cylinder 1f from the suction ports IC and 1d, compressed, and discharged from the discharge ports 1a and 1b. That is, while the piston 1e is moving upward in the figure, air is taken in through the suction port 1d, and compressed air is discharged from the discharge port 1a. Also, while the piston 1e is moving downward in the figure, the suction port 1c
Fresh air is sucked in, and compressed air is discharged from the discharge port 1b.

このように、空気圧縮機1の駆動によって第1のタンク
2は高圧状態となっていき、第2のタンク5は低圧状態
となっていく。即ち、第1のタンク2を高圧部、第2の
タンク5を低圧部とみなすととができる。
In this way, as the air compressor 1 is driven, the first tank 2 becomes a high pressure state, and the second tank 5 becomes a low pressure state. That is, the first tank 2 can be regarded as a high pressure section and the second tank 5 can be regarded as a low pressure section.

第1のタンク2内の圧力が予め定められた圧力となると
、パルプ3を開とする。前述したように第1のタンク2
は高圧部、第2のタンク5は低圧・ 部となっているか
ら、第1のタンク2から第2のタンクへ高速で空気(作
動空気)が流れ、この空気によってエアータービン4が
駆動する。その結第2のタンク5へ流れ込んだ空気は直
ちに空気圧縮機1で圧縮されて、第1のタンク2へ供給
されるから、第1のタンク2は高圧状態に保たれ。
When the pressure in the first tank 2 reaches a predetermined pressure, the pulp 3 is opened. As mentioned above, the first tank 2
Since is a high pressure section and the second tank 5 is a low pressure section, air (working air) flows at high speed from the first tank 2 to the second tank, and the air turbine 4 is driven by this air. As a result, the air flowing into the second tank 5 is immediately compressed by the air compressor 1 and supplied to the first tank 2, so the first tank 2 is maintained at a high pressure.

第2のタンク5は低圧状態に保たれ2作動空気が第1の
タンク2から第2のタンク5へ流れて、エアータービン
4を駆動し1発電が続けられる。発電を停止する場合は
パルプ3を閉じ、空気圧縮機1を停止する。なお、この
場合、第1のタンク2することができる。
The second tank 5 is maintained at a low pressure, and working air flows from the first tank 2 to the second tank 5 to drive the air turbine 4 and continue generating power. When power generation is to be stopped, the pulp 3 is closed and the air compressor 1 is stopped. Note that in this case, the first tank 2 can be used.

このように、空気圧縮機1からの圧縮空気を−。In this way, the compressed air from the air compressor 1 -.

旦、第1のタンク2に蓄めて、第1のタンク2を高圧部
とし、第2のタンク5は真空状態に近い低圧部とするこ
とによって、即ち、第1のタンク2と第2のタンク5ど
の圧力差を利用してエアータービン4を駆動させている
By first storing the water in the first tank 2 and making the first tank 2 a high-pressure part and the second tank 5 a low-pressure part close to a vacuum state, that is, the first tank 2 and the second tank 2 are The air turbine 4 is driven using the pressure difference between the tanks 5 and 5.

また上述の空気タービン発電システムのタービン駆動用
空気の供給系は閉じだ系であるから2作動空気中に潤滑
油が混入してエアータービン及び空気圧縮機の潤滑が円
滑かつ容易に行うとと麩できる。なお、空気圧縮機の駆
動装置の変動に対しては、大型のフライホイールを設け
ることによって2発電量の変動を極力小さくできる。
In addition, since the supply system for the turbine driving air in the air turbine power generation system described above is a closed system, lubricating oil is mixed into the working air and lubrication of the air turbine and air compressor can be performed smoothly and easily. can. In addition, with respect to fluctuations in the drive device of the air compressor, by providing a large flywheel, fluctuations in the amount of power generation can be minimized as much as possible.

(発明の効果) 以上説明したように2本発明では第1のタンクを高圧部
、第2のタンクを低圧部として、これら第1及び第2の
タンク間の圧力差によってエアータービンを駆動させる
ようにしたから、従来の空気タービン発電システムに比
べて圧力差を大きくとることができる。従って、エアー
タービンの出力が向上し、同一の空気圧縮機を用いた場
合に。
(Effects of the Invention) As explained above, in the present invention, the first tank is used as a high pressure section and the second tank is used as a low pressure section, and the air turbine is driven by the pressure difference between these first and second tanks. Because of this, it is possible to create a larger pressure difference compared to conventional air turbine power generation systems. Therefore, the output of the air turbine is increased when using the same air compressor.

発電量を多くすることができ2発電効率を高くできると
いう利点がある。また、空気循環系が閉じた系であるか
ら2作動空気中に潤滑油が混入し。
There are advantages in that the amount of power generation can be increased and power generation efficiency can be increased. Furthermore, since the air circulation system is a closed system, lubricating oil may be mixed into the operating air.

タービンおよび圧縮機の潤滑を良好に行なうことができ
るとの利点をも有する。
It also has the advantage that the turbine and compressor can be well lubricated.

以下余日Remaining days below

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明による空気タービン発電システムの一実施
例を示すだめの図である。 1・・・空気圧縮機、2・・・第1のタンク、3・・・
パルプ、4・・・エアータービン、5・・・第2のタン
ク、6・・・72イホイール、7・・・発電機。
The drawing is a schematic diagram showing one embodiment of an air turbine power generation system according to the present invention. 1... Air compressor, 2... First tank, 3...
Pulp, 4... Air turbine, 5... Second tank, 6... 72 wheel, 7... Generator.

Claims (1)

【特許請求の範囲】[Claims] 1、空気圧縮機と、該空気圧縮機に連結されたエアータ
ービンと、該エアータービンに連結された発電機とを有
し、前記空気圧縮機からの圧縮空気によって前記エアー
タービンを駆動させて発電を行うようにした空気タービ
ン発電システムにおいて、前記空気圧縮機の吐出口と前
記エアータービンの吸入口との間に第1のタンクを配置
するとともに、前記空気圧縮機の吸入口と前記エアータ
ービンの吐出口との間に第2のタンクを配置し、前記第
1のタンクと前記第2のタンクとの圧力差によって前記
エアータービンを駆動させて、発電を行うようにしたこ
とを特徴とする空気タービン発電システム。
1. It has an air compressor, an air turbine connected to the air compressor, and a generator connected to the air turbine, and the air turbine is driven by compressed air from the air compressor to generate electricity. In the air turbine power generation system, a first tank is disposed between a discharge port of the air compressor and an inlet of the air turbine, and a first tank is disposed between a discharge port of the air compressor and an inlet of the air turbine. A second tank is disposed between the discharge port and the air turbine, and the air turbine is driven by a pressure difference between the first tank and the second tank to generate electricity. Turbine power generation system.
JP26857284A 1984-12-21 1984-12-21 Air-turbine generator system Pending JPS61149526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26857284A JPS61149526A (en) 1984-12-21 1984-12-21 Air-turbine generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26857284A JPS61149526A (en) 1984-12-21 1984-12-21 Air-turbine generator system

Publications (1)

Publication Number Publication Date
JPS61149526A true JPS61149526A (en) 1986-07-08

Family

ID=17460380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26857284A Pending JPS61149526A (en) 1984-12-21 1984-12-21 Air-turbine generator system

Country Status (1)

Country Link
JP (1) JPS61149526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2375147A (en) * 2001-02-07 2002-11-06 Michael Brian Kemp Electrical power generation using turbine driven by compressed gas
WO2007091093A1 (en) * 2006-02-10 2007-08-16 Energetix (Europe) Limited Compressed air driven turbine for generating electrical power
JP2013227959A (en) * 2012-03-26 2013-11-07 Masaru Kawaura Device for generating electricity with air

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2375147A (en) * 2001-02-07 2002-11-06 Michael Brian Kemp Electrical power generation using turbine driven by compressed gas
WO2007091093A1 (en) * 2006-02-10 2007-08-16 Energetix (Europe) Limited Compressed air driven turbine for generating electrical power
JP2013227959A (en) * 2012-03-26 2013-11-07 Masaru Kawaura Device for generating electricity with air

Similar Documents

Publication Publication Date Title
US6283723B1 (en) Integrated compressor expander apparatus
US3260444A (en) Compressor control system
CN107634245A (en) A kind of hydrogen cell automobile pressure energy drives hydrogen gas circulating pump device
JPH02275089A (en) Screw type vacuum pump
JPS61149526A (en) Air-turbine generator system
CN207064349U (en) A kind of hydraulic pump station
GB1573193A (en) Reciprocating piston internal combustion engine and turbocharger assembly
US4400934A (en) Gas turbine unit with auxiliary devices and a compressed air branch or gas under pressure
CN112377384A (en) Controllable two-stage compression air compressor
CN109322830B (en) Water lubrication compression system
DE4305933A1 (en) Vacuum pump/compressed air hydroelectric power plant
CN2427662Y (en) Energy-saving type integrated hydraulic source
US4251992A (en) Pneumatic propulsion system
CN206694251U (en) Vacuum extractor and vacuum equipment
CN211345909U (en) Throttle type air source heat pump water heater
CN208749542U (en) The two stages of compression double-screw type air compressor head of asynchronous ventilated machine driving
CN207278521U (en) A kind of double stage sliding valve vacuum pump of built-in oil piping system
US4843841A (en) Energy conserving refrigeration device
RU2066008C1 (en) Method of gas dynamic sealing
JPH029115Y2 (en)
CN107250506A (en) The starter of engine, startup method, the ship for possessing starter
GB461887A (en) Improvements relating to internal combustion turbines
CN202946383U (en) Low-pressure screw type air compressor
CN210859152U (en) Energy efficiency self-diagnosis efficient energy-saving air compressor
CN207936785U (en) One kind is for the hybrid energy conserving system of plant condenser auxiliary kinetic energy machinery