JPS61149463A - Heat resistant steel for high temperature structure - Google Patents

Heat resistant steel for high temperature structure

Info

Publication number
JPS61149463A
JPS61149463A JP27533984A JP27533984A JPS61149463A JP S61149463 A JPS61149463 A JP S61149463A JP 27533984 A JP27533984 A JP 27533984A JP 27533984 A JP27533984 A JP 27533984A JP S61149463 A JPS61149463 A JP S61149463A
Authority
JP
Japan
Prior art keywords
alloy
steel
resistant steel
creep strength
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27533984A
Other languages
Japanese (ja)
Other versions
JPS6411107B2 (en
Inventor
Yutaka Tomono
友野 裕
Mitsuhiko Ueda
上田 実彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP27533984A priority Critical patent/JPS61149463A/en
Publication of JPS61149463A publication Critical patent/JPS61149463A/en
Publication of JPS6411107B2 publication Critical patent/JPS6411107B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To provide a structural material having improved strength at high temp. by combinedly incorporating Co, Mo and Nb into a Cr-Ni steel having a reduced C content. CONSTITUTION:This heat resistant steel for high temp. structure consists of, by weight, <=0.03% C, <=1.0 Si, 0.5-2.0% Mn, <=0.03% P, <=0.03% S, 15.0-21.0% Cr, 8.0-14.0% Ni, 10.0-25.0% Co, 1.0-6.0% Mo, 0.1-1.0% Nb and the balance Fe. The steel is subjected to solid soln. strengthening by the reduced amount of C and combinedly added Co, Mo and Nb. The steel undergoes no sudden reduction in the creep strength during long-period use at high temp. and has high creep strength, so it can be used as a structural material for a high temp. chemical plant or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高温構造用耐熱鋼に関するものである0従来の
技術 SOO℃〜SOO℃の温度域で使用される高温構造用材
料は、長期間にわたって材質の健全性を有し。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to heat-resistant steel for high-temperature structures.0 Prior Art High-temperature structural materials used in the temperature range of SOO°C to SOO°C have a tendency to maintain their properties over a long period of time. of soundness.

クリープ強度、耐酸化性などが良好なことが要求される
Good creep strength, oxidation resistance, etc. are required.

そこで、この要求に答えるものとして、従来25Cr−
2ONi鋼(HK40)や18Cr−1ONi −Nb
(SUS 847)などの高温化学プラント用構造材料
があった。
Therefore, in order to meet this demand, conventional 25Cr-
2ONi steel (HK40) and 18Cr-1ONi-Nb
There were structural materials for high temperature chemical plants such as (SUS 847).

発明が解決しようとする問題点 しかしながら、これら従来の耐熱鋼によると。The problem that the invention aims to solve However, according to these conventional heat-resistant steels.

高温で長時間使用中にクリープ強度が急激に低下し、か
つクリープ強度もあまり高くないという問題があった。
There was a problem in that the creep strength rapidly decreased during long-term use at high temperatures, and the creep strength was also not very high.

本発明はこのような問題を解決し、高温で長時間使用し
てもクリープ強度が急激に低下するようなことがなく、
かつ高いクリープ強度を有する高温構造用耐熱鋼を提供
することを目的とするものである。
The present invention solves these problems, and the creep strength does not suddenly decrease even when used at high temperatures for a long time.
The object of the present invention is to provide a heat-resistant steel for high-temperature structures that also has high creep strength.

問題を解決するための手段 上記問題を解決するため、本発明の高温構造用耐熱鋼は
、Cが0.03wt%以下、Siが1.0wt%以下、
Mnが0.15〜10wt%、Pが0.03wt%以下
、Sが0.03wt%以下、Crが15.0〜21.0
wt%aNiが8,0〜14.0wt%、Coが10.
0〜25.0wt%s Moが1.0〜6.0wt%、
 Nbが0.1〜1.0wt%、残部がFeからなる構
成とした。
Means for Solving the Problems In order to solve the above problems, the heat-resistant steel for high temperature structures of the present invention contains 0.03 wt% or less of C, 1.0 wt% or less of Si,
Mn is 0.15 to 10 wt%, P is 0.03 wt% or less, S is 0.03 wt% or less, Cr is 15.0 to 21.0
wt%aNi is 8.0 to 14.0wt%, Co is 10.0wt%.
0 to 25.0 wt%s Mo is 1.0 to 6.0 wt%,
The structure was such that Nb was 0.1 to 1.0 wt% and the balance was Fe.

作用 すなわち、本発明の高温構造用耐熱鋼は、含有Cを低め
s Co s Mo%Nbの複合添加による固溶強化を
利用して、高温強度特性を改良したものである。
In other words, the heat-resistant steel for high-temperature structures of the present invention has improved high-temperature strength characteristics by lowering the C content and utilizing solid solution strengthening through the composite addition of sCosMo%Nb.

実施例 以下1本発明の一実施例を表および図面1ζ基づいて説
明する。
EXAMPLE An example of the present invention will be described below with reference to Tables and Drawing 1ζ.

表1に本発明合金の化学成分範囲を示す。Table 1 shows the chemical composition range of the alloy of the present invention.

表1 本発明合金の化学成分範囲(wt%)次に表1の
各元素の効果(限定理由)を説明する。
Table 1 Chemical composition range (wt%) of the alloy of the present invention Next, the effect (reason for limitation) of each element in Table 1 will be explained.

C:高温で長時間使用中にCr* Mo、Nbなどの炭
化物の凝集が生ずることによりクリープ強度が低下する
ため、0.011wt%以下におさえる。
C: Creep strength decreases due to agglomeration of carbides such as Cr* Mo and Nb during long-term use at high temperatures, so the content should be kept below 0.011 wt%.

Niニオ−ステナイト相の安定化とじん性の向上薔ζ必
要であり、またCrと共存して耐食性の向上に効果があ
る。ξれら効果を満足させる添加量として8.0 = 
14.Ow t%必要である。
Ni is necessary for stabilizing the niostenite phase and improving toughness, and coexisting with Cr is effective in improving corrosion resistance. ξ The amount added to satisfy these effects is 8.0 =
14. Ow t% is required.

Cr:耐酸化・耐食′性を向上させ、クリープ強度を高
めるのに重要な元素である。本合金ではNi量との兼ね
合いを考慮してlL0wt%に満たない場合は効果が小
さい。また、#相を生成する主元素であるため、−相の
生成を抑制するためにも本合金では21.0wt%まで
の範囲とする。
Cr: An important element for improving oxidation and corrosion resistance and increasing creep strength. In this alloy, the effect is small when the Ni content is less than 0 wt%, considering the balance with the Ni content. Further, since it is the main element that generates the # phase, the content in this alloy is up to 21.0 wt% in order to suppress the generation of the - phase.

Co:固溶強化、オーステナイト相の安定化、*造時、
溶接時の癌流れ性向上などの効果があるので多量の添加
も可能であるが1本合金ではMO,Nbとの複合添加に
よるクリープ強度の上昇度合と経済性を考慮すると25
.0wt%までの添加が望ましい。下限値は10wt%
以上の添加があればオーステナイト相の安定化がはかれ
、かつ添加によるクリープ強化もはかれる。
Co: solid solution strengthening, stabilization of austenite phase, *during manufacturing,
It is possible to add a large amount because it has the effect of improving cancer flowability during welding, but in the case of a single alloy, considering the degree of increase in creep strength and economic efficiency due to combined addition with MO and Nb.
.. It is desirable to add up to 0 wt%. The lower limit is 10wt%
If the above amount is added, the austenite phase will be stabilized, and the addition will also strengthen creep.

MO二強力な固溶強化元素であり、0.l w t%以
上の添加で効果があられれ、添加量の増加に伴い、クリ
ープ!強化度合が大きくなっていくが、6.0wt%を
超えると脆化する。また、#相の生成元素なので6.0
wt%までに抑えることが望ましい。
MO2 is a strong solid solution strengthening element, and 0. Addition of lwt% or more is effective, and as the amount added increases, creep! The degree of reinforcement increases, but if it exceeds 6.0 wt%, it becomes brittle. Also, since it is an element that forms the # phase, 6.0
It is desirable to suppress the content to within wt%.

Nb二強力な炭化物生成元素であl) 、 CrやMo
炭化物に優先してNb炭化物を生成し、CrやMoが存
効Gζクリープ強化及び耐食性向上に寄与するξとを可
能とする。また、低CのためNb添加はg、oawt%
あれば上記の効果は十分溝たされるが、Nb原子による
固溶強化は強力であり、0.1 w t%以上の添加で
クリープ強化がねらえ−る。添加量の増加は脆化を著し
くするため。
Nb (two strong carbide forming elements), Cr and Mo
Nb carbide is generated preferentially to carbide, and Cr and Mo contribute to effective Gζ creep strengthening and corrosion resistance improvement. In addition, due to low C, Nb addition is g, oawt%
If Nb is present, the above effects can be sufficiently achieved, but solid solution strengthening by Nb atoms is strong, and creep strengthening can be achieved by adding 0.1 wt% or more. Increasing the amount added significantly increases embrittlement.

上限は1.0wt%までとする。The upper limit is 1.0 wt%.

Mnニオ−ステナイト相安定化の効果があるが、硫化物
の生成やI相生酸を助長するため、Q、5〜λ0wt%
に制限する。
Mn has the effect of stabilizing the niostenite phase, but since it promotes the formation of sulfides and I-phase bioacids, Q, 5 to λ0 wt%
limited to.

Si:製造時の湯流れ性を良くする効果があるが。Si: It has the effect of improving melt flow during manufacturing.

l相の生成を助長し%脆化を生ずるため、1.0wt%
以下とする。
1.0wt% because it promotes the formation of l phase and causes % embrittlement.
The following shall apply.

P、S:不純物元素として混入は避けられないため。P, S: Contamination as impurity elements is unavoidable.

表1の範囲までは許容する。It is permissible up to the range shown in Table 1.

次に1表2#ζ供試材の化学成分を示す。Next, Table 1 shows the chemical composition of #2 #ζ test material.

表2 供試材の化学分析結果 (wt%)名 比 較 金 本 開 :V; 合 金 ()内はat%換算値 表2にはwt%のほかに()内書こat%の値を示して
いる。合金Aは市販のSUS 847オーステナイト鋼
、合金Bは市販のHK4Gと称されるリフオーマ−管な
どに多く用いられているオーステナイト鋼である・これ
ら比較合金は現在高温化学プラント用構造材料の中でも
特に優れたクリープ強度と耐酸化性を有する市販材であ
る。本発明合金C及びDは本発明合金の化学成分範囲を
満足するものである。
Table 2 Chemical analysis results of sample materials (wt%) Name comparison Kinmotokai: V; Alloy () is an at% conversion value Table 2 shows the at% value written in () in addition to wt%. There is. Alloy A is a commercially available SUS 847 austenitic steel, and Alloy B is a commercially available austenitic steel called HK4G, which is often used in re-former tubes. These comparative alloys are particularly superior among current structural materials for high-temperature chemical plants. It is a commercially available material with excellent creep strength and oxidation resistance. Alloys C and D of the present invention satisfy the chemical composition range of the alloy of the present invention.

l相生酸は、脆化を生ずる危険性があるために、オース
テナイト系の耐熱合金では問題となるが1表8に示す各
元素の固有電子空孔数を表2の各合金のat%に乗する
ことにより各合金の平均電子空孔数を求、めで、I相生
酸の目安を得ることができる。
L-phase acids pose a problem in austenitic heat-resistant alloys because they have the risk of causing embrittlement. By doing so, the average number of electron vacancies of each alloy can be determined, and a rough estimate of the I-phase bioacid can be obtained.

第4に、各合金の平均電子空孔数を求めた結果を示すが
、これらの値の大きいものほどI相生酸は容易とされて
いる◎本開発合金はI相の生成しにくい成分規定となっ
ていることがわかる。
Fourth, the results of calculating the average number of electron vacancies for each alloy are shown, and it is said that the larger these values are, the easier it is to form an I-phase acid ◎This developed alloy has a composition specification that makes it difficult for the I-phase to form. You can see that it is happening.

表4 各合金の平均電子空孔数 表5には、熱膨張率の測定結果を示す。高温用の構造材
料は熱応力の発生を小さくする上で、熱膨張係数が小さ
い方が優位である。表5より1本開発合金の方が比較合
金より熱膨張係数は小さいことがわかる。
Table 4 Average number of electron vacancies for each alloy Table 5 shows the measurement results of the coefficient of thermal expansion. For structural materials for high temperature use, it is advantageous to have a small coefficient of thermal expansion in order to reduce the occurrence of thermal stress. From Table 5, it can be seen that the thermal expansion coefficient of the developed alloy is smaller than that of the comparative alloy.

表5 熱膨張係数測定結果 第1図は、比較合金と本開発合金との800℃クリープ
破断寿命を示す。本開発合金の方が長時間側でクリープ
強度が大きく、かつクリープ強度の劣化度合が小さいこ
とがわかる。比較合金はいずれも、長時間側で強度劣化
が大きく、破断曲線が折れ曲がっている。
Table 5 Results of thermal expansion coefficient measurements Figure 1 shows the 800°C creep rupture life of the comparative alloy and the developed alloy. It can be seen that the developed alloy has higher creep strength on the long-term side, and the degree of deterioration of creep strength is smaller. All of the comparative alloys showed significant strength deterioration on the long-term side, and their fracture curves were bent.

第2図は耐酸化性を比較するためiζ行った酸化増量試
験の結果であるが、本開発合金は良好な耐酸化性を有す
る比較合金と同等レベルである。
Figure 2 shows the results of an oxidation weight increase test conducted to compare oxidation resistance, and the developed alloy is at the same level as the comparative alloy, which has good oxidation resistance.

発明の効果 以上本発明の高温構造用耐熱鋼によれば、高温で長時間
使用中にクリープ強度の急激な低下がなく、かつ高いク
リープ強度を有する。したがって。
Effects of the Invention According to the heat-resistant steel for high-temperature structures of the present invention, there is no sudden drop in creep strength during long-term use at high temperatures, and the steel has high creep strength. therefore.

本合金を高温化学プラントの構造材料として使用するこ
とによって、長期間子わたる機器の安全性を保証するこ
とができる。また、鋳造・鍛造・圧延材として広(適用
することができる。
By using this alloy as a structural material for high-temperature chemical plants, long-term equipment safety can be guaranteed. It can also be widely used as cast, forged, and rolled materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は比較合金と本発明合金における負荷応力と破断
時間の関係をあられす図、第2図は比較合金と本発明合
金1ζおける酸化増量をあられす図である。
FIG. 1 shows the relationship between applied stress and rupture time in the comparative alloy and the alloy of the present invention, and FIG. 2 shows the oxidation weight gain in the comparative alloy and the alloy 1ζ of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、Cが0.03wt%以下、Siが1.0wt%以下
、Mnが0.5〜2.0wt%、Pが0.03wt%以
下、Sが0.03wt%以下、Crが15.0〜21.
0wt%、Niが8.0〜14.0wt%、Coが10
.0〜25.0wt%、Moが1.0〜6.0wt%、
Nbが0.1〜1.0wt%、残部がFeからなること
を特徴とする高温構造用耐熱鋼。
1. C is 0.03 wt% or less, Si is 1.0 wt% or less, Mn is 0.5 to 2.0 wt%, P is 0.03 wt% or less, S is 0.03 wt% or less, Cr is 15.0 ~21.
0 wt%, Ni 8.0 to 14.0 wt%, Co 10
.. 0 to 25.0 wt%, Mo 1.0 to 6.0 wt%,
A heat-resistant steel for high-temperature structures, characterized in that Nb is 0.1 to 1.0 wt%, and the balance is Fe.
JP27533984A 1984-12-25 1984-12-25 Heat resistant steel for high temperature structure Granted JPS61149463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27533984A JPS61149463A (en) 1984-12-25 1984-12-25 Heat resistant steel for high temperature structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27533984A JPS61149463A (en) 1984-12-25 1984-12-25 Heat resistant steel for high temperature structure

Publications (2)

Publication Number Publication Date
JPS61149463A true JPS61149463A (en) 1986-07-08
JPS6411107B2 JPS6411107B2 (en) 1989-02-23

Family

ID=17554089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27533984A Granted JPS61149463A (en) 1984-12-25 1984-12-25 Heat resistant steel for high temperature structure

Country Status (1)

Country Link
JP (1) JPS61149463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133053U (en) * 1991-05-31 1992-12-10 エヌテイエヌ株式会社 ball screw shaft device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133053U (en) * 1991-05-31 1992-12-10 エヌテイエヌ株式会社 ball screw shaft device

Also Published As

Publication number Publication date
JPS6411107B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
EP1194606B1 (en) Heat resistant austenitic stainless steel
JP3982069B2 (en) High Cr ferritic heat resistant steel
JPH0114305B2 (en)
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
CA1149646A (en) Austenitic stainless corrosion-resistant alloy
JPH0364589B2 (en)
US5063023A (en) Corrosion resistant Ni- Cr- Si- Cu alloys
JPS61149463A (en) Heat resistant steel for high temperature structure
JP4523696B2 (en) TIG welding material for austenitic heat resistant steel with excellent high temperature strength
CA2355109C (en) Corrosion resistant austenitic stainless steel
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JP3527640B2 (en) Weld metal for high Cr ferritic heat resistant steel
JPS62243742A (en) Austenitic stainless steel having superior creep rupture strength
JPH0361751B2 (en)
JPS613859A (en) High-strength heat-resistant co alloy for gas turbine
JPS60162757A (en) Austenitic stainless steel having high corrosion resistance at high temperature
JPH0243812B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPH0243813B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
US4927602A (en) Heat and corrosion resistant alloys
JPS61147837A (en) Austenitic steel having high corrosion resistance and satisfactory strength at high temperature
JPH0676638B2 (en) High strength Ni-Cr alloy with excellent corrosion resistance and heat resistance
JPH0243815B2 (en) GASUTAABINYOKOKYODOC0KITAINETSUGOKIN
JPS60221556A (en) Resource-saving type iron base superheat resistant alloy
JPS609861A (en) Heat-and corrosion-resistant cast steel