JPS61149240A - Molded catalyst for decomposing hypochlorite and preparation thereof - Google Patents

Molded catalyst for decomposing hypochlorite and preparation thereof

Info

Publication number
JPS61149240A
JPS61149240A JP27048484A JP27048484A JPS61149240A JP S61149240 A JPS61149240 A JP S61149240A JP 27048484 A JP27048484 A JP 27048484A JP 27048484 A JP27048484 A JP 27048484A JP S61149240 A JPS61149240 A JP S61149240A
Authority
JP
Japan
Prior art keywords
catalyst
weight
hypochlorite
molding
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27048484A
Other languages
Japanese (ja)
Other versions
JPH0456662B2 (en
Inventor
Masayuki Aihara
藍原 正行
Mikio Tsuchida
土田 美喜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP27048484A priority Critical patent/JPS61149240A/en
Publication of JPS61149240A publication Critical patent/JPS61149240A/en
Publication of JPH0456662B2 publication Critical patent/JPH0456662B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To eliminate the generation of NOX gas, by molding a catalyst from a mixture consisting 60-90wt% of nickel sesquioxide, 1-30wt% of SiO2 or 1-15wt% of Al2O3 and 0.1-10wt% of a molding aid. CONSTITUTION:10-100pts.wt. of a silica sol or alumina sol is added to 100pts. wt. of nickel sesquioxide and both of them are mixed and dried. Subsequently, the resulting mixture is baked at 300-500 deg.C and 0.1-10wt% of a molding aid is added to the baked mixture before press molding. The molded one is baked at 300-500 deg.C to obtain a molded catalyst for decomposing hypochlorite containing 60-90wt% of nickel sesquioxide, 1-30wt% of SiO2 or 1-15wt% of Al2O3 and 0.1-10wt% of the molding aid. As the molding aid, sodium stearate, magnesium stearate or boric acid can be used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水溶液中の次亜塩素酸塩の分解触°媒に係わ
り、更に詳しくは次亜塩素酸塩水溶液中の次亜塩素酸イ
オンを、塩素イオンと分子状酸素に分解する触媒で、高
濃度の次亜塩素酸塩水溶液にも長時間安定して、高い分
解能力を持つ成型触媒とその製法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a catalyst for decomposing hypochlorite in an aqueous solution, and more specifically to a catalyst for decomposing hypochlorite ions in an aqueous solution of hypochlorite. The present invention relates to a molded catalyst that decomposes chloride into chlorine ions and molecular oxygen, and has a high decomposition ability that is stable for a long time even in high-concentration hypochlorite aqueous solutions, and a method for producing the same.

次亜塩素酸塩イオンを含む排水は、塩素、苛性ソーダの
製造、晒粉や塩素化シアヌル酸等の漂白殺菌剤の製造工
場のプロセスあるいはパルプ等の漂白工程等によって生
ずる。
Wastewater containing hypochlorite ions is generated from processes in factories that manufacture chlorine and caustic soda, bleaching disinfectants such as bleaching powder and chlorinated cyanuric acid, and pulp bleaching processes.

水溶液の次亜塩素酸イオンは、魚貝類、水槽の植物に有
毒であり、また多くの金属を腐食する。
Hypochlorite ions in aqueous solutions are toxic to fish, shellfish, and aquarium plants, and corrode many metals.

このため、次亜塩素酸塩イオンを含む排水は、通常は還
元処理し公共河川、湖沼、海等に放出されている。
For this reason, wastewater containing hypochlorite ions is usually reduced and discharged into public rivers, lakes, the sea, etc.

(従来の技術) 次亜塩素酸塩を水溶液中から除去する化学的に分解する
方法として、例えばH,O□、NaSHNag  SO
2、NaH3O5、Na、s、03 、NaN0□等が
用いられるが、大量の排水に対しては処理費用が高くな
り、またNa5H,Na25O1は処理水が白濁するた
め2次、3次の排水処理が必要となる。従ってこれらの
化学的処理はいずれも排水処理のために多大の経費がか
かる。
(Prior art) As a chemical decomposition method for removing hypochlorite from an aqueous solution, for example, H, O□, NaSHNag SO
2. NaH3O5, Na, s, 03, NaN0□, etc. are used, but the treatment cost is high for large amounts of wastewater, and Na5H and Na25O1 make the treated water cloudy, so they are not used in secondary or tertiary wastewater treatment. Is required. Therefore, all of these chemical treatments require a large amount of expense for wastewater treatment.

このようにして大量の濃度の高い次亜塩素酸塩水溶液を
経済的に処理する方法として、触媒による分解方法が提
案されている。
A catalytic decomposition method has been proposed as a method for economically treating large amounts of highly concentrated hypochlorite aqueous solutions.

水溶液中の次亜塩素酸塩を分解させる触媒としては、重
金属、特にコバルト、ニッケル、銅、鉄など及びこれら
の塩類、あるいは酸化物、水酸化物等が知られている。
Heavy metals, particularly cobalt, nickel, copper, iron, etc., and their salts, oxides, and hydroxides are known as catalysts for decomposing hypochlorite in an aqueous solution.

例えば、ある種の遷移金属は次亜塩素酸塩を塩素イオン
と酸素への分解触媒になることが知られている(特開昭
58−115002号公報)。
For example, it is known that certain transition metals act as catalysts for decomposing hypochlorite into chloride ions and oxygen (Japanese Patent Application Laid-Open No. 115002/1982).

しかしながら、この方法では、遷移金属イオンを用いる
ためその溶解損失及び、その損失を防ぐために複雑な工
程を必要とし経済的でなく、また重金属による排水の汚
染を起こす可能性をもつ。
However, since this method uses transition metal ions, it is not economical because it requires dissolution loss and complicated steps to prevent the loss, and it also has the possibility of contaminating wastewater with heavy metals.

また、鉄、銅、マグネシウム、ニッケル及びコバルトの
酸化物ないし、水酸化物よりなる次亜塩素酸塩の分解触
媒が報告されている。前記の金属の内コバルトが一番分
解能力があると報告されているが、コバルトは高価であ
るので経済的でない。
Further, a hypochlorite decomposition catalyst consisting of oxides or hydroxides of iron, copper, magnesium, nickel, and cobalt has been reported. Among the metals mentioned above, cobalt is reported to have the highest decomposition ability, but cobalt is expensive and therefore uneconomical.

これらの触媒には粉末状、あるいは粒状、ペレット状に
成型されたものが使用されている。粉末状の触媒は分解
反応で生成する分子状酸素により、触媒が浮上するため
有用な触媒を損失する。これを防ぐため複雑な触媒回収
工程を必要とする。このため成型された触媒が好ましい
。この成型触媒を製造する場合、多くの場合硝酸塩をア
ルカリで中和し水酸化物で濾過、水洗するか、セラミッ
ク等の担体に硝酸塩を含浸させ焼成して酸化物触媒を得
る。成型された担体に硝酸塩を含浸させ乾燥後焼成して
酸化物触媒を製造するが、この際に有害なNO,lが大
量に発生するため、NOXガスの除害装置を必要とする
These catalysts are used in the form of powder, granules, or pellets. Powdered catalysts float due to molecular oxygen produced in the decomposition reaction, resulting in loss of useful catalyst. To prevent this, a complicated catalyst recovery process is required. For this reason, shaped catalysts are preferred. When producing this shaped catalyst, in most cases, the nitrate is neutralized with an alkali, filtered with a hydroxide, and washed with water, or a carrier such as ceramic is impregnated with the nitrate and fired to obtain an oxide catalyst. An oxide catalyst is produced by impregnating a molded carrier with nitrate, drying it, and then calcining it. At this time, a large amount of harmful NO, 1 is generated, so a NOx gas abatement device is required.

(発明が解決しようとする問題点) 本発明者等は次亜塩素酸塩を分解する触媒を製造するに
あたり、上記NOXを発生させず、しかも、長時間固定
層反応器に触媒を充填して、次亜塩素酸塩を含む廃液を
処理しても、触媒が崩壊せず、また触媒寿命の非常に長
い触媒について鋭意研究をし本発明を完成した。
(Problems to be Solved by the Invention) In producing a catalyst for decomposing hypochlorite, the present inventors have developed a method that does not generate the above-mentioned NOX, and moreover, fills a fixed bed reactor with the catalyst for a long period of time. The present invention was completed through intensive research into a catalyst that does not disintegrate even when waste fluid containing hypochlorite is treated and has a very long catalyst life.

(問題点を解決するための手段) 即ち、本発明の次亜塩素酸塩分解用成型は三二酸化ニッ
ケルを60〜90重量%含有し、SiO2を1〜30重
量%またはAlzO3を1〜15重量%、成型賦与剤を
0.1〜10重量%含有することを特徴とする。
(Means for solving the problem) That is, the molding for decomposing hypochlorite of the present invention contains 60 to 90% by weight of nickel sesquioxide, and 1 to 30% by weight of SiO2 or 1 to 15% by weight of AlzO3. %, and 0.1 to 10% by weight of a molding filler.

その製造方法は三二酸化ニッケル100重量部あたり、
シリカゾルあるいはアルミナゾル10〜100重量部を
添加し、混合、乾燥し、300〜500℃で焼成し、こ
の焼成物に成型賦与剤を0゜1〜10重量%添加し、加
圧成型し、300〜500℃で焼成することを特徴とす
る。
The manufacturing method is per 100 parts by weight of nickel sesquioxide,
10 to 100 parts by weight of silica sol or alumina sol is added, mixed, dried, and fired at 300 to 500°C. To this fired product, 0°1 to 10% by weight of a molding agent is added, and pressure molded to 300 to 500°C. It is characterized by being fired at 500°C.

本発明の触媒である酸化ニッケルは、炭酸ニッケル若し
くは塩基性炭酸ニッケルを焼成したものであり、組成的
には三二酸化ニッケルに相当する。
Nickel oxide, which is the catalyst of the present invention, is obtained by calcining nickel carbonate or basic nickel carbonate, and compositionally corresponds to nickel sesquioxide.

しかしながら通常の三二酸化ニッケルは、0゜1μ程度
の微粒子であり、該粉末の成型化は極めて困難である。
However, ordinary nickel sesquioxide is a fine particle of about 0.1 μm in size, and it is extremely difficult to mold the powder.

本発明の成型化にあたり三二酸化ニッケル粉末を水溶性
の高濃度シリカゾル、あるいはアルミナゾルを結合剤と
して用い混練し、100−110℃で乾燥し水分を除去
する。高濃度シリカゾルとしては日照化学社製「スノー
チフス」あるいは高濃度アルミナゾルとしては「アルミ
ナゾル−100J、「アルミナゾル−200」が好適に
使用できる。これらの結合剤は、三二酸化ニッケル10
0重量部に対し10〜100重量部加え混練する。好ま
しくは20〜30重量部加え混練すれば、乾燥で除去す
る水分が少なくて済む。
In molding the present invention, nickel sesquioxide powder is kneaded using water-soluble high concentration silica sol or alumina sol as a binder, and dried at 100-110°C to remove moisture. As the high-concentration silica sol, "Snow Typhoid" manufactured by Nissho Kagaku Co., Ltd., and as the high-concentration alumina sol, "Alumina Sol-100J" and "Alumina Sol-200" can be suitably used. These binders include nickel sesquioxide 10
Add 10 to 100 parts by weight to 0 parts by weight and knead. Preferably, by adding and kneading 20 to 30 parts by weight, less water can be removed by drying.

この混練、乾燥した三二酸化二・ノケルを主成分とする
組成物を300〜500℃で、好ましくは380℃〜4
20℃で加熱処理する。500℃以上では三二酸化ニッ
ケルの焼結が起こり、次亜塩素酸塩の分解触媒としての
活性が著しく失われる。
The kneaded and dried composition containing di-nokel sesquioxide as a main component is heated to 300 to 500°C, preferably 380 to 400°C.
Heat treatment at 20°C. At temperatures above 500°C, sintering of nickel sesquioxide occurs, resulting in a significant loss of activity as a hypochlorite decomposition catalyst.

又、300℃以下ではシリカ、アルミナが安定な耐アル
カリ性の化合物を形成しないため結合剤としての機能を
しない。加熱時間は処理温度により異なるが、IO分〜
3時間加熱処理する。この加熱処理により結合剤に耐ア
ルカリ性が付与される。
Further, at temperatures below 300°C, silica and alumina do not form stable alkali-resistant compounds and therefore do not function as binders. Heating time varies depending on the processing temperature, but from IO minutes to
Heat treatment for 3 hours. This heat treatment imparts alkali resistance to the binder.

次ぎにこの加熱処理した粉末又は顆粒を成型し、再焼成
処理をする。成型は通常の成型賦与剤であるステアリン
酸ソーダ、ステアリン酸マグネシウム、ステアリン酸ア
ルミニウム、硼酸、タルク等を0.1〜10%加えて行
う。望ましい成型賦与剤は、硼酸、タルクである。
Next, the heat-treated powder or granules are shaped and subjected to a re-firing treatment. Molding is carried out by adding 0.1 to 10% of ordinary molding additives such as sodium stearate, magnesium stearate, aluminum stearate, boric acid, and talc. Preferred molding agents are boric acid and talc.

また、結合剤として用いる高濃度シリカゾル、高濃度ア
ルミナゾルは次亜塩素酸塩を分解するのに好ましい比表
面積の大きい状態で焼成できる結合剤として最も適して
いる。この結合剤は、4゜O℃焼成による粉末及び成型
化の後での再焼成によっても大きな比表面積を残してお
り、次亜塩素酸塩の液の浸透性、接触性を良くしている
Furthermore, high concentration silica sol and high concentration alumina sol used as binders are most suitable as binders that can be fired in a state with a large specific surface area, which is preferable for decomposing hypochlorite. This binder retains a large specific surface area even when it is powdered by firing at 4.degree.

成型物の焼成温度は最初の焼成温度と同じく300〜5
00℃で、好ましくは380〜420℃である。
The firing temperature of the molded product is 300-5, the same as the initial firing temperature.
00°C, preferably 380-420°C.

成型触媒の形状は種々考えられるが、円柱形又はリング
形が好ましい。その大きさは固定層反応器に充填される
固定層の内径に対し触媒の径がl/4以下である。固定
層の内径に対し触媒の径が1/4以上だと液の浸透が悪
くなり、触媒の利用効率が劣る。
Various shapes are possible for the shaped catalyst, but a cylindrical or ring shape is preferred. The size of the catalyst is such that the diameter of the catalyst is less than 1/4 of the inner diameter of the fixed bed filled in the fixed bed reactor. If the diameter of the catalyst is 1/4 or more of the inner diameter of the fixed bed, liquid permeation will be poor and catalyst utilization efficiency will be poor.

尚、本願発明の触媒組成物は上述のように成型物として
固定層型反応器で使用するのが好ましいが、顆粒状の形
態でも、その触媒形態にあった反応器を使用すれば、次
亜塩素酸塩の分解触媒として使用できる。
As mentioned above, the catalyst composition of the present invention is preferably used as a molded product in a fixed bed reactor, but even if it is in granular form, if a reactor suitable for the catalyst form is used, Can be used as a chlorate decomposition catalyst.

(発明の効果) 本発明の成型触媒は水溶液中に高濃度に含有される次亜
塩素酸塩を効率良く分解し、触媒の崩壊がなく、また触
媒の分離工程等を必要としないので、工業的に非常に優
れた次亜塩素酸塩分解用成型触媒である。更に、該成型
触媒を製造する方法は、その製造工程でNOXを発生し
ないで、前記の成型触媒を製造することが出来る。
(Effect of the invention) The shaped catalyst of the present invention efficiently decomposes hypochlorite contained in a high concentration in an aqueous solution, does not disintegrate the catalyst, and does not require a catalyst separation process, so it can be used in industrial applications. It is a shaped catalyst for hypochlorite decomposition that is extremely excellent in terms of performance. Furthermore, the method for producing the shaped catalyst allows the above-mentioned shaped catalyst to be produced without generating NOx during the production process.

以下、本発明の成型触媒を製造する方法及び、その触媒
を用いての次亜塩素酸塩水溶液の分解を実施例によって
更に詳細に説明する。
EXAMPLES Hereinafter, the method for producing the shaped catalyst of the present invention and the decomposition of an aqueous hypochlorite solution using the catalyst will be explained in more detail with reference to Examples.

実施例1 〔触媒の製法〕 三二酸化ニッケル粉末(市販品、純度95%min、)
100部に対し高濃度シリカゾル(スノーテックス−〇
、SiO,とじて30%含有)を30部加え、ミキサー
で混合する。この混合物を10θ〜110℃で約16時
間乾燥し顆粒状物を得、このものを400°Cで1時間
焼成した。このようにして得た顆粒980gにタルク(
滑石、含水珪酸マグネシウム)20gを加え打錠機で径
3/16インチ、長さ3/16インチの円柱状ベレット
に成型する。
Example 1 [Production method of catalyst] Nickel sesquioxide powder (commercial product, purity 95% min)
To 100 parts, 30 parts of high concentration silica sol (Snowtex-〇, SiO, containing 30%) is added and mixed with a mixer. This mixture was dried at 10θ to 110°C for about 16 hours to obtain granules, which were calcined at 400°C for 1 hour. Talc (980g of the granules thus obtained) (
Add 20 g of talc, hydrated magnesium silicate) and form into a cylindrical pellet with a diameter of 3/16 inches and a length of 3/16 inches using a tablet machine.

〔使用例〕〔Example of use〕

内径25mmの充填塔に触媒100gを充填し、次亜塩
素酸ソーダ(有効塩素3.5%、)水溶液を50°Cで
7.5 mlZ分の流量で充填塔の上部より通した。流
出液の有効塩素0.175%であり、次亜塩素酸塩が9
5%分解されていることを示す。また流出液中のニッケ
ルは検出されず、触媒の損失は認められなかった。
A packed tower with an inner diameter of 25 mm was filled with 100 g of catalyst, and an aqueous solution of sodium hypochlorite (available chlorine 3.5%) was passed through the top of the packed tower at a flow rate of 7.5 mlZ at 50°C. The available chlorine in the effluent was 0.175%, and the hypochlorite was 9.
Indicates that 5% has been decomposed. Further, no nickel was detected in the effluent, and no loss of catalyst was observed.

実施例2 ペレットを径5/8インチ、長さ5/16インチとした
以外は実施例1と同様の方法で、成型触媒を製造した。
Example 2 A shaped catalyst was produced in the same manner as in Example 1 except that the pellets had a diameter of 5/8 inch and a length of 5/16 inch.

この触媒を断面積0.049rrrの充填塔に40kg
を充填し、次亜塩素酸塩(有効塩素3.0〜3゜5%)
を含む水溶液を70℃で200 !!/時間で連続通液
した。4ケ月以上使用しても触媒は崩壊せず、また流出
液の有効塩素は0.2%以下を維持し、次亜塩素酸塩は
94%〜98%の分解率を得た。
40 kg of this catalyst was placed in a packed column with a cross-sectional area of 0.049 rrr.
Filled with hypochlorite (available chlorine 3.0-3°5%)
An aqueous solution containing 200! ! The liquid was passed continuously at a rate of /hour. The catalyst did not disintegrate even after being used for more than 4 months, the available chlorine in the effluent remained below 0.2%, and the decomposition rate of hypochlorite was 94% to 98%.

比較例1 市販のモレキュラーシーブ5A(4mm球状品)に硝酸
ニッケルを浸漬させ、乾燥し400℃、1時間焼成して
三二酸化ニッケルを30%担持している触媒を得た。
Comparative Example 1 A commercially available molecular sieve 5A (4 mm spherical product) was immersed in nickel nitrate, dried and calcined at 400° C. for 1 hour to obtain a catalyst supporting 30% of nickel sesquioxide.

この触媒を内径25mmの充填塔に100g充填し、次
亜塩素酸塩水溶液(有効塩素2.6%、)を70℃で4
.3mρ/分で通液した。流出液の有効塩素は0.65
%であり、有効塩素の分解率は75%となった。また、
流出液は赤紫色に着色し、ニッケルの溶出が50ppm
とかなり大きく、ニッケルの流出が認められた。
100g of this catalyst was packed into a packed tower with an inner diameter of 25mm, and a hypochlorite aqueous solution (available chlorine 2.6%) was added at 70℃ for 4 hours.
.. The liquid was passed at a rate of 3 mρ/min. The available chlorine of the effluent is 0.65
%, and the decomposition rate of available chlorine was 75%. Also,
The effluent was colored reddish-purple, and nickel elution was 50 ppm.
The leakage of nickel was quite large.

比較例2 市販のニッケル成型触媒(日産ガードラー触媒社製 G
−53D)100gを実施例1と同様に内径25mmの
充填塔に充填し、次亜塩素酸ソーダ(有効塩素3.5%
)を50℃で7. 5 mlll分で通液したところ約
10分で触媒が崩壊した。
Comparative Example 2 Commercially available nickel molded catalyst (Nissan Girdler Catalyst Co., Ltd. G
-53D) was packed into a packed tower with an inner diameter of 25 mm in the same manner as in Example 1, and sodium hypochlorite (available chlorine 3.5%
) at 50℃7. When 5 ml of liquid was passed through the solution, the catalyst collapsed in about 10 minutes.

また、通液開始直後の出口の有効塩素は1.4%であり
、実施例1と比較して劣っていた。
Further, the available chlorine at the outlet immediately after the start of liquid passage was 1.4%, which was inferior to that in Example 1.

比較例3 市販の酸化ニッケル顆粒状触媒に対しグラファイトを0
.5重量%添加し、打錠機で径3/16インチ、長さ3
/16インチの円柱状に成型し、400℃で1時間焼成
した。このようにして得た成型触媒100gを実施例1
と同様に、100gを内径25mmの充填塔に充填し、
次亜塩素酸ソーダ(有効塩素2.6%)を70℃で4.
3 m7!7分で通液したところ約20分で触媒が崩壊
し、通液が出来なくなった。 また、通液開始直後の出
口の有効塩素は0.65%であり、実施例1と比較して
劣っていた。
Comparative Example 3 No graphite was added to a commercially available nickel oxide granular catalyst.
.. Added 5% by weight and made into tablets with a diameter of 3/16 inches and a length of 3
/16 inch cylinder shape and baked at 400°C for 1 hour. Example 1 100 g of the shaped catalyst obtained in this way was
Similarly, 100g was packed into a packed tower with an inner diameter of 25mm,
4. Sodium hypochlorite (available chlorine 2.6%) at 70°C.
When the liquid was passed for 3 m7!7 minutes, the catalyst collapsed in about 20 minutes and the liquid could no longer be passed. Further, the available chlorine at the outlet immediately after the start of liquid passage was 0.65%, which was inferior to that in Example 1.

Claims (1)

【特許請求の範囲】 1)水溶液中の次亜塩素酸塩を分解する成型触媒であっ
て、該成型触媒が三二酸化ニッケルを60〜90重量%
含有し、SiO_21〜30重量%またはAl_2O_
3を1〜15重量%と、成型賦与剤を0.1〜10重量
%含有することを特徴とする次亜塩素酸塩分解用成型触
媒。 2)三二酸化ニッケル100重量部あたり、シリカゾル
あるいはアルミナゾルを10〜100重量部添加し、混
合、乾燥し、300〜500℃で焼成し、この焼成物に
成型賦与剤を0.1〜10重量%添加し、加圧成型し、
300〜500℃で焼成して、三二酸化ニッケルを60
〜90重量%含有し、SiO_21〜30重量%または
Al_2O_3を1〜15重量%と、成型賦与剤を0.
1〜10重量%含有する次亜塩素酸塩分解用成型触媒の
製法。
[Scope of Claims] 1) A shaped catalyst for decomposing hypochlorite in an aqueous solution, wherein the shaped catalyst contains 60 to 90% by weight of nickel sesquioxide.
Contains SiO_21-30% by weight or Al_2O_
A shaped catalyst for decomposing hypochlorite, characterized in that it contains 1 to 15% by weight of C.3 and 0.1 to 10% by weight of a shaping filler. 2) Add 10 to 100 parts by weight of silica sol or alumina sol per 100 parts by weight of nickel sesquioxide, mix, dry, and sinter at 300 to 500°C, and add 0.1 to 10 % by weight of a molding agent to this baked product. Added, pressure molded,
By firing at 300-500℃, 60% of nickel sesquioxide
-90% by weight, 1-15% by weight of SiO_21-30% by weight or Al_2O_3, and 0.5% by weight of molding filler.
A method for producing a shaped catalyst for decomposing hypochlorite containing 1 to 10% by weight.
JP27048484A 1984-12-21 1984-12-21 Molded catalyst for decomposing hypochlorite and preparation thereof Granted JPS61149240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27048484A JPS61149240A (en) 1984-12-21 1984-12-21 Molded catalyst for decomposing hypochlorite and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27048484A JPS61149240A (en) 1984-12-21 1984-12-21 Molded catalyst for decomposing hypochlorite and preparation thereof

Publications (2)

Publication Number Publication Date
JPS61149240A true JPS61149240A (en) 1986-07-07
JPH0456662B2 JPH0456662B2 (en) 1992-09-09

Family

ID=17486934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27048484A Granted JPS61149240A (en) 1984-12-21 1984-12-21 Molded catalyst for decomposing hypochlorite and preparation thereof

Country Status (1)

Country Link
JP (1) JPS61149240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0276044A2 (en) * 1987-01-22 1988-07-27 Imperial Chemical Industries Plc Effluent treatment
US6958454B2 (en) 2002-02-18 2005-10-25 Matsushita Electric Industrial Co., Ltd. Navigation switch device
JP2017177016A (en) * 2016-03-30 2017-10-05 Jfeエンジニアリング株式会社 Chlorine agent feed device to ballast water, ballast water treatment apparatus, method for feeding chlorine agent to ballast water, and method for treating ballast water
CN110316810A (en) * 2019-07-31 2019-10-11 同济大学 A method of phenols organic pollutant in composite material, preparation method and circulation degradation water based on nickel doping

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0276044A2 (en) * 1987-01-22 1988-07-27 Imperial Chemical Industries Plc Effluent treatment
US6958454B2 (en) 2002-02-18 2005-10-25 Matsushita Electric Industrial Co., Ltd. Navigation switch device
JP2017177016A (en) * 2016-03-30 2017-10-05 Jfeエンジニアリング株式会社 Chlorine agent feed device to ballast water, ballast water treatment apparatus, method for feeding chlorine agent to ballast water, and method for treating ballast water
CN110316810A (en) * 2019-07-31 2019-10-11 同济大学 A method of phenols organic pollutant in composite material, preparation method and circulation degradation water based on nickel doping

Also Published As

Publication number Publication date
JPH0456662B2 (en) 1992-09-09

Similar Documents

Publication Publication Date Title
EP0211530B1 (en) Effluent treatment
JP2573641B2 (en) Decomposition method of oxidizer in effluent stream
JP4556159B2 (en) Use of a TiO2 based composition as a catalyst for hydrolyzing COS and / or HCN in a gas mixture
KR0133169B1 (en) Catalysts
JPS61149240A (en) Molded catalyst for decomposing hypochlorite and preparation thereof
JP3695845B2 (en) Water purification material
JP2711463B2 (en) Exhaust gas purification method
JPH0212620B2 (en)
JP5547455B2 (en) Hypochlorite decomposition catalyst, method for producing the same, and method for using the same
USRE32392E (en) Catalyst pellets with resin binder for decomposition of hypochlorite
JP6006492B2 (en) Exhaust gas abatement agent containing volatile inorganic hydride and exhaust gas abatement method containing volatile inorganic hydride
JP5833313B2 (en) Detoxifying agent and method for exhaust gas containing metal hydride
US5220110A (en) Catalysts
JP4072624B2 (en) Specific alkali metal ion adsorbent and method for producing high purity lithium or high purity cesium
US1455363A (en) Process of purifying water
JPS6229092B2 (en)
JP4553187B2 (en) Method for selective removal of sodium ions
JPS61129026A (en) Purification of exhaust gas
JP4572309B2 (en) Specific alkali metal ion adsorbent and method for producing high purity lithium or high purity cesium
JPH02144155A (en) Production of ozonolysis catalyst
JPH07204668A (en) Treatment of ammonia nitrogen-containing drained water
JPH0435223B2 (en)
RU1806008C (en) Method of production of catalyst for attack on harmful impurities
JPH02174934A (en) Catalyst to be used for treatment of water
JP6043398B2 (en) Detoxifying agent and method for exhaust gas containing metal hydride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees