JPS61149142A - Ultrasonic warm heat treatment apparatus - Google Patents

Ultrasonic warm heat treatment apparatus

Info

Publication number
JPS61149142A
JPS61149142A JP27172184A JP27172184A JPS61149142A JP S61149142 A JPS61149142 A JP S61149142A JP 27172184 A JP27172184 A JP 27172184A JP 27172184 A JP27172184 A JP 27172184A JP S61149142 A JPS61149142 A JP S61149142A
Authority
JP
Japan
Prior art keywords
ultrasonic
heating
probe
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27172184A
Other languages
Japanese (ja)
Inventor
石田 昭憲
聡 相田
一郎 小倉
信行 岩間
伊藤 阿耶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27172184A priority Critical patent/JPS61149142A/en
Publication of JPS61149142A publication Critical patent/JPS61149142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は超音波による局所加温によってRtAを治療
する超音波温熱治療装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic thermotherapy device that treats RtA by localized heating using ultrasonic waves.

〔発明の技術的背景とその間照点〕[Technical background of the invention and points of interest]

m4に対する治療法に関しては、従来より外科療法、科
学療法、放射線療法、免疫療法が集学的療法という名の
もとに実施されているが、これらの療法に加えて最近注
目されてき念のが温熱療法(ハイパサーミア)である。
Regarding treatment methods for m4, surgical therapy, chemical therapy, radiotherapy, and immunotherapy have traditionally been carried out under the name of multimodality therapy, but in addition to these therapies, there are also treatments that have recently been attracting attention. This is heat therapy (hypathermia).

この治療法はMA細胞の致死温度が正常細胞に比べて低
いことを利用して加温により治療を行うもので非観血な
方法であるため切除不可能な病巣の治療に対して極めて
有効と考えられ、る、しかし温熱治療は従来、腟扁が選
択的に加温され1選択的に熱が投与されている事が確認
されていない状態で実施されてい之なめ治療効果の判定
が明確でないという問題があり念。
This treatment method utilizes the fact that the lethal temperature of MA cells is lower than that of normal cells, and as it is a non-invasive method, it is extremely effective for treating unresectable lesions. It is possible, but heat treatment has traditionally been carried out without confirming that the vaginalis is selectively heated and that heat is being administered selectively, so it is unclear how effective the treatment is. Just in case there is a problem.

〔発明の目的〕[Purpose of the invention]

この発明の目的は超音波によって加温され次部位におけ
る熱の投与量分布を確認しながら治療を行うことができ
る超音波温熱治療装置全提供することにある。
An object of the present invention is to provide an entire ultrasonic thermotherapy device that can be heated by ultrasonic waves and perform treatment while checking the distribution of the heat dose at the next site.

〔発明の概要〕[Summary of the invention]

この発明は、生体内の断層像を得るための超音波の送受
を行う画像用超音波プローブと、生体内を加温する加温
用超音波プローブと、一定時間毎に画像用超音波プロー
ブを送信用とし、送信領域が生体内で交れるように配置
された受信用プローブ圧て得られる音速変化より温度分
布を求め加温時間と温度分布を演算する事によって得ら
れる熱投与量分布を作り、前記画像用超音波プローブか
らの信号によって得られた断層像上に合わせて表示する
ことを特徴としている。
This invention provides an imaging ultrasound probe that transmits and receives ultrasound to obtain tomographic images inside a living body, a heating ultrasound probe that heats the inside of a living body, and an imaging ultrasound probe that transmits and receives ultrasound waves at regular intervals. Temperature distribution is determined from the change in sound velocity obtained by the pressure of the receiving probe, which is used for transmission and is placed so that the transmission area intersects within the body, and a heat dose distribution is created by calculating the heating time and temperature distribution. , is characterized in that it is displayed in conjunction with the tomographic image obtained by the signal from the imaging ultrasound probe.

〔′発明の効果〕〔'Effect of the invention〕

このような本発明によると、生体内の断層像上で、加温
用超音波による+![4に対しての熱投与量分布を確認
しながら、温熱治療を行うことができ、治療効果の判定
が容易となシ適確な温度と時間で治療を行うことができ
る。
According to the present invention, the +! [4] Heat treatment can be performed while checking the heat dose distribution for 4, and the treatment effect can be easily determined and the treatment can be performed at an appropriate temperature and time.

〔発明の実施例〕[Embodiments of the invention]

この発明の一実施例に係る超音波温熱治療装置の構成を
第1図に示す、生体1の体表に接してクォータバス2が
設けられており、このクォータバス2内に画像用超音波
プローブ3と加温用超音波プローブ4%超音波受信用プ
ローブ5が配置され。
The configuration of an ultrasonic thermotherapy device according to an embodiment of the present invention is shown in FIG. 1. A quarter bath 2 is provided in contact with the body surface of a living body 1, and an imaging ultrasonic probe 3, a heating ultrasonic probe, and a 4% ultrasonic receiving probe 5 are arranged.

ている、クォータバス2は超音波プローブ4,5,6゜
と生体1との音響インピーダンスのマツチングと生体1
の表面の温度上昇をおさえるためのものである。
The quarter bus 2 matches the acoustic impedance of the ultrasonic probes 4, 5, 6 degrees and the living body 1.
This is to suppress the temperature rise on the surface of the

画像用超音波プローブ3はBモードシステム6と共に、
セクタ電子走査を行って生体1内の断層像情報を得る念
めのものである。たとえば画像用超音波プローブ3がプ
レイ振動子で構成されている場合%Bモードシステム6
は具体的には、各振動子を遅延回路を介して駆動するこ
とによって超音波の集束と偏向走査を行う走査回路と、
プローブ3の各振動子からの信号を前記遅延回路を介し
て取出したのち、増幅検波等の処理を行りてBモード偉
の画像信号7t−得る信号処理回路によって構成される
The imaging ultrasound probe 3 together with the B-mode system 6,
This is a precautionary measure to obtain tomographic image information within the living body 1 by performing sector electronic scanning. For example, if the imaging ultrasound probe 3 is composed of a play transducer, the %B mode system 6
Specifically, it includes a scanning circuit that focuses and deflects ultrasound by driving each transducer through a delay circuit;
It is constituted by a signal processing circuit which extracts signals from each vibrator of the probe 3 via the delay circuit, performs processing such as amplification and detection, and obtains a B-mode image signal 7t-.

一方、加温用超音波プローブ4は駆動回路8によって駆
動され、加温用超音波として比較的エネルギーの大きい
連続波を生体1内の所望部位、すなわち騰湊部位に照射
する。
On the other hand, the heating ultrasonic probe 4 is driven by a drive circuit 8, and irradiates continuous waves with relatively high energy as heating ultrasonic waves to a desired region within the living body 1, that is, a tangential region.

通常スイッチS1はaの状態、スイッチS2はCの状態
にて動作し上記の動作を行っているがタイマー9にて一
定時間(念とえば3分)毎にスイッチ51ibに切り換
え画像用超音波プローブ3と送信器9が接続される。同
時にスイッチS2はdに切換えられ加温用超音波プロー
ブ4と駆動回路8は切りはなされる。この状態において
送信器99画像表示用超音波プローブ3.超音波受信用
プローブ5、温度測定器10にて生体1内のmA部位の
音速分布が測定され、温度分布に変換される。
Normally, the switch S1 operates in state a, and the switch S2 operates in state C, performing the above operations, but the timer 9 switches the switch to switch 51ib at fixed intervals (for example, 3 minutes) for the imaging ultrasound probe. 3 and a transmitter 9 are connected. At the same time, the switch S2 is switched to d, and the heating ultrasonic probe 4 and the drive circuit 8 are disconnected. In this state, the transmitter 99 and the ultrasonic probe for image display 3. The ultrasound receiving probe 5 and the temperature measuring device 10 measure the sound velocity distribution at the mA region within the living body 1 and convert it into a temperature distribution.

言われている。つまり音速を正確に計測することによっ
て温度変化分がわかシ、加温前の生体組織の音速と体温
を基にして音速の変化分で温度分布が得られるわけであ
る。
It is said. In other words, by accurately measuring the speed of sound, the temperature change can be determined, and the temperature distribution can be obtained based on the sound speed of the living tissue and body temperature before heating.

実際の音速測定の方法を次に述べる5 画像表示用超音波プローブ3と超音波受信用プローブ5
の受信用トランスジューサ51,52アレイはその中心
軸(送信波ビームの中心)が同一平面上になるように配
置されかつ、受信用トランスジ為す51と52の中心軸
は平行に配置されている。
The method of actual sound velocity measurement is described below 5. Ultrasonic probe for image display 3 and probe for ultrasonic reception 5
The arrays of receiving transducers 51 and 52 are arranged so that their center axes (centers of transmitted wave beams) are on the same plane, and the center axes of the receiving transducers 51 and 52 are arranged in parallel.

一方、画像表示用超音波プローブ3の中心軸は受信用ト
ランスジエサ51.52とは角。度θ。で交われるよう
罠なっている。このとき画像表示用超音波プローブ3か
ら放射された音波が受信用トランスジエサ51.52に
受信されるまでに要する時間tlとt2の時間差はビー
ム交点組織の音速と距離に影響され時間差、受信用トラ
ンスジエサ51゜52の間隔、送受信ビーム交叉角θ、
t−測定することにより音速が求められる。
On the other hand, the central axis of the image display ultrasonic probe 3 is at an angle with the receiving transducers 51 and 52. degree θ. It is a trap so that you can meet each other. At this time, the time difference between the time tl and t2 required for the sound waves emitted from the image displaying ultrasonic probe 3 to be received by the receiving transducer 51 and 52 is influenced by the sound speed and distance of the beam intersection tissue. 51°52 spacing, transmitting and receiving beam intersection angle θ,
The speed of sound is determined by measuring t.

送信器9は前記Bモード、システム6にて説明したよう
に、超音波の集束と偏向走査を行う事が可能でビーム交
叉角θ、を温度測定部10に供給しながら、Bモードの
走差範囲で温度測定部10にて音速を測定し、温度分布
が求められる。
The transmitter 9 is capable of focusing and deflection scanning of the ultrasonic waves in the B mode, as described in the system 6, and is capable of scanning the scanning difference of the B mode while supplying the beam intersection angle θ to the temperature measurement unit 10. The speed of sound is measured in the temperature measuring section 10 within the range, and the temperature distribution is determined.

温度分布が求められたのちはスイッチ81はa。After the temperature distribution has been determined, the switch 81 is set to a.

スイッチS2はCに切換えられる。Switch S2 is switched to C.

求められた温度分布渭号は熱投与量演算部11に供給さ
れる。
The obtained temperature distribution number is supplied to the heat dosage calculation section 11.

熱投与量演算部11は、入力された温度分布信号とタイ
マー9よりの起動により(本実施例では3分毎に起動)
、熱投与量が演算される。熱投与量の算出法は固定して
おらず念とえば温度X加温時間で表わされているが、第
2図のように温熱治療での7tt^の生き残った割合(
生残率)は指数関数的に減少し、加温温度の42℃1F
r:境として急に生残率が下がることから、本実施例で
は、加温温度に重み関数をかけたのちに加温時間とによ
逆演算され熱投与量分布信号12として出力される。
The heat dosage calculation unit 11 is activated by the input temperature distribution signal and the timer 9 (in this embodiment, activated every 3 minutes).
, the heat dose is calculated. The calculation method for the heat dose is not fixed and is expressed as temperature x heating time, but as shown in Figure 2, the percentage of 7tt^ that survived heat treatment (
The survival rate) decreased exponentially, and the heating temperature was 42℃ 1F.
Since the survival rate suddenly decreases at the r: threshold, in this embodiment, the heating temperature is multiplied by a weighting function and then inversely calculated by the heating time and output as the heat dose distribution signal 12.

この熱投与量分布信号は12は加算器13に供給され、
Bモードシステム6からの画像信号7と合成される。加
算器13の出力はデジタルスキャンコンバータ等を用い
た画像処理装置14によりテレビジョンビデオ信号に変
換された後、CRTディスプレイ(テレビモニタ)15
に供給される。
This heat dose distribution signal 12 is fed to a summer 13;
It is combined with the image signal 7 from the B-mode system 6. The output of the adder 13 is converted into a television video signal by an image processing device 14 using a digital scan converter or the like, and then sent to a CRT display (television monitor) 15.
supplied to

CRT7’イスプレイ(テレビモニタ)15にはBモー
ドシステム6によって得られ念正常組織、MtAt含め
た組織の断層像上に、熱投与量が細かな分布として、た
とえば熱投与量によって区別された色にて等高曲線のよ
う罠表示され、正常組織とMAの差はもちろんのこと騰
鳥内での熱投与量の差異も適かくに表示される。
The CRT 7' display (television monitor) 15 displays the heat dose as a fine distribution on the tomographic image of normal tissues and tissues including MtAt obtained by the B-mode system 6, for example, in colors differentiated by the heat dose. It is displayed like a contour curve, and not only the difference between normal tissue and MA, but also the difference in heat dosage within the tube is appropriately displayed.

〔発明の他の実施例〕[Other embodiments of the invention]

本実施例ではRモード走査と音速測定用パルスを切換え
ているが同じの装置でまかなっても良い。
In this embodiment, the R mode scanning and the sound velocity measurement pulse are switched, but the same device may be used.

ま九温度計測手段として音速の変化を使用しているが超
音波の非線形等を応用してもかまわない。
Although changes in the speed of sound are used as a means of measuring temperature, nonlinearity of ultrasonic waves, etc. may also be applied.

同様に表示方法にはなんら制限はない。また熱投与演算
部は必ずしも演算回路でなく、温度と加温時間とから予
め求められた熱投与量を出力するメモリ(ROMチーチ
ル)であってもよい。
Similarly, there are no restrictions on the display method. Further, the heat dosage calculation unit is not necessarily a calculation circuit, but may be a memory (ROM chichill) that outputs a heat dosage determined in advance from the temperature and heating time.

【図面の簡単な説明】[Brief explanation of drawings]

K1図は本発明の一実施例による超音波温熱治療装置の
構成図、第2図は生存率と温度の関係を示す図である。 1・・・生体       2・・・クォータバス3、
・・・画像用超音波プローブ  4・・・加温用超音波
プローブ5・・・超音波受信用プローブ  6・・・B
モードシステム7・・・画像信号     8・・・駆
動回路9・・・タイY−10・・・温度測定部11・・
・熱投与量演算部   12・・・熱投与量分布信号1
3・・・加算器      14・・・画像処理装置1
5・・・CRT 代理人 弁理士 則近憲佑(ほか1名)第  1 図
Figure K1 is a configuration diagram of an ultrasonic thermotherapy device according to an embodiment of the present invention, and Figure 2 is a diagram showing the relationship between survival rate and temperature. 1... Biological body 2... Quarter bus 3,
...Ultrasonic probe for imaging 4...Ultrasonic probe for heating 5...Probe for ultrasonic reception 6...B
Mode system 7...Image signal 8...Drive circuit 9...Tie Y-10...Temperature measurement section 11...
・Heat dose calculation unit 12...Heat dose distribution signal 1
3... Adder 14... Image processing device 1
5...CRT agent Patent attorney Kensuke Norichika (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 生体内の断層像を得るための超音波の送受を行なう画像
用超音波プローブと、生体内の所望部位に、超音波を集
束、照射して部位を加温する加温用超音波プローブと、
この加温用超音波プローブによる加温温度を検出する手
段と、この手段により検出された加温温度と加温経過時
間とにより熱投与量を検出する手段と、この手段により
検出された熱投与量情報を前記画像用超音波プローブか
らの信号より得られた断層像に表示する手段とを備えた
ことを特徴とする超音波温熱治療装置。
An imaging ultrasound probe that transmits and receives ultrasound to obtain a tomographic image inside a living body, and a heating ultrasound probe that focuses and irradiates ultrasound to a desired region within a living body to heat the region.
A means for detecting the heating temperature by the heating ultrasonic probe, a means for detecting the amount of heat administered based on the heating temperature and elapsed heating time detected by this means, and a means for detecting the amount of heat administered by this means. 1. An ultrasonic thermal treatment apparatus comprising: means for displaying quantity information on a tomographic image obtained from a signal from the imaging ultrasonic probe.
JP27172184A 1984-12-25 1984-12-25 Ultrasonic warm heat treatment apparatus Pending JPS61149142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27172184A JPS61149142A (en) 1984-12-25 1984-12-25 Ultrasonic warm heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27172184A JPS61149142A (en) 1984-12-25 1984-12-25 Ultrasonic warm heat treatment apparatus

Publications (1)

Publication Number Publication Date
JPS61149142A true JPS61149142A (en) 1986-07-07

Family

ID=17503912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27172184A Pending JPS61149142A (en) 1984-12-25 1984-12-25 Ultrasonic warm heat treatment apparatus

Country Status (1)

Country Link
JP (1) JPS61149142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195825U (en) * 1987-06-05 1988-12-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195825U (en) * 1987-06-05 1988-12-16
JPH0310745Y2 (en) * 1987-06-05 1991-03-18

Similar Documents

Publication Publication Date Title
US6361500B1 (en) Three transducer catheter
US5769790A (en) Focused ultrasound surgery system guided by ultrasound imaging
US8480585B2 (en) Imaging, therapy and temperature monitoring ultrasonic system and method
EP1615696B1 (en) Shear mode therapeutic ultrasound
EP1803403B1 (en) Ultrasound diagnostic system of detecting a lesion
JP4958475B2 (en) Ultrasonic device
KR20040074618A (en) Externally-applied high intensity focused ultrasound(HIFU) for therapeutic treatment
JP2009505769A (en) Combination of imaging and therapy transducer with therapy transducer amplifier
JPS61290942A (en) Ultrasonic tissue diagnostic apparatus
JP3065634B2 (en) Shock wave therapy device and thermal therapy device
JP4074100B2 (en) Ultrasound diagnostic imaging equipment
JPS6355334B2 (en)
JPS61149142A (en) Ultrasonic warm heat treatment apparatus
CN211798320U (en) Ultrasonic diagnosis and treatment system
WO2007023878A1 (en) Curing system
CN111110280A (en) Ultrasonic diagnosis and treatment system
Pernot et al. Reduction of the thermo-acoustic lens effect during ultrasound-based temperature estimation
JP4342167B2 (en) Ultrasonic irradiation device
Singh et al. Ultrasonic velocity as a non-invasive measure of temperature in biological media
JPH0566138B2 (en)
JPS61290938A (en) Ultrasonic diagnostic apparatus
JPS62176435A (en) Ultrasonic heating treatment apparatus
JPH0574374B2 (en)
JPS6272336A (en) Ultrasonic tissue diagnostic apparatus
JPH0693889B2 (en) Ultrasonic body temperature measuring device