JPS61148684A - Floating head slider using negative pressure - Google Patents

Floating head slider using negative pressure

Info

Publication number
JPS61148684A
JPS61148684A JP27001484A JP27001484A JPS61148684A JP S61148684 A JPS61148684 A JP S61148684A JP 27001484 A JP27001484 A JP 27001484A JP 27001484 A JP27001484 A JP 27001484A JP S61148684 A JPS61148684 A JP S61148684A
Authority
JP
Japan
Prior art keywords
negative pressure
side rails
cross rail
floating
head slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27001484A
Other languages
Japanese (ja)
Inventor
Seiji Yoneoka
米岡 誠二
Takeshi Oe
健 大江
Minoru Takahashi
実 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27001484A priority Critical patent/JPS61148684A/en
Publication of JPS61148684A publication Critical patent/JPS61148684A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

PURPOSE:To reduce effectively the fluctuation of a floating amount due to a change of a Yaw Angle by extending both end sections of a cross rail between both side rails to an air flow-out side along said side rails with a space without connecting with the respective side rails. CONSTITUTION:Both end sections of a cross rail 3 between both side rails 1 for generating a positive pressure are extended at an air flow-out side along both side rails 1 with a space without connecting with the respective side rails. Between two extending end sections 23a and 23b of the cross rail 3, a negative generating section 4 is formed. Namely, Both the side rails 1 for generating the positive pressure and the negative pressure generating section 4 formed between the two extended end sections 23a and 23b by extending both the end sections of the cross rail 3 to the air flow-out side along the respective side rails 1 are respectively separated by groves 21a, 21b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク装置等に用いられる負圧利用浮動
ヘッドスライダに係り、特にスライダ浮上量のYaw 
Angle  (気流流入角の変化)依存性が小さな浮
上特性を有する負圧スライダ構造に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a negative pressure floating head slider used in a magnetic disk device, etc.
This invention relates to a negative pressure slider structure having a floating characteristic with small angle (change in airflow inflow angle) dependence.

磁気ディスク装置に用いられる浮動へラドスライダとし
ては、周知のように正圧のみを利用する正圧浮動へ7ド
スライダが主流を占めている。
As is well known, the mainstream floating slider used in magnetic disk drives is a positive pressure floating slider that uses only positive pressure.

これに対して近来、ヘントスライダの浮動に上記正圧の
みに限らず、該スライダ面内に凹形状面を設けて負圧を
発生させ、その際の負圧吸引力を、浮動ヘッドに対して
負荷する荷重の一部として作用させるようにした、所謂
負圧利用浮動ヘッドスライダが提案されている。
On the other hand, recently, the floating of the Hent slider is not limited to the above-mentioned positive pressure, but a concave surface is provided in the slider surface to generate negative pressure, and the negative pressure suction force at that time is applied to the floating head. A so-called floating head slider using negative pressure has been proposed, which acts as part of the load to be applied.

このような構成の負圧利用浮動ヘッドスライダは、正圧
浮動へ7ドスライダと比較して微小荷重でも大きい空気
膜剛性が得られ、良好な浮上特性を持つよう−な設計が
可能である。
A negative pressure floating head slider having such a configuration can be designed to have greater air film rigidity even under a small load than a positive pressure floating slider, and to have good flying characteristics.

しかし、高速回転する磁気ディスクに対して、浮上中に
受ける気流流入角(Yaw Angle)の変化に対す
る浮上量の変化が大きく、これら特性の改善が要望され
ている。
However, for a magnetic disk that rotates at high speed, the flying height changes significantly in response to changes in the airflow inlet angle (Yaw angle) during flying, and there is a demand for improvements in these characteristics.

〔従来の技術〕[Conventional technology]

上記した従来の負圧利用浮動へラドスライダとして、テ
ーバフラットステップ型負圧利用浮動くラドスライダを
例にあげて説明すると1、第4図に示すように気流流入
端側に傾斜面2を設けた正圧発生用の一対のサイドレー
ル1と、該一対のサイドレール1間に該レールlと直交
するようにクロスレール3が配設され、かつ空気流出端
側に前記一対のサイドレール1とクロスレール3とで囲
まれた負圧発生部4が形成された構成から成っている。
As an example of the above-mentioned conventional floating Radoslider using negative pressure, the Taber flat step type floating Radoslider using negative pressure will be explained as an example. A pair of side rails 1 for generating pressure, and a cross rail 3 are arranged between the pair of side rails 1 so as to be orthogonal to the rails 1, and the pair of side rails 1 and the cross rail are arranged on the air outflow end side. It consists of a structure in which a negative pressure generating part 4 surrounded by 3 is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで磁気ディスク装置のアクセス機構におけるポジ
ショナとしては、直進型と回転型があり、近年、小型磁
気ディスク装置等にあっては回転型が小型化に有利であ
ることからその主流を占めるようになってきた。
By the way, there are two types of positioners in access mechanisms for magnetic disk drives: linear types and rotary types.In recent years, rotary types have become mainstream in small magnetic disk drives because they are advantageous for downsizing. Ta.

ところが上記負圧利用浮動ヘッドスライダを回転型のポ
ジショナにより駆動させる、所謂スイングアームアクチ
ュエータ方式の小型磁気ディスク装置に適用した場合、
該ヘントスライダがスイングアームアクチュエータによ
り高速回転する磁気ディスクの径方向に向かってシーク
される際に、該ヘントスライダの中心P方向に対する空
気流等の潤滑気流の方向、即ち気流流入角(Yaw^n
gle)θya−に変化が生じる。
However, when applied to a so-called swing arm actuator type small magnetic disk device in which the negative pressure-utilizing floating head slider is driven by a rotary positioner,
When the Hent slider is sought in the radial direction of the magnetic disk rotating at high speed by the swing arm actuator, the direction of lubricating airflow such as air flow relative to the center P direction of the Hent slider, that is, the airflow inflow angle (Yaw^n
gle) θya- changes.

この気流流入角θyawは±10数度程度にもなり、浮
上刃と吸引力との干渉が増加し、また左右一対のサイド
レール1において、特に気流流出側での浮上刃がアンバ
ランスになる。
This airflow inflow angle θyaw is about ±10 degrees, which increases the interference between the floating blades and the suction force, and furthermore, in the pair of left and right side rails 1, the floating blades become unbalanced, especially on the airflow outflow side.

このため、浮上刃が減少してスライダ全体の浮上量が低
下したり、スライダが傾く欠陥があった。
For this reason, there were defects in which the number of flying blades decreased and the flying height of the entire slider decreased, and the slider tilted.

このように従来の負圧利用浮動ヘッドスライダは浮上量
のYaw Angle依存性が大きく、小型磁気ディス
ク装置においてスイングアームアクチュエータと組み合
わせて適用することが困難となる欠点があった。
As described above, the conventional floating head slider using negative pressure has a drawback that the flying height is highly dependent on the Yaw angle, making it difficult to apply it in combination with a swing arm actuator in a small magnetic disk drive.

C問題点を解決するための手段〕〕 上記問題点は、両サイドレール間のクロスレールの両端
部を、該各サイドレールと連結せずに隙間をあけた形で
同サイドレールに沿って空気流出側に延長させ、そのク
ロスレールの2つの延長端部間に負圧発生部を形成した
構成より成る本発明の負圧利用浮動ヘッドスライダによ
って解決される。
Means for Solving Problem C]] The above problem is such that the cross rail between both side rails is not connected to the respective side rails at both ends, but air is flowed along the side rails with a gap between them. This problem is solved by the negative pressure-utilizing floating head slider of the present invention, which has a configuration in which the cross rail is extended toward the outflow side and a negative pressure generating section is formed between the two extended ends of the cross rail.

〔作用〕[Effect]

即ち、負圧利用浮動ヘッドスライダにおける浮上量のY
aw Angle依存性が大きい主な原因が、浮動中の
ヘッドスライダに対するYaw Angle(θyaw
)が大きくなるにつれて、吸引力によって浮上刃の発生
が妨害され、更に左右のサイドレールにおける浮上刃が
アンバランスとなり、横方向に大きく傾いて浮上量が低
下する、所謂サイドレールの正圧発生面における浮上刃
の発生が空気流入側の吸引力により妨害されることに着
目して、正圧発生用の両サイドレールと負圧発生凹部と
を溝等によって分離する構成とすることにより、浮上刃
に対する吸引力の影響が上記分離した溝によって排除さ
れ、ヘッドスライダの浮上量のYaw Angle依存
性を大きく低減することが可能となる。
In other words, the flying height Y of the negative pressure-utilizing floating head slider
The main reason for the large dependence on aw angle is the Yaw Angle (θyaw
) becomes larger, the generation of floating blades is obstructed by the suction force, and the floating blades on the left and right side rails become unbalanced, tilting significantly laterally and reducing the floating amount, the so-called positive pressure generation surface of the side rail. Focusing on the fact that the generation of floating blades is obstructed by the suction force on the air inflow side, we developed a structure in which both side rails for generating positive pressure and the recess for generating negative pressure are separated by a groove etc. The effect of the suction force on the head slider is eliminated by the separated grooves, and it becomes possible to greatly reduce the Yaw Angle dependence of the flying height of the head slider.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る負圧利用浮動ヘッドスライダの第
一実施例を示す概略斜視図であり、従来の第4図と同等
部分には同一符号を付した。
FIG. 1 is a schematic perspective view showing a first embodiment of a floating head slider utilizing negative pressure according to the present invention, and parts equivalent to those in the conventional FIG. 4 are given the same reference numerals.

本発明による負圧利用浮動へラドスライダは、図示のよ
うに正圧発生用の両サイドレール1間のクロスレール3
の両端部を、該各サイドレール1と連結せずに隙間をあ
けた形で同サイドレール1に沿って空気流出側に延長さ
せ、そのクロスレール3の2つの延長端部23aと23
b間に負圧発生部4を形成した構成、即ち換言すれば、
正圧発生用の両サイドレール1と、クロスレール3の両
端部を、該各サイドレール1に沿って空気流出側に延長
した2つの延長端部23aと23b間に形成した負圧発
生部4とを、それぞれ溝21a、21bによって分離し
た構造と成っている。
The floating RAD slider using negative pressure according to the present invention has a cross rail 3 between both side rails 1 for generating positive pressure as shown in the figure.
Both ends of the cross rail 3 are not connected to each side rail 1 and are extended toward the air outflow side along the side rail 1 with a gap, and the two extended ends 23a and 23 of the cross rail 3 are
A configuration in which the negative pressure generating section 4 is formed between b, in other words,
Both side rails 1 for generating positive pressure and a negative pressure generating section 4 formed between two extended ends 23a and 23b extending both ends of the cross rail 3 toward the air outflow side along each side rail 1. and are separated by grooves 21a and 21b, respectively.

このようなスライダ構造の形成方法としては、負圧発生
部4を化学エツチング法、或いは物理的なドライエツチ
ング法等により形成する工程において、同時に形成する
ことができる。、このように両サイドレール1と、クロ
スレール3の両送長端部23aと23b間に形成された
負圧発生部4とを分離したスライダ構造とすることによ
り、両サイドレール1と負圧発生部4にて発生する浮上
刃と吸引力とが干渉し合う不都合が解消され、更に、ス
ライダ中心Pに対する空気流のYawAngle(θy
an)の変化に対して左右一対のサイドレール1上での
正圧力のアンバランスも低減され、浮上量変化の小さい
特性が得られる。
Such a slider structure can be formed at the same time as the negative pressure generating section 4 is formed by a chemical etching method, a physical dry etching method, or the like. In this way, by creating a slider structure in which both side rails 1 and the negative pressure generating section 4 formed between both extending ends 23a and 23b of the cross rail 3 are separated, both side rails 1 and the negative pressure are separated. The problem of interference between the floating blade and the suction force generated in the generating section 4 is eliminated, and the YawAngle (θy
The unbalance of the positive pressure on the pair of left and right side rails 1 with respect to the change in an) is also reduced, and characteristics with small changes in flying height can be obtained.

第2図は本発明に係る負圧利用浮動へ7ドスライダの第
二実施例を示す概略斜視図であり、第1図と同等部分に
は同一符号を付している。
FIG. 2 is a schematic perspective view showing a second embodiment of the negative pressure-utilizing floating slider according to the present invention, and the same parts as in FIG. 1 are given the same reference numerals.

本実施例が第1図による第一実施例と異なる点は、図示
のように正圧発生用の一対のサイドレール1と、クロス
レール3の両送長端部23aと23b間に形成された負
圧発生部4とを分離した溝31a。
The difference between this embodiment and the first embodiment shown in FIG. 1 is that, as shown in the figure, a pair of side rails 1 for generating positive pressure and a cross rail 3 are formed between both extending ends 23a and 23b. Groove 31a separated from negative pressure generating section 4.

31bを、第一実施例での分離用の溝21a、21bよ
りも深溝形状にして、浮上刃に対する吸引力の影響を完
全に分離するようにし、該浮上刃と吸引力との干渉に対
する分離効果を高めたことである。
31b is made into a deeper groove shape than the separation grooves 21a and 21b in the first embodiment, so that the influence of the suction force on the floating blade is completely separated, and the separation effect against interference between the floating blade and the suction force is improved. This is because it has increased the

このようなスライダ構造とすることにより、該第一実施
例のスライダ構造と比較してより効果的にYaw An
gle依存性を低減することが可能となり、更に浮上量
変化の小さい特性を得ることができる。
By adopting such a slider structure, compared to the slider structure of the first embodiment, Yaw An
It becomes possible to reduce the GL dependence, and it is also possible to obtain characteristics with small changes in flying height.

第3図は本発明の第二実施例による負圧利用浮動ヘッド
スライダと従来の負圧利用浮動へラドスライダとの浮上
量のYaw Angle依存性を示す図である。
FIG. 3 is a diagram showing Yaw angle dependence of the flying height of the negative pressure-utilizing floating head slider according to the second embodiment of the present invention and the conventional negative-pressure utilizing floating head slider.

同図において、曲線Aは上記本発明のスライダ構造が第
2図に示すようにYawAngle(θyaee)に変
化を受けた場合における、右側(図面に向かって)サイ
ドレール1の潤滑気流流出端部分での浮上量とYaw 
Angle(θyau)との関係を示す。
In the same figure, curve A is the lubricant airflow outflow end portion of the right side rail 1 (as viewed from the drawing) when the slider structure of the present invention undergoes a change in YawAngle (θyaee) as shown in FIG. floating height and Yaw
The relationship with Angle (θyau) is shown.

曲線Bは同じく左側(図面に向かって)サイドレール1
の潤滑気流流出端部分での浮上量とYawAngle(
θya紳)との関係を示す。
Curve B is also on the left side (facing the drawing) side rail 1
The flying height and YawAngle (
θya gentleman).

また曲線Cは従来のスライダ構造が第4図に示すように
Yasw Angle(θyaw)に変化を受けた場合
における、右側〔図面に向かって)サイドレール1の潤
滑気流流出端部分での浮上量とYaw Angle(θ
yaw)との関係を示す。
In addition, curve C shows the flying height at the lubricating airflow outflow end of the right side rail 1 (as viewed in the drawing) when the conventional slider structure undergoes a change in Yasw Angle (θyaw) as shown in Fig. 4. Yaw Angle (θ
yaw).

更に、曲線りは同じく左側(図面に向かって)サイドレ
ール1の潤滑気流流出端部分での浮上量とYaw An
gle(θyaw)との関係を示している。
Furthermore, the curve is also determined by the flying height at the lubricating airflow outflow end of the left side rail 1 (as viewed in the drawing) and Yaw An.
The relationship with gle(θyaw) is shown.

同図によって本発明の第二実施例による負圧利用浮動ヘ
ッドスライダが、従来構造の負圧利用浮動ヘッドスライ
ダと比較して浮上量のYasy Angle依存性が小
さく、またスライダローリング方向の傾きも小さいこと
が明らかに示されている。
The figure shows that the floating head slider using negative pressure according to the second embodiment of the present invention has a smaller Yasy Angle dependence of the flying height and a smaller inclination in the slider rolling direction than the conventional floating head slider using negative pressure. This is clearly shown.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る負圧利用
浮動へラドスライダの構造によれば、YawAngle
の変化に対する浮上量の変動が効果的に低減されると共
に、ローリング方向への傾きも小さい浮上特性を得るこ
とが可能となる。
As is clear from the above description, according to the structure of the negative pressure-utilizing floating RAD slider according to the present invention, YawAngle
Fluctuations in the flying height due to changes in the flying height are effectively reduced, and it is possible to obtain flying characteristics with a small inclination in the rolling direction.

従って、本発明のスライダ構造により、小型、軽量で回
転型スイングアームアクチュエータ方式の磁気ディスク
装置に適用可能な浮上特性及び浮上安定性の良好な負圧
利用浮動ヘッドスライダを得ることができる。
Therefore, with the slider structure of the present invention, it is possible to obtain a negative pressure-utilizing floating head slider that is small, lightweight, and has good flying characteristics and flying stability that can be applied to a rotary swing arm actuator type magnetic disk device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る負圧利用浮動ヘッドスライダの第
一実施例を示す概略斜視図、 第2図は本発明に係る負圧利用浮動ヘッドスライダの第
二実施例を示す概略斜視図、 第3図は本発明の第二実施例による負圧利用浮動ヘッド
スライダと、従来の負圧利用 浮動ヘッドスライダとの浮上量のYawAngle依存
性を示す図、 第4図は従来の負圧利用浮動ヘッドスライダを説明する
ための概略斜視図である。 図中、1は一対のサイドレール、2は傾斜面、3はクロ
スレール、4は負圧発生部、21a。 21bは分離用溝、23a、23bはクロスレール3の
両送長端部、31a、31bは分離用深溝を第 1 ス 第 22 第 3図 ′:$4図
1 is a schematic perspective view showing a first embodiment of a floating head slider utilizing negative pressure according to the present invention; FIG. 2 is a schematic perspective view showing a second embodiment of a floating head slider utilizing negative pressure according to the present invention; FIG. 3 is a diagram showing the YawAngle dependence of the flying height of the negative pressure-utilizing floating head slider according to the second embodiment of the present invention and the conventional negative-pressure-utilizing floating head slider. FIG. 3 is a schematic perspective view for explaining a head slider. In the figure, 1 is a pair of side rails, 2 is an inclined surface, 3 is a cross rail, and 4 is a negative pressure generating portion, 21a. 21b is a separation groove, 23a and 23b are both ends of the cross rail 3, and 31a and 31b are deep separation grooves.

Claims (1)

【特許請求の範囲】[Claims] 浮上面の両側に一対の正圧発生用のサイドレールを有す
ると共に、両サイドレール間の空気流入側寄りに空気流
入を妨げるクロスレールを有したヘッドスライダ構成に
おいて、上記クロスレールの両端部を前記各サイドレー
ルと連結せずに隙間をあけた形で同サイドレールに沿っ
て空気流出側に延長させ、該クロスレールの2つの延長
端部間に負圧発生部を形成したことを特徴とする負圧利
用浮動ヘッドスライダ。
In a head slider configuration that has a pair of side rails for generating positive pressure on both sides of the air bearing surface and a cross rail that prevents air inflow between the two side rails, both ends of the cross rail are connected to the The cross rail is characterized in that it is not connected to each side rail but extends toward the air outflow side along the side rail with a gap, and a negative pressure generating section is formed between the two extended ends of the cross rail. Floating head slider that uses negative pressure.
JP27001484A 1984-12-20 1984-12-20 Floating head slider using negative pressure Pending JPS61148684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27001484A JPS61148684A (en) 1984-12-20 1984-12-20 Floating head slider using negative pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27001484A JPS61148684A (en) 1984-12-20 1984-12-20 Floating head slider using negative pressure

Publications (1)

Publication Number Publication Date
JPS61148684A true JPS61148684A (en) 1986-07-07

Family

ID=17480343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27001484A Pending JPS61148684A (en) 1984-12-20 1984-12-20 Floating head slider using negative pressure

Country Status (1)

Country Link
JP (1) JPS61148684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274518A (en) * 1990-05-25 1993-12-28 Seagate Technology, Inc. Negative pressure air bearing slider having converging isolation channels
EP0595513A2 (en) * 1992-10-28 1994-05-04 International Business Machines Corporation Negative pressure air bearing slider
US5532890A (en) * 1993-11-10 1996-07-02 International Business Machines Corporation Negative pressure slider with optimized leading pocket for profile control
US5894379A (en) * 1995-03-17 1999-04-13 Fujitsu Limited Magnetic head slider with rail leading portions increasing in thickness over rail portions which widen and narrow

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274518A (en) * 1990-05-25 1993-12-28 Seagate Technology, Inc. Negative pressure air bearing slider having converging isolation channels
US5798889A (en) * 1992-10-28 1998-08-25 International Business Machines Corporation Negative pressure air bearing
JPH06195916A (en) * 1992-10-28 1994-07-15 Internatl Business Mach Corp <Ibm> Air-bearing slider
EP0595513A3 (en) * 1992-10-28 1994-08-17 Ibm Negative pressure air bearing slider
US5438467A (en) * 1992-10-28 1995-08-01 International Business Machines Corporation Negative pressure air bearing design
EP0595513A2 (en) * 1992-10-28 1994-05-04 International Business Machines Corporation Negative pressure air bearing slider
US6055130A (en) * 1992-10-28 2000-04-25 International Business Machines Corporation Slider with negative pressure air bearing
US6449126B1 (en) 1992-10-28 2002-09-10 International Business Machines Corporation Negative pressure air bearing slider
US5532890A (en) * 1993-11-10 1996-07-02 International Business Machines Corporation Negative pressure slider with optimized leading pocket for profile control
US5583722A (en) * 1993-11-10 1996-12-10 International Business Machines Corporation Negative pressure slider with optimized leading pocket for profile control
US5610784A (en) * 1993-11-10 1997-03-11 International Business Machines Corporation Negative pressure slider with optimized leading pocket for profile control
US5650892A (en) * 1993-11-10 1997-07-22 International Business Machines Negative pressure slider with optimized leading pocket for profile control
US5894379A (en) * 1995-03-17 1999-04-13 Fujitsu Limited Magnetic head slider with rail leading portions increasing in thickness over rail portions which widen and narrow

Similar Documents

Publication Publication Date Title
JP2781467B2 (en) Disk head slider with air support
US5404256A (en) Transverse and negative pressure contour gas bearing slider
KR950011129B1 (en) Head slider for magnetic disc
JPS61278087A (en) Magnetic head/slider
CA1127301A (en) Transducers with tapered edge profiles and assembly thereof
JPH0468706B2 (en)
JP2803639B2 (en) Magnetic head slider
JPH0721717A (en) Air-bearing-slider having no speed and skew dependency
JPH08297828A (en) Negative-pressure air bearing slider
JPH03132981A (en) Floating head slider
JPH04341985A (en) Magnetic head slider
JPH0586804A (en) Integral shroud blade
JPS6321271B2 (en)
JPS61148684A (en) Floating head slider using negative pressure
JPS61148685A (en) Floating head slider using negative pressure
JPH02282982A (en) Slider for recording head used for memory disc
US6034842A (en) Subambient pressure slider for constant flying height
JPH02312077A (en) Floating head slider
US5768053A (en) Flying magnetic head slider
JPH04159671A (en) Magnetic head slider and magnetic disk device
JP2778518B2 (en) Magnetic head slider
JPS641872B2 (en)
JPH07111053A (en) Magnetic disk device
JPS6319950B2 (en)
JPH05144210A (en) Slider for magnetic head