JPS61148312A - Inspection - Google Patents

Inspection

Info

Publication number
JPS61148312A
JPS61148312A JP59270826A JP27082684A JPS61148312A JP S61148312 A JPS61148312 A JP S61148312A JP 59270826 A JP59270826 A JP 59270826A JP 27082684 A JP27082684 A JP 27082684A JP S61148312 A JPS61148312 A JP S61148312A
Authority
JP
Japan
Prior art keywords
electron beam
sample
electron
section
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59270826A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Sato
佐藤 文良
Katsuhiro Nozaki
野崎 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59270826A priority Critical patent/JPS61148312A/en
Publication of JPS61148312A publication Critical patent/JPS61148312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To achieve a higher measuring accuracy, by varying the magnification of orthogonal two axes in a measuring view composed of electron beam scans over an object to be inspected at a display section. CONSTITUTION:A sample 2 to be measured is placed on an XY table 1 and then, the table 1 is moved to hold a specified portion of the sample 2 within the irradiation range of electron beams 7 from an electron beam source 6. Then, the specified portion of the sample 2 is scanned by the electron beams 7 to compose a measuring view range. In this case, the magnitude of x and y in the longitudinal and laterial way of the measuring view are made unequal in sides as shown by x>y with an electron beam source control section 11 and the values thereof are held at a main control section 16. On the other hand, secondary electrons 8 released from the sample 2 with the scanning of the electron beams 7 are trapped with secondary electron detectors 9 and 10 and the number of the electrons trapped at the secondary electron detectors 9 and 10 are converted into electronical signals respectively with signal conversion section 12 and 13. Then, the signals are synthesized with a image processing section 14 into an image and an image equal in sides is outputted to a display section 15 from the measuring view unequal in sides based on the values of x and y held at the main control section 16.

Description

【発明の詳細な説明】 [技術分野] 本発明は検査技術、特に、半導体装置の製造においてウ
ェハの断面形状の検査に適用して有効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an inspection technique, and particularly to a technique that is effective when applied to inspecting the cross-sectional shape of a wafer in the manufacture of semiconductor devices.

[背景技術] 近年、半導体装置の製造において、たとえばシリコンな
どからなる半導体基板すなわちウェハ上に形成される集
積回路パターンは、集積回路素子に対する高密度化、高
集積化のなどの要求に伴って、より微細化、複雑化の傾
向を強めている。
[Background Art] In recent years, in the manufacture of semiconductor devices, integrated circuit patterns formed on semiconductor substrates, ie, wafers made of silicon, etc., are becoming increasingly denser and more integrated due to demands for higher density and higher integration of integrated circuit elements. There is a growing trend towards further miniaturization and complexity.

このため、半導体装置の製造技術、とりわけ微細パター
ンの加工に直接関係するりソグラフィ技術においては、
微細パターンの寸法やパターン相互の距離および欠陥に
対して、回路素子の製作精度を上回る高い精度で計測す
る必要が生じ、検査装置として、たとえば走査電子顕微
鏡が微細パターンの計測に用いられる場合がある。
For this reason, in the manufacturing technology of semiconductor devices, especially in the lithography technology directly related to the processing of fine patterns,
There is a need to measure the dimensions of fine patterns, distances between patterns, and defects with a higher precision than the manufacturing accuracy of circuit elements, and a scanning electron microscope, for example, is sometimes used as an inspection device to measure fine patterns. .

すなわち、試料台に固定された試料面に対して垂直な軸
を有する電子ビーム源から放射される所定の強度の電子
ビームで測定対象の試料表面を走査し、このときウェハ
表面から放出される二次電子をウェハ表面近傍の異なる
位置に置かれた複数の二次電子検出器によって検出し、
各々の二次電子検出器で観測される二次電子数の差異を
電気的な信号に変換して、試料表面の微細な構造を、た
とえばCR7画面などに相似的に拡大して表示するもの
である。
That is, the surface of the sample to be measured is scanned with an electron beam of a predetermined intensity emitted from an electron beam source with an axis perpendicular to the sample surface fixed on a sample stage, and at this time the electron beam emitted from the wafer surface is scanned. Detecting the secondary electrons by a plurality of secondary electron detectors placed at different positions near the wafer surface,
This system converts the difference in the number of secondary electrons observed by each secondary electron detector into an electrical signal, and displays the fine structure of the sample surface on a similarly enlarged screen, such as on a CR7 screen. be.

たとえば、ウェハ上に塗布されたレジストのつエバ平面
方向における厚さの変化、すなわちうねりを測定する場
合、レジストを塗布されたウェハの所定の部位を厚さ方
向に切断し、たとえば樹脂などに埋設して保持させ、測
定断面を研磨して測定試料とする。
For example, when measuring changes in the thickness of a resist coated on a wafer in the evaporator plane direction, that is, waviness, a predetermined part of the wafer coated with the resist is cut in the thickness direction, and the wafer is embedded in, for example, resin. The cross section is polished and used as a measurement sample.

そして、この試料を上記の如き方法で観察することによ
ってウェハ平面に塗布されたレジストのうねりを測定す
ることが考えられる。
It is conceivable to measure the waviness of the resist coated on the wafer plane by observing this sample using the method described above.

この場合、ウェハ平面を観察視野の横軸にとればレジス
トの厚さはこの横軸と直交する縦軸方向で測定されるこ
ととなるが、レジストのうねりが微小である場合には、
電子ビームが走査される観察視野をCRT上に単に相似
的に拡大するのみでは、レジストの厚さ方向の拡大に伴
って、ウェハ平面方向がCR7画面の外部にはみ出して
しまい、ウェハ表面に塗布されたレジストのうねりを精
度よく観察できないという不具合があることを本発明者
は見いだした。
In this case, if the wafer plane is taken as the horizontal axis of the observation field, the resist thickness will be measured in the vertical axis direction perpendicular to this horizontal axis, but if the waviness of the resist is minute,
If the observation field where the electron beam is scanned is simply enlarged onto a CRT, the wafer plane direction will extend outside the CR7 screen as the resist expands in the thickness direction, and the coating will not be applied to the wafer surface. The inventors have discovered that there is a problem in that it is not possible to accurately observe the waviness of the resist.

なお、走査電子顕微鏡を用いる検査技術について述べら
れている文献としては、株式会社工業調査会1983年
9月1日発行「電子材料」1983年9月号、P52〜
P57がある。
In addition, documents describing inspection techniques using a scanning electron microscope include "Electronic Materials" September 1983 issue, published by Kogyo Research Association Co., Ltd., September 1, 1983, P52-
There is a P57.

[発明の目的] 本発明の目的は、被測定物上における測定視野の各軸の
倍率を変化させて観察することが可能な検査技術を提供
することにある。
[Object of the Invention] An object of the present invention is to provide an inspection technique that allows observation of an object to be measured by changing the magnification of each axis of a measurement field of view.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[発明の概要] 本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、つぎの通りである。
[Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

すなわち、被検査物上を走査される電子ビームによって
構成される検査視野の直交する2軸の表示部における倍
率比を可変とすることによって、検査視野内の所定の軸
方向の寸法変化を強調して測定することを可能にして、
被検査物の検査精度      □を向上させるもので
ある。
That is, by making variable the magnification ratio in the display section of the two orthogonal axes of the inspection field formed by the electron beam scanned over the inspection object, dimensional changes in a predetermined axial direction within the inspection field of view are emphasized. to make it possible to measure
This improves the inspection accuracy □ of the inspected object.

[実施例] 第1図は零発所の一実施例である走査電子顕微鏡を用い
た検査方法を示す斜視図、同図(b)はそのブロック図
、同図(c)は観察された画像を示す図である。
[Example] Figure 1 is a perspective view showing an inspection method using a scanning electron microscope, which is an example of a zero source, Figure (b) is its block diagram, and Figure (c) is an observed image. FIG.

所定の平面内において移動自在なXYテーブルlの上に
は測定試料2が固定されている。
A measurement sample 2 is fixed on an XY table l that is movable within a predetermined plane.

この測定試料2は、たとえばレジスト3が塗布されたウ
ェハ4を厚さ方向に切断して形成された切片を樹脂5に
埋設して保持させ、測定断面を研磨して構成されるもの
である。
The measurement sample 2 is constructed by, for example, cutting a wafer 4 coated with a resist 3 in the thickness direction, embedding and holding a section in a resin 5, and polishing the measurement cross section.

さらに、XYテーブルlの上方には、電子ビーム源6が
設けられ、この電子ビーム源6から測定試料2に照射さ
れた電子ビーム7によって測定試料2の表面から放出さ
れる二次電子8が、XYテーブル1の近傍に傾斜して設
けられた一対の二次電子検出器9および二次電子検出器
10によって捕捉されるように構成されている。
Furthermore, an electron beam source 6 is provided above the XY table l, and secondary electrons 8 emitted from the surface of the measurement sample 2 by the electron beam 7 irradiated onto the measurement sample 2 from the electron beam source 6 are It is configured to be captured by a pair of secondary electron detectors 9 and 10 that are provided obliquely near the XY table 1.

この場合、電子ビーム源6から測定試料2に照射される
電子ビーム7は、電子ビーム源制御部11によって、走
査される測定視野の横方向の幅Xおよび縦方向の幅yが
調整され、たとえば、縦方向を強調して観察する場合に
は、x>yとなるように測定視野が決められる。
In this case, the electron beam 7 irradiated from the electron beam source 6 to the measurement sample 2 has the width X in the horizontal direction and the width y in the vertical direction of the scanned measurement field of view adjusted by the electron beam source control unit 11, for example. , when observing with emphasis on the vertical direction, the measurement field of view is determined so that x>y.

また、上記の測定視野内の測定試料2から放出された二
次電子8は、二次電子検出器9および10に捕捉され、
検出された二次電子数は信号変換部12および13によ
って電気的な信号に変換され、画像処理部14において
画像信号が形成されて、表示部15において、たとえば
第1図(c)に示されるようなCR7画面に表示される
Further, the secondary electrons 8 emitted from the measurement sample 2 within the measurement field of view are captured by the secondary electron detectors 9 and 10,
The detected number of secondary electrons is converted into an electrical signal by the signal conversion units 12 and 13, and an image signal is formed in the image processing unit 14, and the image signal is displayed on the display unit 15 as shown in FIG. 1(c), for example. It will be displayed on the CR7 screen like this.

さらに、前記電子ビーム源制御部11および画像処理部
14は主制御部16によって制御されるように構成され
ている。
Further, the electron beam source control section 11 and the image processing section 14 are configured to be controlled by a main control section 16.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

まずXYテーブル1には測定試料2が位置され、XYテ
ーブル1を適宜移動させることによって測定試料2の所
定の部位が電子ビーム源6からの電子ビーム7の照射範
囲内に入るようにされる。
First, a measurement sample 2 is placed on an XY table 1, and by appropriately moving the XY table 1, a predetermined portion of the measurement sample 2 is brought within the irradiation range of the electron beam 7 from the electron beam source 6.

次に、電子ビーム源6から測定試料の所定の部位に電子
ビーム7が走査され、測定視野が構成される。
Next, an electron beam 7 is scanned from the electron beam source 6 to a predetermined portion of the measurement sample to form a measurement field of view.

この場合、測定視野の縦および横方向の大きさyおよび
又は電子ビーム源制御部11によってX〉yの如(不等
辺に構成され、その値は主制御部16に保持される。
In this case, the vertical and horizontal size y of the measurement field of view and/or the electron beam source control unit 11 is configured such that X>y (scalene side), and the value is held in the main control unit 16.

一方、前記の電子ビーム7の走査によって、測定試料2
から放出された二次電子8は二次電子検出器9および1
0に捕捉され、それぞれの二次電子検出器における捕捉
電子数は、信号変換部12および13において電気的な
信号に変換された後、画像処理部14において画像信号
に合成される。
On the other hand, by scanning the electron beam 7, the measurement sample 2
The secondary electrons 8 emitted from the secondary electron detectors 9 and 1
The number of captured electrons in each secondary electron detector is converted into an electrical signal in signal conversion units 12 and 13, and then combined into an image signal in an image processing unit 14.

この時、画像処理部14においては、主制御部16に保
持されている、前記の測定視野の縦および横方向の大き
さyおよびXの値に基づいて、各軸の倍率mおよびnを
決定し、m x −n yの如く不等辺の測定視野から
等辺の画像を表示部15に出力する。
At this time, the image processing unit 14 determines the magnification m and n of each axis based on the vertical and horizontal sizes y and X of the measurement field of view held in the main control unit 16. Then, an equilateral image is outputted to the display unit 15 from the scalene measuring field of view as m x −ny.

この結果、表示部15である、第1図(c)の等連形の
CRT画面には、横方向に比較して縦方向が強調された
測定視野の拡大画像が表示されることとなる。
As a result, an enlarged image of the measurement field of view in which the vertical direction is emphasized compared to the horizontal direction is displayed on the isotonic CRT screen of FIG. 1(c), which is the display section 15.

この結果、横軸方向にウェハ4の平面方向が、また縦軸
方向にウェハ4の厚さ方向が取られている本実施例の測
定試料2においては、ウェハ4に塗布されたレジスト3
の厚さが強調されて表示され、レジスト3のうねりの微
小な変化が精度良く測定される。
As a result, in the measurement sample 2 of this embodiment in which the horizontal axis direction is the plane direction of the wafer 4 and the vertical axis direction is the thickness direction of the wafer 4, the resist 3 applied to the wafer 4 is
The thickness of the resist 3 is displayed with emphasis, and minute changes in the waviness of the resist 3 can be measured with high accuracy.

[効果] (1)、被検査物上を走査される電子ビームによって構
成される検査視野の直交する2軸の倍率比が表示部にお
いて可変であるため、所定の軸方向を強調して測定する
ことが可能となり、被検査物の測定精度が向上される。
[Effects] (1) Since the magnification ratio of the two orthogonal axes of the inspection visual field formed by the electron beam scanned over the object to be inspected is variable on the display section, measurement is performed with emphasis on a predetermined axis direction. This makes it possible to improve the measurement accuracy of the object to be inspected.

(2)、前記(1)の結果、ウェハに塗布されたレジス
トのうねりを精度良く検査することが可能となり、半導
体装置の製造工程における歩留りが向上される。
(2) As a result of the above (1), it becomes possible to accurately inspect the waviness of the resist applied to the wafer, and the yield in the manufacturing process of semiconductor devices is improved.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Nor.

たとえば、測定視野の縦軸方向を横軸方向よりも長くす
ることも可能である。
For example, it is also possible to make the measurement field of view longer in the vertical axis direction than in the horizontal axis direction.

[利用分野] 以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野であるウェハの測定技術に
用いられる走査電子顕微鏡に適用した場合について説明
したが、それに限定されるものではなく、微小な部分の
寸法を高精度で測定することが必要とされる技術に広く
適用できる。
[Field of Application] In the above explanation, the invention made by the present inventor has been mainly applied to the field of application which is its background, a scanning electron microscope used for wafer measurement technology, but the present invention is not limited thereto. Rather, it can be widely applied to technologies that require highly accurate measurement of the dimensions of minute parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例である走査電子顕微鏡
を用いた検査方法を示す斜視図、同図(b)は前記検査
方法の作用を説明するブロック図、 同図(c)は表示部であるCRT画面を示す図である。 1・・・XYテーブル、2・・・測定試料、3・・・レ
ジスト、4・・・ウェハ、5・・・樹脂、6・・、雷竿
ビーLJ−700,雷エビ−1−Q・・・二次電子、9
.lO・・・二次電子検出器、11・・・電子ビーム源
制御部、12.13・・・信号変換部、14・・・画像
処理部、15・・・表示部、16・・・主制御部。
FIG. 1(a) is a perspective view showing an inspection method using a scanning electron microscope which is an embodiment of the present invention, FIG. 1(b) is a block diagram illustrating the operation of the inspection method, and FIG. 1(c) 1 is a diagram showing a CRT screen which is a display section. DESCRIPTION OF SYMBOLS 1...XY table, 2...Measurement sample, 3...Resist, 4...Wafer, 5...Resin, 6..., Thunder Rod Bee LJ-700, Thunder Shrimp-1-Q・...Secondary electron, 9
.. lO...Secondary electron detector, 11...Electron beam source control unit, 12.13...Signal conversion unit, 14...Image processing unit, 15...Display unit, 16...Main control section.

Claims (1)

【特許請求の範囲】 1、被検査物に照射される電子ビームによって発生され
る二次電子を検出することによって被検査物の検査を行
う検査方法であって、被検査物上を走査される電子ビー
ムによって構成される検査視野の直交する2軸の倍率比
が表示部において可変であることを特徴とする検査方法
。 2、被検査物がウェハであることを特徴とする特許請求
の範囲第1項記載の検査方法。
[Scope of Claims] 1. An inspection method for inspecting an object to be inspected by detecting secondary electrons generated by an electron beam irradiated onto the object, which is scanned over the object to be inspected. An inspection method characterized in that the magnification ratio of two orthogonal axes of an inspection field formed by an electron beam is variable in a display section. 2. The inspection method according to claim 1, wherein the object to be inspected is a wafer.
JP59270826A 1984-12-24 1984-12-24 Inspection Pending JPS61148312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59270826A JPS61148312A (en) 1984-12-24 1984-12-24 Inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59270826A JPS61148312A (en) 1984-12-24 1984-12-24 Inspection

Publications (1)

Publication Number Publication Date
JPS61148312A true JPS61148312A (en) 1986-07-07

Family

ID=17491548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59270826A Pending JPS61148312A (en) 1984-12-24 1984-12-24 Inspection

Country Status (1)

Country Link
JP (1) JPS61148312A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138864A (en) * 2001-08-29 2006-06-01 Hitachi Ltd Sample dimension measuring method and scanning electron microscope
JP2007003535A (en) * 2001-08-29 2007-01-11 Hitachi Ltd Sample dimension measuring method, and scanning electron microscope
US7659508B2 (en) 2001-08-29 2010-02-09 Hitachi, Ltd. Method for measuring dimensions of sample and scanning electron microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138864A (en) * 2001-08-29 2006-06-01 Hitachi Ltd Sample dimension measuring method and scanning electron microscope
JP2007003535A (en) * 2001-08-29 2007-01-11 Hitachi Ltd Sample dimension measuring method, and scanning electron microscope
US7659508B2 (en) 2001-08-29 2010-02-09 Hitachi, Ltd. Method for measuring dimensions of sample and scanning electron microscope
US8080789B2 (en) 2001-08-29 2011-12-20 Hitachi, Ltd. Sample dimension measuring method and scanning electron microscope

Similar Documents

Publication Publication Date Title
KR100775437B1 (en) Pattern inspection device and method
US4941980A (en) System for measuring a topographical feature on a specimen
US7351968B1 (en) Multi-pixel electron emission die-to-die inspection
JP5596141B2 (en) Image processing apparatus, charged particle beam apparatus, charged particle beam apparatus adjustment sample, and manufacturing method thereof
JPH11108864A (en) Method and apparatus for inspecting pattern flaw
JP2010067533A (en) Device and method for inspection of substrate
US6787770B2 (en) Method of inspecting holes using charged-particle beam
JPS61148312A (en) Inspection
JP2000286310A (en) Method and apparatus for inspecting pattern defects
JPH0458622B2 (en)
JP2001093950A (en) Method and device for inspecting semiconductor pattern
JP3280531B2 (en) Method for analyzing minute foreign matter, analyzer, and method for producing semiconductor element or liquid crystal display element using the same
JP3765988B2 (en) Electron beam visual inspection device
JPS6269527A (en) Inspecting apparatus
WO2006120722A1 (en) Semiconductor device fabricating method
US11145556B2 (en) Method and device for inspection of semiconductor samples
JP3421522B2 (en) Pattern inspection apparatus, pattern inspection apparatus using electron beam, and method therefor
Müller et al. Influence of absorber stress on the precision of x‐ray masks
JPS6293934A (en) Inspection device
Brunner et al. Electron-beam metrology and inspection
JP3491974B2 (en) Sample moving method and sample moving device
JPS61168853A (en) Testing device
US20240242989A1 (en) Grid structure for fixing specimen
JPH02216042A (en) Reflected electron beam diffraction apparatus
JPH0445046B2 (en)