JPS61148249A - Rubber composition and additive therefor - Google Patents

Rubber composition and additive therefor

Info

Publication number
JPS61148249A
JPS61148249A JP59271359A JP27135984A JPS61148249A JP S61148249 A JPS61148249 A JP S61148249A JP 59271359 A JP59271359 A JP 59271359A JP 27135984 A JP27135984 A JP 27135984A JP S61148249 A JPS61148249 A JP S61148249A
Authority
JP
Japan
Prior art keywords
ring double
cyclopentadiene
double bonds
petroleum resin
concentration ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59271359A
Other languages
Japanese (ja)
Other versions
JPH0371464B2 (en
Inventor
Takeshi Matsumoto
毅 松本
Suetaka Hayashida
林田 季任
Yasunobu Sakai
康宣 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP59271359A priority Critical patent/JPS61148249A/en
Publication of JPS61148249A publication Critical patent/JPS61148249A/en
Publication of JPH0371464B2 publication Critical patent/JPH0371464B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rubber composition having remarkably improved cut resistance and chipping resistance, by compounding a rubber with a thermally polymerized cyclopentadiene-type petroleum resin having specified concentration ratio of norbornene ring double bond to cyclopentene ring double bond. CONSTITUTION:100pts.(wt.) of a diene polymer (e.g. natural rubber, poly butadiene, etc.) is compounded with 5-40pts., preferably 5-20pts. of a thermally polymerized cyclopentadiene-type petroleum resin wherein the concentration ratio of the norbornene ring double bond to the cyclopentene ring double bond is <=0.4 and the ratio of the copolymerizable olefinic hydrocarbon to cyclopentadiene is <=10wt%.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はノルボルネン環二重結合のシクロペンテン環二
重結合に対する濃度比が0.40以下の値を示す熱重合
シクロペンタジェン系石油樹脂からなるゴム用配合材な
らびにそれをジエン系重合体に配合してなるゴム組成物
に関する。 該ゴム組成物は耐カッティング性および耐チッピング性
において著るしい改善がなされている。 高速バスやトラック等の大型タイヤや土木建設用の0T
R(Off The Road)タイヤは通常過酷な条
件下で使用されるため、これらのタイヤには常に高荷重
の負荷が発生し、特に岩石等との衝突によりタイヤトレ
ッド部のカッティングやチッピングがしばしば生じ安全
上の問題となっている。 (従来の技術) これらの耐カット性および耐チップ性の改良開発は古く
から行われ、天然ゴム、スチレンーブタジェンゴム(S
BR)等の最適なジエン系重合体の選択あるいはジシク
ロペンタジェンを主体とする石油樹脂を補強剤として添
加する方法が提唱されている。 特公昭48−38615号はジシクロペンタジェン系樹
脂を、特公昭52−43664号ではフェノール樹脂で
変性したジシクロペンタジェン樹脂を、また特公昭58
−18938号ではジシクロペンタジェン−オキシスチ
レン共重合体をそれぞれSBRあるいは天然ゴムに配合
することによってタイヤトレッド部の耐カット性および
耐チップ性を改良できることを各々開示している。しか
しながらいずれの方法も十分に満足されるべきものでは
なく、特に今日の交通量の激増や車両使用条件の過酷化
に伴ない更により高いタイヤ性能が要求されている。 (解決しようとする問題点) 本発明の目的は、更に優れた耐カット性および耐チップ
性を示すゴム組成物ならびにそれに用いる配合材を提供
することにある。高速度あるいは高荷重で回転するタイ
ヤトレッド部と岩石等との衝突あるいは摩擦等によって
生じるカッティングあるいはチッピングの程度を評価す
るには、実走行テストやミニチュア−タイヤによるシュ
ミレーションテストあるいは衝撃カット試験等複雑な実
用性能試験が必要であり、多大な費用、労力及び時間を
必要とする。しかし、上記3件の特許公報等に該性能の
実験室評価法として引張試験法が教示されており、しか
もこの試験法が実用性能と良く相関することも確認され
ている。引張試験はゴム組成物の伸びと応力とを測定す
ることによりゴム組成物の弾性エネルギー特性を示す方
法である。タイヤトレッド部のカッティングおよびチッ
ピングの発生度合が岩石等との衝突等により生じるエネ
ルギーをタイヤトレッド部がどれ程吸収するかで左右さ
れることを考えると該試験法はよく理解される方法であ
る。                   1したが
って換言するならば本発明の目的はより大きな弾性エネ
ルギー特性すなわち、常温および高il!(100℃)
でより大きな応力値と伸びを示すゴム組成物、特に優れ
た引張応力を示すゴム組成物ならびにそれに用いる配合
材を提供することにある。この様な常温及び高温で引張
応力の優れたゴム組成物はタイヤトレッド部のうち、常
時高い荷重を受けやすい部分に特に有効である。 (問題を解決するための手段) 本発明者らは種々のゴム組成物用石油樹脂について鋭意
検討を重ね開発改良を行なった結果、ノルボルネン環二
重結合のシクロペンテン環二重結合に対する濃度比が0
.40以下になる様に調整したシクロペンタジェン系石
油樹脂がより一層の配合効果を示すことを見い出し本発
明を完成した。 すなわち、本発明の要旨はノルボルネン環二重結合のシ
クロペンテン環二重結合に対する濃度比が0.40以下
の値を示す熱重合シクロペンタジェン系石油樹脂をジエ
ン系重合体に配合してなるゴム組成物ならびに上記石油
樹脂からなるゴム用配合材に存する。 ノルボルネン環二重結合のシクロペンテン環二重結合に
対する比は試料の水素核磁気共鳴スペクトル(NMR)
で約5.9ppm(δ)付近のノルボルネン環二重結合
のプロトンに基づくピークの約5.6ppm(δ)付近
のシクロペンテン環二重結合のプロトンに基づくピーク
に対する面積比(濃度比)を測定することによって求め
られる。すなわち、本発明の配合材および組成物で用い
られる前記のシクロペンタジェン系石油樹脂は核磁気共
鳴スペクトルの上記の面積比が0.40以下のものであ
る。 上記の特性を有するシクロペンタジェン系石油樹脂は特
別な処理を要さずに、通常の方法で条件を適宜選択する
ことによって製造することができる。すなわち、本発明
で用いるシクロペンタジェン系石油樹脂は通常の方法で
製造され、ノルボルネン環二重結合とシクロペンテン環
二重結合の濃度比は熱重合条件、溶媒除去条件あるいは
希望に応じて行われる2段目の重合条件の適切な設定に
よって主に調整される。以下その詳細について述べる。 本発明で言うシクロペンタジェン系石油樹脂とはシクロ
ペンタジェン、ジシクロペンタジェンあるいはこれらの
アルキル置換体あるいはこれらの混合物を主成分として
熱重合させた石油樹脂であり、これらと共重合可能な第
1/フイン類炭化水素化合物との共重合樹脂も含まれる
。 ここで言うシクロペンタジェン類と共重合可能なオレフ
ィン類としてはイソプレン、1.3−ペンタジェン、ブ
タジェン、ブテン類等の脂肪族オレフィン、シクロペン
テン等の脂環族オレフインオヨヒスチレン、ビニルトル
エン等のビニル置換芳香族炭化水素類あるいはこれらの
混合物が挙げられる。 なお、共重合可能なオレフィン類炭化水素の址は弾性エ
ネルギー特性から考えてシクロペンタジェン類あたり1
0重量%未満が好ましい。 さらに重合のさせ易さあるいは重合体収量などの面も考
え併せると、原料のモノマー混合物中におけるシクロペ
ンタジェン類に対する上記の共重合可能なオレフィン類
の割合を10重量%未満とするのが良い。 このようなシクロペンタジェン類の重合はキシレン、ト
ルエン、n−ヘキサノあるいはケロシン等の溶剤の存在
下あるいは不存在下、回分式あるいは連続式装置を用い
て200〜350℃、好ましくは240〜300°Cの
温度範囲で01〜10時間の条件で一般に行われる。ノ
ルボルネン環二重結合のシクロペンテン環二重結合に対
する濃度比が0.40以下になる重合温度および重合時
間の領域はシクロペンタジェン類の種類、濃度あるいは
溶剤の種類等で大幅に変動するため、一義的には設定さ
れないが一般に重合条件が過酷になるにつれ該濃度比は
小さくなる。ごく一般的には比較的低温度の場合4゜5
時間以上の重合時間が必要であり、また比較的高温度の
場合1,2時間程度の重合時間で所望の濃度比を有する
石油樹脂が得られる。なお引き続き溶剤の存在下低温度
で2段目の熱重合を行う場合も同様な事が類推される。 溶剤除去条件は本質的にはノルボルネン環二重結合とシ
クロペンテン環二重結合の濃度比に影響を及ぼさないが
、溶剤および未反応モノマーの除去の際随伴される主に
2,3量体を含む比較的低分子量のオリゴマーの量が除
去条件によって異なり、その結果としてノルボルネン環
二重結合とシクロペンテン環二重結合の濃度比が変動す
る。したがって除去条件の設定により製品の二重結合濃
度比を調整することが可能である。 更に、溶剤除去後2段目の熱重合を行うことによっても
ノルボルネン環二重結合とシクロペンテン環二重結合の
濃度比を小さくすることができる。すなわち、2段目の
熱重合の進行に伴ない該二重結合の濃度比は小さくなる
。 なお、この様な製造条件の設定以外にも、製品のノルボ
ルネン環二重結合と選択的に反応する化学種あるいはマ
スキング剤の使用によってもノルボルネン環二重結合の
シクロペンテン環二重結合に対する濃度比を0.40以
下に調整することができる。 該シクロペンタジェン系石油樹脂はジエン系重合体1o
O!it部あたり一般に5〜40重着部好ましくは5〜
2Otlt部配合される。 また、本発明の「ジエン糸重合体」には天然ゴム、ポリ
ブタジェンゴム、スチレン−ブタジェンゴム、インプレ
ンゴム等およびこれらの混合物が含まれる。 (発明の効果) 本発明の配合材は極めて簡単に製造されうろものであり
ながら配合効果が優れ、従来用いられてきたシクロペン
タジェン系石油樹脂の配合に比べて耐カット性および耐
チップ性が容易に10%程度以上改善されつる。 (実施例) 以下芙施例などにより本発明をさらに具体的に説明する
が、これらによって本発明が限定されるものではない。 配合処方は第1表に示すとおり標準的なものであり、配
合割合は全て重量部である。配合に用いた加硫促進剤等
も一般的なものである。 混合はロール方式で通常の方法(JISK6383)を
用いて行い引張強さ、300%引張応力、引張伸びおよ
び硬さくスプリング式JIS  A型)等の物性はいず
れも、Tl5K6301の方法に従って評価した。標準
例1は軟化剤として石油樹脂を含まt
(Industrial Application Field) The present invention relates to rubber compounding materials made of thermally polymerized cyclopentadiene petroleum resins having a concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds of 0.40 or less, and the use of the same. The present invention relates to a rubber composition blended with a diene polymer. The rubber composition has significantly improved cutting and chipping resistance. 0T for large tires such as highway buses and trucks, and for civil engineering construction.
Since R (Off The Road) tires are usually used under harsh conditions, these tires are constantly subjected to high loads, which often causes cutting or chipping of the tire tread due to collisions with rocks, etc. This is a safety issue. (Prior art) Improvements in cut resistance and chip resistance have been developed for a long time, and natural rubber, styrene-butadiene rubber (S
It has been proposed to select an optimal diene polymer such as BR) or to add a petroleum resin mainly composed of dicyclopentadiene as a reinforcing agent. Japanese Patent Publication No. 48-38615 uses a dicyclopentadiene resin, and Japanese Patent Publication No. 52-43664 uses a dicyclopentadiene resin modified with a phenol resin.
No. 18938 discloses that the cut resistance and chip resistance of a tire tread can be improved by blending a dicyclopentadiene-oxystyrene copolymer with SBR or natural rubber, respectively. However, none of these methods should be fully satisfied, and even higher tire performance is required, especially as today's traffic volume increases dramatically and vehicle usage conditions become more severe. (Problems to be Solved) An object of the present invention is to provide a rubber composition exhibiting even better cut resistance and chip resistance, and a compounding material used therein. To evaluate the degree of cutting or chipping caused by collision or friction between the tire tread rotating at high speeds or under high load and rocks, etc., complex tests such as actual driving tests, simulation tests using miniature tires, or impact cut tests are necessary. Practical performance tests are required, which requires a great deal of cost, effort, and time. However, the above-mentioned three patent publications teach a tensile test method as a laboratory evaluation method for this performance, and it has also been confirmed that this test method correlates well with practical performance. A tensile test is a method of showing the elastic energy properties of a rubber composition by measuring the elongation and stress of the rubber composition. This test method is a well-understood method considering that the degree of cutting and chipping in the tire tread depends on how much energy the tire tread absorbs due to collisions with rocks and the like. 1 Therefore, in other words, the object of the present invention is to have greater elastic energy properties, i.e., room temperature and high il! (100℃)
The object of the present invention is to provide a rubber composition that exhibits a larger stress value and elongation, particularly a rubber composition that exhibits excellent tensile stress, and a compounding material used therein. Such a rubber composition having excellent tensile stress at room temperature and high temperature is particularly effective for the tire tread portion, which is susceptible to constant high loads. (Means for Solving the Problem) The present inventors have conducted intensive studies on various petroleum resins for use in rubber compositions, and have developed and improved them. As a result, the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is 0.
.. The present invention was completed by discovering that a cyclopentadiene petroleum resin adjusted to have a molecular weight of 40 or less exhibits even greater blending effects. That is, the gist of the present invention is to provide a rubber composition in which a diene polymer is blended with a thermally polymerized cyclopentadiene petroleum resin in which the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is 0.40 or less. It consists in rubber compounding materials made of petroleum resins as well as petroleum resins mentioned above. The ratio of the norbornene ring double bond to the cyclopentene ring double bond is determined by the hydrogen nuclear magnetic resonance spectrum (NMR) of the sample.
Measure the area ratio (concentration ratio) of the peak based on the proton of the norbornene ring double bond near about 5.9 ppm (δ) to the peak based on the proton of the cyclopentene ring double bond near about 5.6 ppm (δ). required. That is, the above-mentioned cyclopentadiene-based petroleum resin used in the compounding material and composition of the present invention has the above-mentioned area ratio in the nuclear magnetic resonance spectrum of 0.40 or less. The cyclopentadiene petroleum resin having the above characteristics can be produced by a conventional method by appropriately selecting conditions without requiring any special treatment. That is, the cyclopentadiene petroleum resin used in the present invention is produced by a conventional method, and the concentration ratio of norbornene ring double bonds and cyclopentene ring double bonds is determined according to thermal polymerization conditions, solvent removal conditions, or as desired. It is mainly controlled by appropriately setting the polymerization conditions of each step. The details will be described below. The cyclopentadiene-based petroleum resin referred to in the present invention is a petroleum resin thermally polymerized with cyclopentadiene, dicyclopentadiene, alkyl substituted products thereof, or a mixture thereof as a main component. Copolymer resins with 1/fin hydrocarbon compounds are also included. The olefins copolymerizable with the cyclopentadiene mentioned here include aliphatic olefins such as isoprene, 1,3-pentadiene, butadiene, and butenes, alicyclic olefins such as cyclopentene, vinyl olefins such as oyohistyrene, and vinyltoluene. Examples include substituted aromatic hydrocarbons or mixtures thereof. In addition, considering the elastic energy characteristics, the number of copolymerizable olefin hydrocarbons is 1 per cyclopentadiene.
Less than 0% by weight is preferred. Furthermore, considering aspects such as ease of polymerization and polymer yield, it is preferable that the ratio of the above-mentioned copolymerizable olefins to cyclopentadiene in the raw material monomer mixture is less than 10% by weight. Such polymerization of cyclopentadines is carried out at 200 to 350°C, preferably 240 to 300°C, using a batch system or continuous system in the presence or absence of a solvent such as xylene, toluene, n-hexano, or kerosene. It is generally carried out at a temperature range of 0.1 to 10 hours. The range of polymerization temperature and polymerization time in which the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is 0.40 or less varies greatly depending on the type of cyclopentadiene, concentration, type of solvent, etc. Although not set specifically, the concentration ratio generally decreases as the polymerization conditions become more severe. Generally speaking, 4°5 at relatively low temperatures.
A petroleum resin having a desired concentration ratio can be obtained with a polymerization time of about 1 to 2 hours when the temperature is relatively high. The same thing can be inferred when the second stage thermal polymerization is subsequently carried out at a low temperature in the presence of a solvent. The solvent removal conditions essentially do not affect the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds, but mainly contain dimers and trimers that are entrained during the removal of solvent and unreacted monomers. The amount of relatively low molecular weight oligomers varies depending on the removal conditions, and as a result, the concentration ratio of norbornene ring double bonds and cyclopentene ring double bonds varies. Therefore, it is possible to adjust the double bond concentration ratio of the product by setting the removal conditions. Furthermore, the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds can also be reduced by performing a second thermal polymerization after removing the solvent. That is, as the second stage thermal polymerization progresses, the concentration ratio of the double bonds decreases. In addition to setting these manufacturing conditions, the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds can also be controlled by using chemical species or masking agents that selectively react with the norbornene ring double bonds in the product. It can be adjusted to 0.40 or less. The cyclopentadiene petroleum resin is a diene polymer 1o
O! Generally 5 to 40 overlapped parts per it part, preferably 5 to 40 overlapped parts
20tlt part is blended. Further, the "diene thread polymer" of the present invention includes natural rubber, polybutadiene rubber, styrene-butadiene rubber, imprene rubber, etc., and mixtures thereof. (Effects of the Invention) Although the compounded material of the present invention is extremely easily manufactured and has a scaly substance, it has an excellent compounding effect, and has better cut resistance and chip resistance than the conventionally used cyclopentadiene petroleum resin compound. It can easily be improved by about 10% or more. (Examples) The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited by these. The formulation is standard as shown in Table 1, and all proportions are in parts by weight. The vulcanization accelerators used in the formulation are also common. Mixing was carried out using a roll method using a normal method (JIS K6383), and physical properties such as tensile strength, 300% tensile stress, tensile elongation, and hard spring type JIS A type were all evaluated according to the method of Tl5K6301. Standard example 1 contains petroleum resin as a softener.

【い例(ブランク
)であり、比較例1は通常の方法で重合したノルボルネ
ン環二重結合のシクロペンテン環二重結合に対する濃度
比が0.40より大きいシクロペンタジェン系石油樹脂
の例であり、参考例】はシクロペンタジェンおよびメチ
ルシクロペンタジェンを主成分とする市販の石油樹脂の
例である。 比較例1 ナフサのスチームクラッキングから得られたジシクロペ
ンタジェン類の濃度が84重量%のジシクロペンタジェ
ン6001Iとキシレン400gを内容積3ノのオート
クレーブに仕込み、窒素雰囲気下で攪拌しながら250
℃で3時間保持し、重合を行なった。反応終了後直ちに
反応系を冷却し生成物を取り出した。 重合生成物から減圧蒸留により190℃でキシレン、未
反応シクロペンタジェン等を除去し、軟化点97℃のシ
クロペンタジェン樹脂307Iを得た。該樹脂のノルボ
ルネン環二重結合のシクロペンテン環二重結合に対する
濃度比は0.62であった。 参考例1 石油樹脂からなる市販のゴム配合剤(Exxon社製)
を用いた。該石油樹脂を電解脱離質量分析計で分析した
結果、その主成分はシクロペンタジェンとメチルシクロ
ペンタジェンであった。 またそのノルボルネン環二重結合のシクロペンテン環二
重結合に対する濃度比は0.46であった。 実施例11 比較例1と同様な方法で270℃で2時間熱重合した。 その後160°Cで溶剤等の除去を行ない軟化点が96
℃の石油樹脂42011を得た。 該石油樹脂のノルボルネン環二重結合のシクロペンテン
環二重結合に対する濃度比は0.33であった。 実施例2 比較例1と同様な方法で280℃で2時間熱重合した。 その後140℃の温和な条件下で溶剤等を除去し、軟化
点92℃の石油樹脂480.9をiた。ノルボルネン環
二重結合のシクロペンテン環二重結合に対する濃度比は
0.38であった。 実施例3 比較例1と同様な方法で260℃で2時間熱重合した。 その後210℃で溶剤等を除去した後、更に240℃で
1時間重合した。軟化点1140℃の石油樹脂270g
を得た。ノルボルネン環二重結合のシクロペンテン環二
重結合に対する濃度比は0.31であった。 上記比較例1および実施例1〜3で得たシクロペンタジ
ェン樹脂および参考例1の市販シフロベンタジェン系樹
脂をそれぞれ配合したゴムの引張試験を行った。ゴム組
成物の配合割合を第1表に示し、加硫後のゴム物性を第
2表に示す。実施例1〜30石油樹脂は明らかに比較例
1および参考例1の石油樹脂よりも優れた弾性エネルギ
ー特性を持つことが理解される。 第  1  表 5BR−1500100]i量部 亜鉛華1号    5.0〃 ステアリン酸     3.01 硫     黄       2.01加硫促進剤MB
T8    1.0# ’   D’PG      O,5NHAFカーボン
ブラツク    50  1メ一カー名 SBR1500:  日本合成ゴム■ 亜鉛華1号  :堺化学工業■ ステアリン酸  :東日本理化■ 硫     黄   :細井化学工業■加硫促進剤MB
TS  :入内新興化学工業■〃  DPG   : HAFカーボンブラック(旭70) :旭カーボン■
Comparative Example 1 is an example of a cyclopentadiene petroleum resin in which the concentration ratio of the norbornene ring double bond to the cyclopentene ring double bond is greater than 0.40, which was polymerized by a conventional method. Reference Example] is an example of a commercially available petroleum resin containing cyclopentadiene and methylcyclopentadiene as main components. Comparative Example 1 Dicyclopentadiene 6001I with a dicyclopentadiene concentration of 84% by weight obtained from steam cracking of naphtha and 400 g of xylene were charged into an autoclave with an internal volume of 3 mm, and heated to 250 g while stirring under a nitrogen atmosphere.
The mixture was held at ℃ for 3 hours to carry out polymerization. Immediately after the reaction was completed, the reaction system was cooled and the product was taken out. Xylene, unreacted cyclopentadiene, etc. were removed from the polymerization product by vacuum distillation at 190°C to obtain cyclopentadiene resin 307I having a softening point of 97°C. The concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds in the resin was 0.62. Reference Example 1 Commercially available rubber compound made of petroleum resin (manufactured by Exxon)
was used. Analysis of the petroleum resin using an electrolytic desorption mass spectrometer revealed that its main components were cyclopentadiene and methylcyclopentadiene. The concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds was 0.46. Example 11 Thermal polymerization was carried out at 270° C. for 2 hours in the same manner as in Comparative Example 1. After that, the solvent was removed at 160°C and the softening point was 96.
C. Petroleum resin 42011 was obtained. The concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds in the petroleum resin was 0.33. Example 2 Thermal polymerization was carried out at 280° C. for 2 hours in the same manner as in Comparative Example 1. Thereafter, the solvent and the like were removed under mild conditions at 140°C to obtain a petroleum resin 480.9 having a softening point of 92°C. The concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds was 0.38. Example 3 Thermal polymerization was carried out at 260° C. for 2 hours in the same manner as in Comparative Example 1. Thereafter, after removing the solvent and the like at 210°C, polymerization was further carried out at 240°C for 1 hour. 270g of petroleum resin with a softening point of 1140℃
I got it. The concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds was 0.31. Tensile tests were conducted on rubbers blended with the cyclopentadiene resins obtained in Comparative Example 1 and Examples 1 to 3, and the commercially available cyclopentadiene resin of Reference Example 1, respectively. The compounding ratio of the rubber composition is shown in Table 1, and the physical properties of the rubber after vulcanization are shown in Table 2. It is understood that the petroleum resins of Examples 1 to 30 clearly have better elastic energy properties than the petroleum resins of Comparative Example 1 and Reference Example 1. 1 Table 5BR-1500100] i parts Zinc white No. 1 5.0 Stearic acid 3.01 Sulfur 2.01 Vulcanization accelerator MB
T8 1.0# 'D'PG O,5NHAF carbon black 50 1 Manufacturer name SBR1500: Japan Synthetic Rubber ■ Zinc white No. 1: Sakai Chemical Industry ■ Stearic acid: East Japan Chemical ■ Sulfur: Hosoi Chemical Industry ■ Vulcanization Accelerator MB
TS: Iriuchi Shinko Chemical Industry ■ DPG: HAF Carbon Black (Asahi 70): Asahi Carbon ■

Claims (4)

【特許請求の範囲】[Claims] (1)ノルボルネン環二重結合のシクロペンテン環二重
結合に対する濃度比が0.40以下の値を示す熱重合シ
クロペンタジエン系石油樹脂をジエン系重合体に配合し
てなるゴム組成物。
(1) A rubber composition prepared by blending a thermally polymerized cyclopentadiene petroleum resin with a diene polymer in which the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is 0.40 or less.
(2)該シクロペンタジエン系石油樹脂中のシクロペン
タジエン類あたり共重合可能なオレフイン類炭化水素の
割合が10重量%未満である特許請求の範囲第1項に記
載の組成物。
(2) The composition according to claim 1, wherein the proportion of copolymerizable olefin hydrocarbons per cyclopentadiene in the cyclopentadiene petroleum resin is less than 10% by weight.
(3)ノルボルネン環二重結合のシクロペンテン環二重
結合に対する濃度比が0.40以下の値を示す熱重合シ
クロペンタジエン系石油樹脂からなるゴム用配合材。
(3) A compound material for rubber comprising a thermally polymerized cyclopentadiene petroleum resin in which the concentration ratio of norbornene ring double bonds to cyclopentene ring double bonds is 0.40 or less.
(4)該シクロペンタジエン系石油樹脂中のシクロペン
タジエン類あたり共重合可能なオレフイン類炭化水素の
割合が10重量%未満である特許請求の範囲第3項に記
載のゴム用配合材。
(4) The rubber compound according to claim 3, wherein the proportion of copolymerizable olefin hydrocarbons per cyclopentadiene in the cyclopentadiene petroleum resin is less than 10% by weight.
JP59271359A 1984-12-21 1984-12-21 Rubber composition and additive therefor Granted JPS61148249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59271359A JPS61148249A (en) 1984-12-21 1984-12-21 Rubber composition and additive therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59271359A JPS61148249A (en) 1984-12-21 1984-12-21 Rubber composition and additive therefor

Publications (2)

Publication Number Publication Date
JPS61148249A true JPS61148249A (en) 1986-07-05
JPH0371464B2 JPH0371464B2 (en) 1991-11-13

Family

ID=17498969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59271359A Granted JPS61148249A (en) 1984-12-21 1984-12-21 Rubber composition and additive therefor

Country Status (1)

Country Link
JP (1) JPS61148249A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190538A (en) * 1985-02-19 1986-08-25 Bridgestone Corp Rubber composition of improved cutting and chipping resistance
JPS6414259A (en) * 1987-07-08 1989-01-18 Maruzen Petrochem Co Ltd Rubber composition and additive for rubber
US4997677A (en) * 1987-08-31 1991-03-05 Massachusetts Institute Of Technology Vapor phase reactor for making multilayer structures
EP4019273A4 (en) * 2019-08-22 2023-09-27 ENEOS Corporation Sulfur-containing unsaturated hydrocarbon polymer, method for manufacturing same, additive for rubber, rubber composition, and tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838615A (en) * 1971-09-17 1973-06-07
JPS53115763A (en) * 1977-03-18 1978-10-09 Kanegafuchi Chem Ind Co Ltd Composition comprising non-crystalline dicyclopentadiene ring-opened polymer and rubber
JPS57178906A (en) * 1981-04-09 1982-11-04 Goodyear Tire & Rubber Pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838615A (en) * 1971-09-17 1973-06-07
JPS53115763A (en) * 1977-03-18 1978-10-09 Kanegafuchi Chem Ind Co Ltd Composition comprising non-crystalline dicyclopentadiene ring-opened polymer and rubber
JPS57178906A (en) * 1981-04-09 1982-11-04 Goodyear Tire & Rubber Pneumatic tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190538A (en) * 1985-02-19 1986-08-25 Bridgestone Corp Rubber composition of improved cutting and chipping resistance
JPS6414259A (en) * 1987-07-08 1989-01-18 Maruzen Petrochem Co Ltd Rubber composition and additive for rubber
US4997677A (en) * 1987-08-31 1991-03-05 Massachusetts Institute Of Technology Vapor phase reactor for making multilayer structures
EP4019273A4 (en) * 2019-08-22 2023-09-27 ENEOS Corporation Sulfur-containing unsaturated hydrocarbon polymer, method for manufacturing same, additive for rubber, rubber composition, and tire

Also Published As

Publication number Publication date
JPH0371464B2 (en) 1991-11-13

Similar Documents

Publication Publication Date Title
Chough et al. Kinetics of sulfur vulcanization of NR, BR, SBR, and their blends using a rheometer and DSC
JPH0345742B2 (en)
JPH1077361A (en) Rubber compound having improved cure-reversion resistance
JPH0228604B2 (en)
JP4782910B2 (en) Dicyclopentadiene / limonene polymer resin
JP4230622B2 (en) A rubber composition containing an anti-reversion material and a tire having the component.
US6242550B1 (en) Polymeric dimethyl- dicyclopentadiene/limonene resin
US4968764A (en) Rubber compounding material and composition
JP2002284933A (en) Modified conjugated dienic polymer composition and rubber composition
EP3950380A1 (en) Cross-linked product and tire
JPS6056182B2 (en) hard rubber composition
JP2854946B2 (en) Vulcanizable rubber composition containing hydroxyaryl-substituted monomaleimide
JPS61148249A (en) Rubber composition and additive therefor
KR100196885B1 (en) Sulfur vulcanizable rubber compositions containing n,n&#39;-(m-phenylene)bismaleimide
KR19980018865A (en) Rubber composition containing N, N&#39;-bis (hydroxyphenyl) maleamide (RUBBER COMPOSITIONS CONTAINING N, N&#39;-BIS (HYDROXYPHENYL) MALEAMIDE)
JPH0229413A (en) Ab-block copolymer based on butadiene, isoprene and styrene and its production and use
JPS58152030A (en) Rubber composition
JPH049820B2 (en)
JPH0699600B2 (en) Rubber composition
EP4321542A1 (en) Liquid butadiene compound with both ends modified, method for preparing same, and use of same
EP0514876A1 (en) Rubber composition suitable for automobile tires and its production
JPS5948018B2 (en) Compound composition of norbornene-based ring-opening polymer and rubber
US3630989A (en) Stabilization of unvulcanized interconnected rubbery diene polymers with a complex of an aryl borate and a nalkyl trimethylene diamine
JPH01247437A (en) Improver for low-temperature property of rubber and improvement of low-temperature property of rubber
JPS5818938B2 (en) rubber composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees