JPS6114815B2 - - Google Patents
Info
- Publication number
- JPS6114815B2 JPS6114815B2 JP51023995A JP2399576A JPS6114815B2 JP S6114815 B2 JPS6114815 B2 JP S6114815B2 JP 51023995 A JP51023995 A JP 51023995A JP 2399576 A JP2399576 A JP 2399576A JP S6114815 B2 JPS6114815 B2 JP S6114815B2
- Authority
- JP
- Japan
- Prior art keywords
- ray
- target
- electron beam
- guide
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010894 electron beam technology Methods 0.000 claims description 25
- 238000000605 extraction Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Measurement Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Electron Tubes For Measurement (AREA)
Description
【発明の詳細な説明】
本発明は、超高速でX線体軸断層像を得ること
のできる装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus capable of obtaining an X-ray body axial tomogram at ultra-high speed.
近時、X線による体軸断層像を取得する装置が
開発され、画期的な医用診断装置として注目され
ている。斯る装置はX線マイクロビームを種々の
方向より被写体に照射、走査し、各走査線におけ
る被写体透過X線を検出し、これをコンピユータ
ーに送つて仮想マトリツクス各点のX線吸収率の
相対値を求め、体軸断層像として表示するもので
体内の腫瘍等の診断には極めて威力を発揮する。 Recently, an apparatus for acquiring body axial tomographic images using X-rays has been developed and is attracting attention as an innovative medical diagnostic apparatus. Such a device irradiates and scans an object with an X-ray microbeam from various directions, detects the X-rays transmitted through the object in each scanning line, and sends this to a computer to calculate the relative value of the X-ray absorption rate at each point in a virtual matrix. It calculates and displays it as a body axial tomographic image, which is extremely useful for diagnosing tumors inside the body.
しかし乍ら、現在開発されている装置は、コリ
メータ付X線管球を機械的に移動走査させ且つこ
れを被写体のまわりに機械的に回転させる様な構
造になつている。この為、任意切面における一連
の情報を得るのに数秒乃至数十秒を費やし、従つ
て心臓等の時間的に変化する器官の断層像を得る
ことはできない。 However, the currently developed apparatus has a structure in which an X-ray tube with a collimator is mechanically moved and scanned, and is also mechanically rotated around the subject. For this reason, it takes several seconds to several tens of seconds to obtain a series of information on an arbitrary cross section, and therefore it is impossible to obtain a tomographic image of an organ that changes over time, such as the heart.
勿論、現在撮像の高速化について強力な研究が
進められているが、その主流は従来のX線管球を
多数被写体の囲りに並べ、これら管球から発生し
被写体を透過したX線を多数の検出器により同時
に検出するような構造をなしている。しかし乍
ら、この様な装置では構造の複雑、大型並びに高
額化を伴い、実用上大きな障害となる。 Of course, strong research is currently underway to speed up imaging, but the mainstream is to arrange a large number of conventional X-ray tubes around the subject and capture a large number of X-rays generated from these tubes and transmitted through the subject. The structure is such that it can be detected simultaneously by two detectors. However, such a device is complicated in structure, large in size, and expensive, which poses a major obstacle in practical use.
而して本発明は以上の諸問題を解決し、数十分
の一秒乃至数百分の一秒の高速で撮像を可能にす
るX線断層像を得る装置を提供する。 The present invention solves the above-mentioned problems and provides an apparatus for obtaining X-ray tomographic images that enables high-speed imaging at several tenths of a second to several hundredths of a second.
以下図面に示す実施例に従つて詳述する。第1
図及び第2図において、1は基台2によつて支え
られたカラムであり、釣鐘状に形成されている。
該鏡筒の小径部分端部には、フイラメント3、ウ
エーネルト4、陽極5からなる電子銃6が設置さ
れている。この電子銃に続いて、集束レンズ7、
第1偏向コイル8が設置されており、電子銃から
発生された電子線9を適宜集束した後、第1偏向
コイル8により大きく偏向する。この偏向された
電子線は、前記鏡筒の太径部分に置かれた第2の
偏向コイル10により逆方向に偏向され、太径部
分端部に置かれた環状又はその一部からなるX線
発生用ターゲツト11に投射される。12は前記
基台1上に支えられた被写体(人間)14を寝か
すためのコーチであり、その一端部は前記釣鐘状
鏡筒の太径部内空洞部13内に挿入されている。
又、該コーチは、被写体の位置設定の為にその体
軸方向、それと直角な方向及び上下方向に移動で
きる様に構成することが好ましい。15は前記タ
ーゲツト11と被写体14との間に置かれたX線
ビームガイドであり、第2図からわかるように、
点Pから発生するX線のうち被写体14の所望領
域をカバーし得る扇形・X線ビームXを取り出す
為の穴(ガイド孔)16を有している。勿論該X
線ビームの体軸方向の厚さはできる限り薄くされ
ている。17は回転体であり鏡筒1と同軸に配置
され歯車機構18等の伝達機構を介して基台2上
のモーター19に連結している。前記ビームガイ
ドはこの回転体上に固定されている。20はX線
検出器でビームガイド15の内側に多数(数十乃
至数百)の独立した微小検出素子を環状又はその
一部をなすように並べて固定してある。又その検
出面はX線取り出し穴16からのX線ビームが被
写体に照射するのを妨げないようにターゲツト1
1上の円状の電子線照射点(X線発生点)を含む
仮想平面(図中線Aで示す)よりわずかにずらし
てあり、該ビームガイド15によつて、該平面に
対して微小角度傾いた方向に取り出されたX線が
該X線検出器20によつて検出される。21はビ
ームガイド15の位置検出装置であり、例えば光
学的検出手段が用いられビームガイドのX線取り
出し穴16が所定の位置に達したとき信号を発生
する。この信号は偏向電源22及びウエーネルト
電圧制御回路23に送られ、電子線が発射される
と同時に偏向コイル8と10のX方向及びY方向
偏向コイルに夫々ビームガイドの回転速度に対応
した周波数の正弦波及び余弦波が供給される。こ
れにより電子線9はビームガイドのX線取り出し
穴に追随してターゲツト上を円C(第2図)に沿
つて偏向移動する事ができる。この様子を第3図
に示してある。該図からわかるようにビームガイ
ド15のX線取り出し穴16が16a,16b,
16cの如く移動したとき、これに追随して電子
線照射点はP1,P2,P3に移行し、X線ビームは
X1,X2,X3の如く異つた方向から被写体14に
照射される。第3図において、点P1に電子線が照
射されているときは検出器はの範囲が又P2に照
射されているときはの範囲が更にP3に照射され
ているときはの範囲が使用され、その範囲の検
出素子からの信号がコンピユータに導入される。 Embodiments will be described in detail below according to embodiments shown in the drawings. 1st
In the figures and FIG. 2, 1 is a column supported by a base 2, and is shaped like a bell.
An electron gun 6 consisting of a filament 3, Wehnelt 4, and an anode 5 is installed at the end of the small diameter portion of the lens barrel. Following this electron gun, a focusing lens 7,
A first deflection coil 8 is installed, and after appropriately focusing the electron beam 9 generated from the electron gun, it is largely deflected by the first deflection coil 8 . This deflected electron beam is deflected in the opposite direction by a second deflection coil 10 placed at the large diameter portion of the lens barrel, and the It is projected onto the generation target 11. Reference numeral 12 denotes a coach on which a subject (human being) 14 supported on the base 1 lies, one end of which is inserted into the hollow portion 13 of the large diameter portion of the bell-shaped lens barrel.
Further, it is preferable that the coach is configured to be able to move in the direction of the body axis, in a direction perpendicular to the body axis, and in the vertical direction in order to set the position of the subject. 15 is an X-ray beam guide placed between the target 11 and the subject 14, and as can be seen from FIG.
It has a hole (guide hole) 16 for extracting a fan-shaped X-ray beam X that can cover a desired area of the subject 14 among the X-rays generated from the point P. Of course X
The thickness of the line beam in the body axis direction is made as thin as possible. A rotating body 17 is arranged coaxially with the lens barrel 1 and connected to a motor 19 on the base 2 via a transmission mechanism such as a gear mechanism 18. The beam guide is fixed on this rotating body. Reference numeral 20 denotes an X-ray detector, and a large number (several tens to hundreds) of independent microscopic detection elements are arranged and fixed inside the beam guide 15 so as to form a ring shape or a part thereof. The detection surface is placed on the target 1 so as not to prevent the X-ray beam from the X-ray extraction hole 16 from irradiating the object.
The beam guide 15 is slightly offset from the virtual plane (indicated by line A in the figure) containing the circular electron beam irradiation point (X-ray generation point) on X-rays taken out in an inclined direction are detected by the X-ray detector 20. Reference numeral 21 denotes a position detection device for the beam guide 15, which uses, for example, optical detection means and generates a signal when the X-ray extraction hole 16 of the beam guide reaches a predetermined position. This signal is sent to the deflection power supply 22 and the Wehnelt voltage control circuit 23, and at the same time as the electron beam is emitted, the X-direction and Y-direction deflection coils 8 and 10 are sent to the deflection coils 8 and 10, respectively, to generate a sine wave of a frequency corresponding to the rotational speed of the beam guide. Waves and cosine waves are provided. Thereby, the electron beam 9 can be deflected and moved over the target along the circle C (FIG. 2) following the X-ray extraction hole of the beam guide. This situation is shown in FIG. As can be seen from the figure, the X-ray extraction holes 16 of the beam guide 15 are 16a, 16b,
16c, the electron beam irradiation point moves to P 1 , P 2 , P 3 following this, and the X-ray beam
The object 14 is irradiated from different directions such as X 1 , X 2 , and X 3 . In Figure 3, when point P 1 is irradiated with the electron beam, the range of the detector is , when point P 2 is irradiated, the range is , and when point P 3 is irradiated, the range of is . is used, and the signals from the sensing elements in that range are introduced into the computer.
第4図は検出器からコンピユータまでの概略を
示すブロツク図である。図中24a,24b,2
4c……24nは、検出回路であり、各検出素子
20a,20b,20c……20nからの信号が
検出され、増巾器25a,25b,25c……2
5nを介して積分回路26a,26b,26c…
…26nに導入され、一定時間の信号が積分され
る。この積分信号は次のホールド回路27a,2
7b,27c……27nを通してマルチプレクサ
ー28に送られる。該マルチプレクサーはホール
ド回路27a,27b,27c……27nのう
ち、所望の回路の信号をA−D変換器29を介し
てコンピユータ30に送り込むためのもので該コ
ンピユータによつて制御される。又前記積分回路
26a,26b,26c……26nにはコンピユ
ータ30よりリセツト信号が送り込まれ、所定時
間の積分が終る毎にリセツトされる。この様にし
て導入された一連の情報に基づき、コンピユータ
30は仮想マトリツクス各点のX線吸収率を計算
し、表示装置31上に断層像として表示する。 FIG. 4 is a block diagram showing the outline from the detector to the computer. 24a, 24b, 2 in the figure
4c...24n is a detection circuit, which detects signals from each detection element 20a, 20b, 20c...20n, and amplifiers 25a, 25b, 25c...2
Integrating circuits 26a, 26b, 26c... via 5n.
...26n, and the signal over a certain period of time is integrated. This integral signal is transferred to the next hold circuits 27a, 2.
7b, 27c...27n to the multiplexer 28. The multiplexer is for sending a signal from a desired circuit out of the hold circuits 27a, 27b, 27c, . . . , 27n to the computer 30 via the AD converter 29, and is controlled by the computer. A reset signal is sent from the computer 30 to the integrating circuits 26a, 26b, 26c, . Based on the series of information introduced in this way, the computer 30 calculates the X-ray absorption rate at each point in the virtual matrix and displays it as a tomographic image on the display device 31.
このような構成によつて、ビームガイド15が
例えば1800r.p.m.で回転されると一連の像情報を
1/30秒程度の短時間で得ることも不可能ではな
い。 With such a configuration, when the beam guide 15 is rotated at, for example, 1800 rpm, a series of image information is transmitted.
It is not impossible to obtain it in a short time of about 1/30 seconds.
しかし乍ら実際には信号量の問題から唯一回の
走査では不充分であり、多数方向からの臨み角測
定を行い、データ量を増大さす事が精密解析のた
めには好ましい。この場合、心臓等の周期的に変
化する器官については正確な同期をとる必要があ
る。第5図はこの様な正確な同期をとるに好適な
実施例を示す。この実施例においては、多数(複
数)のX線取り出し穴32a,32b,……32
nを有するビームガイド15が使用される。本実
施例においても該ビームガイドは一定速度で回転
せられ、そのX線取り出し穴は位置検出装置21
により常に検出しておく。今もし、心音のピーク
時の断層像が得たいとき、X線取り出し穴が1個
の場合にはビームガイドの機械的回転速度が一連
のデータ取得に要する時間の制御因子となり、そ
れ以上の高速化はなかなか望めない。而して本実
施例では多数の取り出し穴を設ける事により、心
音を検出したならばビームガイドは固定状態のま
までも電子ビームのみの走査で多数の臨み角にお
けるデータ取得のための走査を実行しうる。これ
により同期検出の精度は極めて高くなる。第6図
は第5図の実施例の動作を説明する図であり、a
は例えば心音のピーク検出信号を示す。bはX線
取り出し穴の位置検出信号で、等間隔に表わされ
ている。上記心音ピーク信号が検出された直後の
X線取り出し穴位置が走査開始点に使用されb図
の信号b′により、電子線偏向電源22及びウエー
ネルト電圧制御回路23が制御されc,dに示す
如き正弦及び余弦の関係にある偏向電流がビーム
ガイドのガイド穴位置に対応してX方向及びY方
向コイルに供給される。又e又はfに示すウエー
ネルト電圧がウエーネルト電極4に印加され電子
ビームが任意時間ターゲツト上に照射され得る。
e図の場合走査の間中電子線はターゲツト上に投
射されているが、f図の場合には測定角度位置に
取り出し穴がある時間のみ電子ビームは発射され
ている。この様に必要のみ電子線をターゲツトに
照射するようにすれば不必要にターゲツトを加熱
することがなく、ターゲツトの損傷防止とパワー
アツプに寄与する。電子ビームを間歇的にターゲ
ツトに照射するには電子銃を制御する外、ビーム
通路中に例えば電子線偏向器とスリツトからなる
シヤツター装置を置き、これにより断続的にビー
ムを通すようにしても良い。該ビームの間歇照射
は第1図の実施例にも適用できること論を俟たな
い。 However, in reality, one scan is insufficient due to the problem of signal amount, and it is preferable for accurate analysis to increase the amount of data by measuring angles of view from multiple directions. In this case, it is necessary to accurately synchronize organs that change periodically, such as the heart. FIG. 5 shows an embodiment suitable for achieving such precise synchronization. In this embodiment, a large number (plurality) of X-ray extraction holes 32a, 32b,...32
A beam guide 15 with n is used. In this embodiment as well, the beam guide is rotated at a constant speed, and its X-ray extraction hole is connected to the position detection device 21.
It is always detected by Now, if you want to obtain a tomographic image at the peak of a heart sound, and there is only one X-ray extraction hole, the mechanical rotation speed of the beam guide will be the controlling factor for the time required to acquire a series of data, and even faster It is difficult to hope for a change. In this embodiment, by providing a large number of extraction holes, if a heart sound is detected, even if the beam guide remains fixed, scanning for data acquisition at a large number of viewing angles can be performed using only the electron beam. sell. This makes the accuracy of synchronization detection extremely high. FIG. 6 is a diagram explaining the operation of the embodiment shown in FIG.
indicates, for example, a heart sound peak detection signal. b is a position detection signal of the X-ray extraction hole, which is expressed at equal intervals. The X-ray extraction hole position immediately after the heart sound peak signal is detected is used as the scanning start point, and the electron beam deflection power source 22 and Wehnelt voltage control circuit 23 are controlled by the signal b' in figure b, as shown in c and d. Deflection currents having a sine and cosine relationship are supplied to the X-direction and Y-direction coils in correspondence with the guide hole positions of the beam guide. Further, the Wehnelt voltage shown at e or f is applied to the Wehnelt electrode 4, and the electron beam can be irradiated onto the target for any desired time.
In the case of figure e, the electron beam is projected onto the target during scanning, but in the case of figure f, the electron beam is emitted only during the time when the extraction hole is at the measurement angle position. By irradiating the target with the electron beam only when necessary in this way, the target is not heated unnecessarily, which contributes to preventing damage to the target and increasing power. In order to intermittently irradiate a target with an electron beam, in addition to controlling the electron gun, a shutter device consisting of an electron beam deflector and a slit may be placed in the beam path, thereby allowing the beam to pass intermittently. . It goes without saying that the intermittent irradiation of the beam can also be applied to the embodiment of FIG.
以上詳説した様な構成となせば、機械的駆動は
ビームガイドのみであり、且つこのガイドは容量
が非常に小さく、しかもガイド孔に若干の余裕を
みるときは略等速回転を行うことで充分であり、
原データ集積位置の厳密性は全て電気的制御によ
つてのみ決定される。従つて極めて高速度の同期
が達成でき数百分の一秒の超短期撮像が可能とな
る。従つて体内器官との同期計測のできる装置が
実現される。又、マルチビームガイドの回転に追
随して電子線もターゲツト上で高速移動させてい
る為、丁度回転対陰極型のX線源と同じ効果が得
られ、静的X線源に比べ、数十倍以上も強度の高
いX線が得られ、高感度の計測が可能である。 With the configuration described in detail above, the only mechanical drive is the beam guide, and this guide has a very small capacity, and if there is some margin in the guide hole, it is sufficient to rotate at approximately constant speed. and
The exactness of the original data collection location is determined solely by electrical control. Therefore, extremely high-speed synchronization can be achieved and ultra-short-term imaging of several hundredths of a second is possible. Therefore, a device capable of synchronous measurement with internal organs is realized. In addition, since the electron beam is moved at high speed over the target following the rotation of the multi-beam guide, the same effect as a rotating anode cathode type X-ray source can be obtained, and compared to a static X-ray source, the electron beam is moved at high speed over the target. X-rays that are more than twice as strong can be obtained, making highly sensitive measurements possible.
尚、上記実施例は種々の変更が可能である。例
えば図ではターゲツト11並びに検出器20は
360度の場合を示したが装置の目的に応じて120度
であつても又180度であつても差し支えない。
又、該検出器を例えば60度程度の狭い角度範囲と
なし第1図のX線取り出し穴と反対側の回転体1
7に取り付け、該ビームガイドを一体的に回転さ
せるようにしても良い。 Note that the above embodiment can be modified in various ways. For example, in the figure, the target 11 and the detector 20 are
Although the case of 360 degrees is shown, it may be 120 degrees or 180 degrees depending on the purpose of the device.
In addition, the detector may have a narrow angle range of about 60 degrees, for example, and the rotating body 1 on the opposite side of the X-ray extraction hole in Fig. 1 may be used.
7, and the beam guide may be rotated integrally.
第1図は本発明の一実施例を示す縦断面図、第
2図はその面Aにおける断面図、第3図は走査の
状況を説明する為の図、第4図は電気回路のブロ
ツク図、第5図は他の実施例を示す第2図に一部
対応する図、第6図はその動作説明図である。
1は釣鐘状鏡筒、2は基台、6は電子銃、7は
集束レンズ、8は第1偏向コイル、10は第2偏
向コイル、11はターゲツト、12はベツド、1
4は被写体、15はビームガイド、16はX線取
り出し穴、17は回転体、18は歯車機構、19
はモーター、20はX線検出器、21はX線取り
出し穴検出装置、22は偏向電源、23はウエー
ネルト電圧制御回路である。
Fig. 1 is a longitudinal sectional view showing an embodiment of the present invention, Fig. 2 is a sectional view on plane A thereof, Fig. 3 is a diagram for explaining the scanning situation, and Fig. 4 is a block diagram of the electric circuit. , FIG. 5 is a diagram partially corresponding to FIG. 2 showing another embodiment, and FIG. 6 is an explanatory diagram of its operation. 1 is a bell-shaped lens barrel, 2 is a base, 6 is an electron gun, 7 is a focusing lens, 8 is a first deflection coil, 10 is a second deflection coil, 11 is a target, 12 is a bed, 1
4 is a subject, 15 is a beam guide, 16 is an X-ray extraction hole, 17 is a rotating body, 18 is a gear mechanism, 19
20 is a motor, 20 is an X-ray detector, 21 is an X-ray extraction hole detection device, 22 is a deflection power source, and 23 is a Wehnelt voltage control circuit.
Claims (1)
部をなすX線発生用ターゲツトと、該ターゲツト
上に集束された電子線を照射する手段と、前記タ
ーゲツトと被写体との間に被写体の所望領域をカ
バーし得るような扇形X線ビームを取り出すため
のX線取り出し穴をもつビームガイドと、該ビー
ムガイドを被写体のまわりに略一定速度で回転さ
せる手段と、該ビームガイドのX線取り出し穴の
回転に追随して前記電子線を前記ターゲツト上で
偏向移動させ、該ターゲツト上で略円状に電子線
を照射する手段と、前記扇形X線ビームのうち被
写体を透過したX線を検出するため、前記X線取
り出し穴に対向する位置に並置された多数の検出
素子からなる検出器とより成り、該ターゲツトへ
の電子線の照射により発生したX線が、該ビーム
ガイドによつて該ターゲツト上の円状の電子線照
射点を含む仮想平面に対して微小角度傾いた方向
に取り出され、該検出器に検出されるように、該
ビームガイド及びX線検出器が位置付けられてい
ることを特徴とするX線断層像を得る装置。 2 特許請求の範囲1に従う装置において、前記
X線検出器は比較的狭い角度範囲をもち、前記ビ
ームガイドと一体的に回転する如くなしたX線断
層像を得る装置。 3 特許請求の範囲1に従う装置において、前記
ターゲツト上に照射される電子線を測定角位置以
外では遮断する如くなしたX線断層像を得る装
置。 4 特許請求の範囲1に従う装置において、前記
ビームガイドに複数個のX線取り出し穴を設け、
該穴のいずれかに追随して電子線が偏向移動され
るようになしたX線断層像を得る装置。[Scope of Claims] 1. An X-ray generating target arranged around a subject and forming a ring or a part thereof, means for irradiating a focused electron beam onto the target, and a space between the target and the subject. a beam guide having an X-ray extraction hole for extracting a fan-shaped X-ray beam capable of covering a desired area of a subject; a means for rotating the beam guide around the subject at a substantially constant speed; means for deflecting and moving the electron beam on the target in accordance with the rotation of the X-ray extraction hole, and irradiating the electron beam on the target in a substantially circular shape; In order to detect the electron beam, the detector consists of a large number of detection elements arranged in parallel at positions facing the X-ray extraction hole, and the X-rays generated by irradiating the target with the electron beam are directed to the beam guide. Therefore, the beam guide and the X-ray detector are positioned so that the beam is taken out in a direction tilted at a slight angle with respect to the virtual plane containing the circular electron beam irradiation point on the target and detected by the detector. An apparatus for obtaining an X-ray tomographic image. 2. The apparatus according to claim 1, wherein the X-ray detector has a relatively narrow angular range and rotates integrally with the beam guide. 3. An apparatus for obtaining an X-ray tomographic image according to claim 1, wherein the electron beam irradiated onto the target is blocked at positions other than the measurement angle position. 4. The apparatus according to claim 1, wherein the beam guide is provided with a plurality of X-ray extraction holes,
An apparatus for obtaining an X-ray tomographic image in which an electron beam is deflected and moved to follow one of the holes.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2399576A JPS52107789A (en) | 1976-03-05 | 1976-03-05 | Unit for obtaining x-ray shift image |
GB5388/77A GB1568782A (en) | 1976-02-28 | 1977-02-09 | Apparatus for obtaining an x-ray image of a slice plane of an object |
US05/770,659 US4135095A (en) | 1976-02-28 | 1977-02-22 | Apparatus for obtaining an X-ray image |
NL7702106A NL7702106A (en) | 1976-02-28 | 1977-02-28 | DEVICE FOR FORMING A TWO-DIMENSIONAL IMAGE OF THE X-RAY ABSORPTION DISTRIBUTION. |
DE19772708612 DE2708612A1 (en) | 1976-02-28 | 1977-02-28 | DEVICE FOR OBTAINING AN X-RAY RAY IMAGE IN A CROSS-SECTIONAL PLANE OF AN OBJECT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2399576A JPS52107789A (en) | 1976-03-05 | 1976-03-05 | Unit for obtaining x-ray shift image |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52107789A JPS52107789A (en) | 1977-09-09 |
JPS6114815B2 true JPS6114815B2 (en) | 1986-04-21 |
Family
ID=12126150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2399576A Granted JPS52107789A (en) | 1976-02-28 | 1976-03-05 | Unit for obtaining x-ray shift image |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS52107789A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07114772B2 (en) * | 1993-04-19 | 1995-12-13 | 株式会社東芝 | X-ray tomography system |
JP2693701B2 (en) * | 1993-05-28 | 1997-12-24 | 株式会社東芝 | X-ray tomography equipment |
DE102004061347B3 (en) * | 2004-12-20 | 2006-09-28 | Siemens Ag | X-ray computer tomograph for fast image recording |
-
1976
- 1976-03-05 JP JP2399576A patent/JPS52107789A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS52107789A (en) | 1977-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4135095A (en) | Apparatus for obtaining an X-ray image | |
US4045672A (en) | Apparatus for tomography comprising a pin hole for forming a microbeam of x-rays | |
JP3279617B2 (en) | Computer tomograph | |
US5550889A (en) | Alignment of an x-ray tube focal spot using a deflection coil | |
US5841831A (en) | X-ray computed tomography apparatus | |
US4144457A (en) | Tomographic X-ray scanning system | |
US6139183A (en) | X-ray exposure system for 3D imaging | |
US4188537A (en) | Dental apparatus for x-ray diagnosis | |
US6079876A (en) | X-ray exposure system for 3D imaging | |
US8693618B2 (en) | Scanner device and method for computed tomography imaging | |
US4573179A (en) | Scanned projection radiography using high speed computed tomographic scanning system | |
US8798720B2 (en) | Method and device for determining a position of a part of a medical instrument | |
GB1598058A (en) | Apparatus for tomography using penetrating radiation | |
JPS6016247B2 (en) | Tomography device with fluoroscopic image generation function | |
JPS6283772A (en) | X-ray image former | |
JP4397513B2 (en) | X-ray CT system | |
JPS6114815B2 (en) | ||
JPH04317635A (en) | Computer-aided tomography | |
JP2007282740A (en) | X-ray ct apparatus | |
JP2000070272A (en) | Insertion guide device for puncture needle for biopsy | |
JPH08275937A (en) | X-ray tomographic method and system | |
JPS6114814B2 (en) | ||
JPH02138854A (en) | X-ray tomograph | |
JPS6126185B2 (en) | ||
GB1603593A (en) | Device for computed tomography |