JPS61147460A - Electrode substrate for fuel cell and manufacture thereof - Google Patents

Electrode substrate for fuel cell and manufacture thereof

Info

Publication number
JPS61147460A
JPS61147460A JP59269424A JP26942484A JPS61147460A JP S61147460 A JPS61147460 A JP S61147460A JP 59269424 A JP59269424 A JP 59269424A JP 26942484 A JP26942484 A JP 26942484A JP S61147460 A JPS61147460 A JP S61147460A
Authority
JP
Japan
Prior art keywords
substrate
carbon
electrode
carbon fibers
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59269424A
Other languages
Japanese (ja)
Inventor
Teruo Kumagai
熊谷 輝夫
Seiji Takeuchi
瀞士 武内
Yuichi Kamo
友一 加茂
Katsuya Ebara
江原 勝也
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59269424A priority Critical patent/JPS61147460A/en
Priority to KR1019850007660A priority patent/KR930000425B1/en
Priority to EP85113170A priority patent/EP0184638B1/en
Priority to DE8585113170T priority patent/DE3576248D1/en
Publication of JPS61147460A publication Critical patent/JPS61147460A/en
Priority to US07/146,192 priority patent/US4894355A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a substrate for a fuel cell having flexibility which has low resistance and good water repellent property by fixing and holding divided carbon fiber pieces by means of PTFE etc. CONSTITUTION:After a bonding agent such as PTFE etc. is impregnated into a carbon paper which is a conductive porous substrate for a fuel cell, this is rolled to 20-70% of the initial thickness of the substrate. Whereby, the carbon fibers are finely cut. Soft PTFE forms a continuous layer between the cut carbon fibers and is fixed. In such a manner, when the carbon fibers are finely cut, each carbon fiber piece has connecting points with adjacent other carbon fibers, and these connecting points are more than the connecting points of the carbon fibers before rolling. Accordingly, the resistance value becomes lower than that of the substrate before rolling. And hard and brittle carbon fibers are finely cut, whereby the substrate has flexibility. Further, water repellent property becomes good by using the carbon paper in an electrode substrate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池用電極基板およびその製造方法に係り
、特に可撓性を有する燃料電池用電極基板およびその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electrode substrate for a fuel cell and a method for manufacturing the same, and more particularly to a flexible electrode substrate for a fuel cell and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

燃料と酸化剤を供給し、電極上で電気化学的反一応を行
わせて直接電気エネルギーを取出す燃料電池は高効率が
期待できる新しいタイプの電源として注目されている。
Fuel cells, which supply fuel and oxidizer and cause an electrochemical reaction to occur on electrodes to directly extract electrical energy, are attracting attention as a new type of power source that is expected to be highly efficient.

この燃料電池は第5図に示すように、燃料極1と酸化剤
極2によって挾持された電解室3(例えば硫酸を含んだ
イオン交換膜)及び集電体(図示せず)からなる単位電
池がセパレータ4を介して複数個積層されて構成される
ものである。電極l。
As shown in FIG. 5, this fuel cell is a unit cell consisting of an electrolysis chamber 3 (for example, an ion exchange membrane containing sulfuric acid) sandwiched between a fuel electrode 1 and an oxidizer electrode 2, and a current collector (not shown). is constructed by stacking a plurality of them with separators 4 interposed therebetween. Electrode l.

2は導電性多孔質基板上に一種類以上の周期律宍第■族
と■族の少なくとも1つの成分、例えば白金属元素を主
成分とする触媒層6を担持、あるいは導電性多孔質担体
上に担持した触媒を上記基板に塗布、結着したものから
なっている。そして、このような電極を有する単位電池
の形成、あるいは単位電池を積層して電池を形成すると
きは接触抵抗を小さくするために締付けを充分に行う必
要がある。従って、電極1.2がセパレータ4に押付け
られる結果、固くてもろい基板であるカーボンペーパー
からなる電極等は部分的に破損し、触媒の剥離や電解液
の酸化剤供給路6への漏れこみ等により電池性能が低下
する虞れがある。特に、可搬用小型電源である液体を燃
料とするメタノール/空気酸性電解質燃料電池は移動電
源として用いられているために、電池形状の多様化や使
用時の振動等に対する電極の耐久性が要求される。従来
、用いられてきた電極は導電性の多孔質基板であるカー
ボンペーパー上へ触媒粒末を結着剤と共に塗布し焼成し
たものである。そして、この電極を構成する基板である
カーボンペーパーは、全体が炭素質で出来ておシ、電解
液に侵されることがなく、耐熱性において優れた特性を
有し、基板の機械的強度を向上させるためにカーボンペ
ーパー基材にPTFE固着させていた。しかし、電気抵
抗を小さくするために高温で処理されてお)1.その結
果固くてもろい材質となっている。
2 supports on a conductive porous substrate a catalyst layer 6 containing at least one component of Groups 1 and 2 of the periodic law, for example, a platinum metal element as a main component, or on a conductive porous carrier. The catalyst is coated on the substrate and bonded thereto. When forming a unit battery having such an electrode or stacking unit cells to form a battery, sufficient tightening is required to reduce contact resistance. Therefore, as a result of the electrode 1.2 being pressed against the separator 4, the electrode made of carbon paper, which is a hard and brittle substrate, is partially damaged, causing the catalyst to peel off, the electrolyte to leak into the oxidizing agent supply path 6, etc. There is a risk that the battery performance will deteriorate. In particular, because methanol/air acid electrolyte fuel cells, which are small portable power sources that use liquid as fuel, are used as mobile power sources, there is a need for a variety of battery shapes and for electrodes to be durable against vibrations during use. Ru. Conventionally used electrodes are made by coating catalyst particles together with a binder on carbon paper, which is a conductive porous substrate, and then firing the coating. The carbon paper, which is the substrate that makes up this electrode, is made entirely of carbonaceous material and is not attacked by electrolyte, has excellent heat resistance, and improves the mechanical strength of the substrate. In order to achieve this, PTFE was fixed to the carbon paper base material. However, it is treated at high temperature to reduce electrical resistance)1. The result is a hard and brittle material.

そこで電極、特に基板の損傷を防止する必要があシその
ために可撓性を有する基板が存在する。
Therefore, it is necessary to prevent damage to the electrode, especially the substrate, and for this reason, a flexible substrate exists.

このような基板の1つとしてカーボンフェルトが存在す
るが、このカーボンフェルトはカーボンペーパーを製造
する前段の原料であり、多数の有機物を不純物として含
むために電気抵抗が1gcrr&!以上と高いものであ
る(カーボンペーパーの10〜50倍)。従って、基板
のみのIR損による出力低下が大きく実用的な基板とは
いえない。また、このようなカーボンフェルトは電解質
板やセパレータに接続する際に接触抵抗が大きなものと
なる。
Carbon felt is one such substrate, but this carbon felt is a raw material in the first stage of manufacturing carbon paper, and because it contains many organic substances as impurities, it has an electrical resistance of 1 gcrr&! This is high (10 to 50 times that of carbon paper). Therefore, the output decreases due to IR loss only in the substrate, and it cannot be said to be a practical substrate. Further, such carbon felt has a large contact resistance when connected to an electrolyte plate or a separator.

また、カーボンフィルムも可撓性を有するものであるが
、カーボンフェルトと同様な欠点を有する。
Although carbon film also has flexibility, it has the same drawbacks as carbon felt.

その他の可撓性をもった燃料電池用基板としては、特開
昭57−30270号に開示されているものが存在する
。この基板は、ポリテトラフルオロエチレン(以下PT
FEと称する)繊維に導電性炭素粉末(ファーネスブラ
ック)を70〜sowt%tPTFEの多孔質網目間に
埋込む構成となっている。そして、この基板に触媒成分
を担持させて電極としている。しかし、この種の基板で
はPTFE繊維を用いている丸めに、電気抵抗が0.1
6g3!以上と高くさらにPTFE多孔質網目の構造が
熱履歴等により変化するため、網目中の炭素担体の剥離
の問題が生じ電池性能が低下する虞れがある。ま九、液
体燃料を原料とする燃料電池の燃料極においてはPTF
Eによる撥水性が強すぎて反応面積の減少を生ずる虞れ
がある。つまり、この種の燃料電池用電極基板は可撓性
がある点において有用性を有するものの、電池性能が充
分発揮できないという問題がめった。
Other flexible substrates for fuel cells include those disclosed in Japanese Patent Laid-Open No. 57-30270. This substrate is made of polytetrafluoroethylene (hereinafter referred to as PT).
The structure is such that conductive carbon powder (furnace black) is embedded between the porous meshes of 70 to sowt% PTFE fibers (referred to as FE). A catalyst component is supported on this substrate to form an electrode. However, in this type of board, the electrical resistance is 0.1 due to the rounding using PTFE fiber.
6g3! Furthermore, since the structure of the PTFE porous network changes due to thermal history, etc., there is a possibility that the carbon carrier in the network may peel off, resulting in a decrease in battery performance. Nine, PTF is used in fuel electrodes of fuel cells that use liquid fuel as raw material.
There is a possibility that the water repellency due to E is too strong, resulting in a decrease in the reaction area. In other words, although this type of fuel cell electrode substrate is useful in that it is flexible, it has often had the problem of not being able to exhibit sufficient cell performance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、可撓性を有すると共に高い電池性能を
発揮できる燃料電池用電極基板およびその製造方法を提
供することにある。
An object of the present invention is to provide a fuel cell electrode substrate that has flexibility and can exhibit high cell performance, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明は従来用いられてきた導電性多孔質基板であるカ
ーボンペーパーに撥水性結着剤であるFTFBを固着さ
せ、圧延加工すればカーボンペーパーの炭素繊維が複数
の短かい炭素繊維片に分断されて、これら分断された炭
素繊維片が炭素繊維片の結着剤であるPTFEなどで固
着、保持されていることによって可撓性のある燃料電池
用電極基板を得ようとするものである。すなわち、具体
的には本願第1の発明は複数の短かい炭素繊維片を有し
、該炭素繊維各月が隣接する他の炭素繊維片と接続され
た状態でPTFEなどの結着剤で固着されていることを
特徴とする燃料電池用電極基板であり、本願第2の発明
はカーボンペーパー基材にFTFBなどの結着剤を浸漬
させた後、このカーボンペーパー基板を初期基板厚さの
20〜70%に圧延することによって複数の短かい炭素
繊維片を有し、該炭素繊維各月が隣接する他の炭素繊維
と接続された状態で結着剤で固着されていることを特徴
とする燃料電池用電極基板の製造方法である。
In the present invention, FTFB, which is a water-repellent binder, is fixed to carbon paper, which is a conventionally used conductive porous substrate, and when rolled, the carbon fibers of the carbon paper are divided into a plurality of short carbon fiber pieces. The present invention attempts to obtain a flexible fuel cell electrode substrate by fixing and holding these divided carbon fiber pieces with PTFE, which is a binder for the carbon fiber pieces. Specifically, the first invention of the present application has a plurality of short carbon fiber pieces, each of which is connected to another adjacent carbon fiber piece and fixed with a binder such as PTFE. The second invention of the present application is a fuel cell electrode substrate characterized in that the carbon paper substrate is immersed in a binder such as FTFB, and then the carbon paper substrate is immersed in a carbon paper substrate having an initial substrate thickness of 20%. It is characterized in that it has a plurality of short carbon fiber pieces by rolling to ~70%, and each carbon fiber is fixed with a binder in a state where it is connected to other adjacent carbon fibers. This is a method for manufacturing an electrode substrate for a fuel cell.

上記本発明に係る燃料電池用電極基板では電極基板を構
成するカーボン繊維が細かく断片となっているために、
各炭素繊維片での接触点が増えることおよび圧延するこ
とによって電極基板の厚みが減ることから電気抵抗が下
がる。具体的には0.1gcW1!以下となる。また、
電極基板にPTFE繊維を使用せずカーボンペーパーが
基材となっていることにより撥水性が良好となり、従っ
て液体型の燃料電池にも使用できることになる。さらに
、PTFE繊維の網目の中に炭素粉末が埋込んであると
いう構造ではないので熱履歴による導電性物質の剥離と
いう問題が生じない。
In the fuel cell electrode substrate according to the present invention, since the carbon fibers constituting the electrode substrate are finely fragmented,
Electrical resistance decreases because the number of contact points on each carbon fiber piece increases and the thickness of the electrode substrate is reduced by rolling. Specifically, 0.1gcW1! The following is true. Also,
Since the electrode substrate does not use PTFE fibers but is made of carbon paper as a base material, the electrode substrate has good water repellency and can therefore be used in liquid-type fuel cells. Furthermore, since the structure is not such that carbon powder is embedded in the mesh of PTFE fibers, the problem of peeling off of the conductive material due to thermal history does not occur.

また、分断された炭素繊維各月がFTFBで保持、固着
されているために上記燃料電池用電極基板は可撓性を有
するものとなる。可撓性を有するとは、具体的に基板が
直径1crn〜10副の円筒状を損傷なく形成できるよ
うな場合をいう。
Further, since the divided carbon fibers are held and fixed by the FTFB, the fuel cell electrode substrate has flexibility. Specifically, having flexibility means that the substrate can be formed into a cylindrical shape with a diameter of 1 crn to 10 cm without damage.

上記本発明にかかる燃料電池用電極基板を製造するKあ
たっては、カーボンペーパー基材にPTFEを固着させ
た後、圧延の前または後に基板を焼成する必要がある。
In manufacturing the fuel cell electrode substrate according to the present invention, it is necessary to sinter the substrate before or after rolling after fixing PTFE to the carbon paper base material.

焼成することによって、カーボンペーパー基材に含まれ
る非導伝性の有機物を除却することができる。カーボン
ペーパー基材にPTFEt−固着させるのは基材をP’
rFE液に含浸させ、乾燥すること罠よって行うことが
できる。
By firing, non-conductive organic substances contained in the carbon paper base material can be removed. To fix PTFEt to the carbon paper base material, the base material is P'
This can be done by impregnating it with rFE solution and drying it.

カーボンペーパーの圧延は、一定の開度に調整したロー
ラーにカーボンペーパーを挾んで通すことによって行わ
れる。このローラーの開度調整はカーボンペーパー基材
の初期基板厚みの20〜80%で行われる。特にカーボ
ンペーパーの破壊を防ぐこと、および燃料または酸化剤
ガスの拡散を妨げないことからローラーの開度は初期基
板厚みの60〜80%が望ましい。
Rolling of carbon paper is performed by passing the carbon paper between rollers whose opening is adjusted to a certain degree. This roller opening adjustment is performed at 20 to 80% of the initial substrate thickness of the carbon paper base material. In particular, the opening degree of the rollers is preferably 60 to 80% of the initial substrate thickness in order to prevent destruction of the carbon paper and to not hinder the diffusion of fuel or oxidant gas.

本発明によって得られた電極基板に7アーネスブラツク
、カーボンブラック等の多孔質炭素担体に白金やルテニ
ウム等を担持した触媒層を塗布して電極が構成される。
An electrode is constructed by coating the electrode substrate obtained according to the present invention with a catalyst layer in which platinum, ruthenium, etc. are supported on a porous carbon carrier such as 7 Arnes black or carbon black.

担持方法には沈着法、含浸法、インタカレント法、混練
法等の通常の触媒調整法のいずれであってもよい。そし
て、この触媒粉末に蒸留水および結着剤、例えばPTF
Et−添加し混練して調整した触媒ペーストt−基板上
に塗布して炭素を焼成して電極とする。可撓性基板上の
触媒層は、結着剤によシ可撓性を有したものであるので
、このような基板を用いることによyt極全全体可撓性
にすることが可能である。なお、触媒層の塗布はローラ
ーの圧延の前後のいずれであってもよいが圧延前に触媒
層を塗布する方が触媒層の剥離を防止することができる
丸めに望ましい。
The supporting method may be any of the usual catalyst preparation methods such as a deposition method, an impregnation method, an intercurrent method, and a kneading method. This catalyst powder is then mixed with distilled water and a binder such as PTF.
A catalyst paste prepared by adding Et and kneading is applied onto a t-substrate and fired with carbon to form an electrode. Since the catalyst layer on the flexible substrate has flexibility due to the binding agent, it is possible to make the entire structure extremely flexible by using such a substrate. . Note that the catalyst layer may be applied either before or after rolling with a roller, but it is preferable to apply the catalyst layer before rolling to prevent peeling of the catalyst layer and achieve rounding.

〔発明の実施例〕[Embodiments of the invention]

次に本発明に係る実施例を添付図面に従って詳説する。 Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図はカーボンペーパーに圧延処理を施さないでFT
FBを含浸して焼成させた従来の基板の微視的構造を示
す顕微鏡写真(A図)であり、本発明に係るカーボンペ
ーパーにPTFEを含浸して圧延処理を施した基板の顕
微鏡写真(8図)である。なお、顕微鏡は走査形電子顕
微鏡を使用し、その倍率は300倍として撮影されてい
る。
Figure 1 shows FT without rolling the carbon paper.
It is a microscopic photograph (Figure A) showing the microscopic structure of a conventional substrate impregnated with FB and fired, and a microscopic photograph (Fig. Figure). Note that a scanning electron microscope was used as the microscope, and the images were taken at a magnification of 300 times.

A図によれば固くてもろいカーボン繊維11が網目構造
となってお)、そのカーボン繊維11H繊維状の長いも
のとなっている。そして、各カーボン繊維11の間にP
TFE 12が絡み合って固着されている。
According to Fig. A, the hard and brittle carbon fibers 11 have a mesh structure), and the carbon fibers 11H are long fibers. Then, P between each carbon fiber 11
TFE 12 is intertwined and fixed.

一方B図によれば、カーボン繊維が短かく切断されてお
シ、この切断されたカーボン繊維13の間に柔軟なPT
FEが連続層14を形成して固着されている。このよう
にカーボン繊維が短かく切断されると各カーボン繊維片
が隣接する他のカーボン繊維と接続点を有するようにな
り、この接続点は圧延前のカーボン繊維の接続点よりも
多くなる。従って、抵抗値は圧延前の基板よりも低くな
るものである。そして、固くてもろいカーボン繊維が短
かく断片されていることにより可撓性を有することにな
る。
On the other hand, according to figure B, the carbon fibers are cut into short pieces, and there is a flexible PT between the cut carbon fibers 13.
FE is bonded to form a continuous layer 14. When the carbon fibers are cut into short pieces in this manner, each carbon fiber piece has connection points with other adjacent carbon fibers, and the number of connection points is greater than the connection points of the carbon fibers before rolling. Therefore, the resistance value is lower than that of the substrate before rolling. The hard and brittle carbon fibers are broken into short pieces, giving it flexibility.

次に本発明の具体的な実験例について説明する。Next, specific experimental examples of the present invention will be explained.

く電極用基板調整例1〉 従来の導電性多孔質基板であるカーボンペーパーをポリ
フロンディスパージョンD−1(ダイキン工業製)水溶
液中に浸漬し、FTFB量として4mg/cm”含浸さ
せ乾燥後焼成炉で300〜400Cで1時間焼成する。
Electrode Substrate Preparation Example 1> Carbon paper, which is a conventional conductive porous substrate, was immersed in an aqueous solution of Polyflon Dispersion D-1 (manufactured by Daikin Industries), impregnated with an FTFB amount of 4 mg/cm, dried, and then fired. Bake in a furnace at 300-400C for 1 hour.

そして、この基板を初期基板厚みの約70%にローラー
圧延をし可撓性基板Aを得た。
Then, this substrate was roller rolled to about 70% of the initial substrate thickness to obtain a flexible substrate A.

く電極用基板調整例2〉 上記調整例で使用したカーボン繊維ノく−にPTFEを
8 mg /cm ”を含浸固着させた以外は調整例1
と同じように基板を調整し可撓性基板Bを得た。
Preparation Example 2 of electrode substrate Preparation Example 1 except that the carbon fiber used in the above Preparation Example was impregnated with 8 mg/cm of PTFE and fixed.
A flexible substrate B was obtained by adjusting the substrate in the same manner as described above.

く比較例1〉 従来のカーボンペーパー基板にPTFEiとして8 m
g / cm ”を固着させた基板と上記可撓性基板人
およびBの曲げの極限を比較した。
Comparative Example 1> 8 m of PTFEi on a conventional carbon paper substrate
The bending limit of the flexible substrate A and B was compared with that of the substrate to which the substrate was fixed.

従来のカーボンペーパー基板はPTFBを固着しても6
0°以上の曲げ角度になると割れて2つの片になった。
Even if PTFB is fixed on the conventional carbon paper substrate, 6
When the bending angle was greater than 0°, it broke into two pieces.

これに対し、可撓性基板AおよびBは従来基板と同じ寸
法においても直径5儒程度の円筒の形成が可能で、1基
板は何ら損傷をきたさなかった。
On the other hand, with the flexible substrates A and B, it was possible to form a cylinder with a diameter of about 5 degrees even with the same dimensions as the conventional substrate, and one substrate did not cause any damage.

〈比較例2〉 可撓性基板Bと従来のカーボンペーパー基板およびカー
ボンフェルト、カーボンフィルムの電気抵抗を相互に比
較した。各基板の電気抵抗の測定値を第2図に示す。
<Comparative Example 2> The electrical resistances of flexible substrate B, a conventional carbon paper substrate, carbon felt, and carbon film were compared with each other. Figure 2 shows the measured values of the electrical resistance of each substrate.

図において21はカーボンフェルトを示すグラフ、22
Hカーボンフイルムを示すグラフ、23はカーボンペー
パーを示すグラフ、24は可撓性基板を示すグラフであ
る。抵抗値の順序は可撓性基板Bがもつとも抵抗値が小
さく順にカーポンベ−バー、カーボンフィルム、カーボ
ンフェルトと抵抗値が高くなっていく。カーボンフェル
トおよびカーボンフィルムが抵抗値が高いのは、焼成さ
れないことによって電気抵抗の大きい不純物の有機化合
物を含んでいるためであシ、可撓性基板Bがカーボンペ
ーパーより電気抵抗が小さいのは可撓性基板Bt−構成
する炭素繊維が端片に分断されていることによって接続
点が多いことによるもので64゜なお、測定は4端子測
定法(100OH2)によった。
In the figure, 21 is a graph showing carbon felt, 22
23 is a graph showing carbon paper, and 24 is a graph showing flexible substrate. The resistance values are in the order of decreasing resistance for the flexible substrate B, followed by carbon fiber, carbon film, and carbon felt, and increasing resistance values. The reason why carbon felt and carbon film have a high resistance value is because they contain impurity organic compounds that have a high electrical resistance due to not being fired.It is possible that the flexible substrate B has a lower electrical resistance than carbon paper. Flexible substrate Bt - 64° This is due to the fact that the constituent carbon fibers are divided into end pieces, resulting in a large number of connection points.The measurement was performed using a four-terminal measurement method (100OH2).

く触媒調整例1〉 炭素粉末(ファーネスブラック:キャボット社製)20
gに37%ホルムアルデヒド溶液を50−と50%水酸
化カリウム溶液100mを加え蒸留水で500−とする
。これを攪拌しなから0±・2Cに冷却し、この溶液に
塩化白金酸28g1塩化ルテニウム14gを蒸留水に溶
解し500−とした溶液をθ±20に保持しながら添加
する。添加後、放置し室温にもどし、後に35〜40C
で2時間攪拌し、さらに55〜60Cで約2時間攪拌す
る。攪拌後、固形物を蒸留水で水洗いし、スラリーのp
Hが7以下になるまで洗浄を繰シ返す。
Catalyst preparation example 1> Carbon powder (furnace black: manufactured by Cabot) 20
Add 50ml of 37% formaldehyde solution and 100ml of 50% potassium hydroxide solution to 50ml of distilled water. This was cooled to 0±.2 C without stirring, and a solution prepared by dissolving 28 g of chloroplatinic acid and 14 g of ruthenium chloride in distilled water to give a concentration of 500° was added to this solution while maintaining the temperature at θ±20. After addition, let stand to return to room temperature, then heat to 35-40C.
Stir for 2 hours at 55-60C and further stir for about 2 hours at 55-60C. After stirring, the solids are washed with distilled water to reduce the slurry's pH.
Repeat washing until H becomes 7 or less.

洗浄後、乾燥器で60Cで充分に乾燥し、燃料極触媒A
′t−得た。
After cleaning, thoroughly dry in a dryer at 60C and remove the fuel electrode catalyst A.
't-got it.

く触媒調整例2〉 炭素粉末(ファーネスブラック:キャボット社製)15
gに(1:1)メタノール−水を1を加え、次に塩化白
金酸31gを溶解し、70tl’で約5時間加熱攪拌す
る。攪拌終了後、固形物をpH7以下になるまで繰り返
し洗浄する。洗浄後のケーキは60Gで乾燥し、酸化剤
極触媒Bを得た。
Catalyst preparation example 2> Carbon powder (furnace black: manufactured by Cabot) 15
(1:1) methanol-water was added to 1 g, then 31 g of chloroplatinic acid was dissolved therein, and the mixture was heated and stirred at 70 tl' for about 5 hours. After the stirring is completed, the solid material is washed repeatedly until the pH becomes 7 or less. The washed cake was dried at 60G to obtain oxidizer electrode catalyst B.

〈電極調整例1〉 触媒粉末Aを1.15gとシ蒸留水2−を加えよく混練
し、次に基板調整例1で使用したPTFEi(ダイキン
製:ポリフロンデイスバージョンD1.2.5倍希釈)
を1−加え混合する。このペースト状触媒を可撓性基板
(100X128■)に均一に塗布し、風乾後300C
窒素雰囲気中で約30分焼成する。この操作によって、
燃料極電極人とした。
<Electrode Preparation Example 1> Add 1.15 g of catalyst powder A and 2-distilled water, mix well, and then mix the PTFEi used in Substrate Preparation Example 1 (manufactured by Daikin: Polyflon Dice Version D 1.2.5 times diluted). )
Add 1- and mix. This paste-like catalyst was evenly applied to a flexible substrate (100 x 128 cm), and after air drying,
Bake for about 30 minutes in a nitrogen atmosphere. With this operation,
The fuel electrode was used as an electrode person.

く電極調整例2〉 従来使用していたカーボンペーパー基板に4mg/cm
 ”のPTFB液を含浸させた以外は、電極調整例1の
方法で作製した電極を燃料極電極Bとした。
Electrode adjustment example 2> 4mg/cm on the conventionally used carbon paper substrate
The electrode prepared by the method of Electrode Preparation Example 1 was used as fuel electrode electrode B, except that the electrode was impregnated with the PTFB liquid.

く電極調整例3〉 触媒粉末Bを0.77 gとシ蒸留水を加えて混線後、
ポリフロンディスパージョンDlt−0,55+d加え
混合したものを、可撓性基板B (100X128m)
に塗布し、風乾後、空気中でaooC,約30分焼成し
九。これを酸化剤極電極Aとした。
Electrode Adjustment Example 3> After adding 0.77 g of catalyst powder B and distilled water and mixing,
Add and mix polyflon dispersion Dlt-0,55+d to flexible substrate B (100x128m)
After air drying, bake in the air for about 30 minutes. This was designated as oxidizer electrode A.

〈電極調整例4〉 従来使用していたカーボンペーパー基板に8mg/31
のPTFEを含浸させた以外は、電極調整例3と同じ方
法で作製した電極を酸化剤電極Bとした。
<Electrode adjustment example 4> 8mg/31 on the conventionally used carbon paper substrate
Oxidizer electrode B was an electrode prepared in the same manner as in Electrode Preparation Example 3, except that the electrode was impregnated with PTFE.

く電圧測定例1〉 本測定例は、可撓性基板を用いた燃料極電極Aと酸化剤
極電極Aを用いて単位電池を構成し、その電流密度−電
圧特性を測定したものである。電極間には、3 mot
/ Lの硫酸を含浸したイオン交換膜(態化成製:CM
V)を電解質として介在させた。燃料としては、アノラ
イト(1mot/lメタノールー1.5mot/L硫酸
)を、酸化剤としては空気を供給し、単位電池温度ti
60Cである。その結果を第3図31に示す。
Voltage Measurement Example 1> In this measurement example, a unit cell was constructed using a fuel electrode A and an oxidizer electrode A using a flexible substrate, and its current density-voltage characteristics were measured. Between the electrodes, 3 mot
Ion exchange membrane impregnated with /L of sulfuric acid (manufactured by Syo Kasei: CM
V) was interposed as an electrolyte. Anolyte (1 mot/l methanol - 1.5 mot/L sulfuric acid) was supplied as the fuel, air was supplied as the oxidizing agent, and the unit cell temperature ti
It is 60C. The results are shown in FIG. 31.

く比較例3〉 燃料極電極Bと酸化剤極電極Btl−用いる以外は、電
圧測定1と同じ方法で電流密度−電圧特性を測定した。
Comparative Example 3> Current density-voltage characteristics were measured in the same manner as voltage measurement 1 except that fuel electrode B and oxidant electrode Btl were used.

その結果を第3図32に示す。The results are shown in FIG. 32.

第3図から、本発明による可撓性基板を用いたものが、
従来基板を用いたものよj)30mV(60mA/cm
”)高い電圧を示した。これは、本発明にかかる基板が
可撓性を有することによシミ極のイオン交換膜およびセ
パレータとの密着性が増したためである。
From FIG. 3, the one using the flexible substrate according to the present invention is
j) 30mV (60mA/cm
This is because the flexibility of the substrate according to the present invention increased the adhesion of the stain electrode to the ion exchange membrane and separator.

く電圧測定例2〉 本実施例は、電圧測定1の単位電池を用いて、電流密度
60 mA / cm”において連続運転を行ったもの
である。温度は6(lと保ち、アノライトは1m0L/
/、メタノール−1,5mot/l硫酸である。
Voltage Measurement Example 2 In this example, the unit battery used in Voltage Measurement 1 was continuously operated at a current density of 60 mA/cm. The temperature was maintained at 6 (l), and the anolyte was
/, methanol-1,5 mot/l sulfuric acid.

600時間連続運転した結果を第4図41に示すつく比
較例4〉 比較例3の単位電池を用いる以外は、電圧測定例2と同
じ方法で連続運転を行った結果を第4図42に示す。
Comparative Example 4 The results of continuous operation for 600 hours are shown in Figure 4 41. Figure 4 42 shows the results of continuous operation performed in the same manner as Voltage Measurement Example 2, except that the unit battery of Comparative Example 3 was used. .

第4図から、両方の電池を初期の電圧から600時間後
において約20 mvの電圧低下したところで安定して
おシ、従来のカーボンペーパー基板を用いた電池に比べ
本発明の電池は約30mV高い電圧が得られた。
Figure 4 shows that both batteries stabilized when the voltage decreased by about 20 mV after 600 hours from the initial voltage, and the battery of the present invention was about 30 mV higher than the battery using the conventional carbon paper substrate. voltage was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、抵抗が小さく撥水
性の良好な可撓性を有する燃料電池用基板を得ることが
できる。従って、本発明に係る燃料電池用基板を基にし
て構成された電極を用いた燃料電池では、電気抵抗を小
さくすることができるために良好な電池性能を得ること
ができる。そして、撥水性が良好であることから液体燃
料電池にも使用することができる。
As explained above, according to the present invention, it is possible to obtain a fuel cell substrate that has low resistance, water repellency, and good flexibility. Therefore, in a fuel cell using an electrode constructed based on the fuel cell substrate according to the present invention, good cell performance can be obtained because the electrical resistance can be reduced. Since it has good water repellency, it can also be used in liquid fuel cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池用基板の炭素繊維の構造を示した電子
顕微鏡の写真、第2図は電極用基板と抵抗の関係を示す
グラフ、第3図は電流密度と電池電圧の関係を示すグラ
フ、第4図は運転時間と電池電圧を示すグラフ、第5図
は燃料電池の琳セルの構成を示した構成図である。 1・・・燃料極、2・・・酸化剤極、3・・・電解質板
、4・・・セパレータ、6・・・触媒層、7・・・燃料
または酸化剤ガスの供給溝。
Figure 1 is an electron microscope photograph showing the structure of the carbon fiber of the fuel cell substrate, Figure 2 is a graph showing the relationship between the electrode substrate and resistance, and Figure 3 is a graph showing the relationship between current density and cell voltage. , FIG. 4 is a graph showing the operating time and battery voltage, and FIG. 5 is a configuration diagram showing the configuration of the Rin cell of the fuel cell. DESCRIPTION OF SYMBOLS 1... Fuel electrode, 2... Oxidizer electrode, 3... Electrolyte plate, 4... Separator, 6... Catalyst layer, 7... Fuel or oxidant gas supply groove.

Claims (1)

【特許請求の範囲】 1、複数の短かい炭素繊維片を有し、該炭素繊維の各片
が隣接する他の炭素繊維片と接続された状態で結着剤で
固着されていることを特徴とする燃料電池用電極基板。 2、カーボンペーパー基材に結着剤を浸漬させた後、該
カーボンペーパー基材を初期厚みの20〜80%に圧延
することにより、複数の短かい炭素繊維片を有し、該炭
素繊維片の各片が隣接する他の炭素繊維片と接続された
状態で結着剤で固着されている燃料電池用電極基板を製
造することを特徴とする燃料電池用電極基板の製造方法
[Claims] 1. It has a plurality of short carbon fiber pieces, and each carbon fiber piece is fixed with a binder in a state where it is connected to another adjacent carbon fiber piece. Electrode substrate for fuel cells. 2. After dipping the carbon paper base material with a binder, the carbon paper base material is rolled to 20 to 80% of the initial thickness to form a plurality of short carbon fiber pieces. 1. A method for manufacturing an electrode substrate for a fuel cell, comprising manufacturing an electrode substrate for a fuel cell in which each piece of carbon fiber is connected to another adjacent carbon fiber piece and fixed with a binder.
JP59269424A 1984-10-17 1984-12-20 Electrode substrate for fuel cell and manufacture thereof Pending JPS61147460A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59269424A JPS61147460A (en) 1984-12-20 1984-12-20 Electrode substrate for fuel cell and manufacture thereof
KR1019850007660A KR930000425B1 (en) 1984-10-17 1985-10-17 Flexible fuel cell electrode plate
EP85113170A EP0184638B1 (en) 1984-10-17 1985-10-17 Process of producing a flexbile fuel cell electrode from a carbon paper
DE8585113170T DE3576248D1 (en) 1984-10-17 1985-10-17 METHOD FOR PRODUCING A FLEXIBLE FUEL CELL ELECTRODE FROM CARBON PAPER.
US07/146,192 US4894355A (en) 1984-10-17 1988-01-20 Flexible, water-repellent baked carbon plate, its production, fuel cell electrode, fuel cell electrode plate and its production and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59269424A JPS61147460A (en) 1984-12-20 1984-12-20 Electrode substrate for fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61147460A true JPS61147460A (en) 1986-07-05

Family

ID=17472227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59269424A Pending JPS61147460A (en) 1984-10-17 1984-12-20 Electrode substrate for fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61147460A (en)

Similar Documents

Publication Publication Date Title
KR930000425B1 (en) Flexible fuel cell electrode plate
US5783325A (en) Gas diffusion electrodes based on poly(vinylidene fluoride) carbon blends
US6531240B1 (en) Gas diffusion substrates
US3899354A (en) Gas electrodes and a process for producing them
JP7387905B2 (en) Gas diffusion layer, manufacturing method thereof, membrane electrode assembly and fuel cell
US8168025B2 (en) Methods of making components for electrochemical cells
US20040053111A1 (en) Electrode for solid polymer type fuel cell
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
JP2008204945A (en) Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
KR20080005515A (en) Oxidatively stable microlayers of gas diffusion layers
CA2213967A1 (en) Gas diffusion electrodes based on polyethersulfone carbon blends
JP3554321B2 (en) Membrane catalyst layer for fuel cell
JP3113499B2 (en) Electrode for imparting ionic conductivity and electrode-electrolyte assembly and cell using such electrode
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
JP2009534796A (en) Method for configuring components for electrochemical cells
Sındıraç et al. Electrochemical performance of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2-δ composite SOFC cathodes fabricated by electrocatalyst and/or electrocatalyst-ionic conductor infiltration
CN111584879B (en) Gas diffusion layer, method for producing same, and corresponding membrane electrode assembly and fuel cell
KR102214601B1 (en) LSM-ESB composite cathode via spinel cobalt oxide nano particle decoration
JP2011171182A (en) Membrane electrode assembly and fuel cell
US20030008195A1 (en) Fluid diffusion layers for fuel cells
JP2000067874A (en) Fuel cell and manufacture thereof
JP2001057217A (en) Polymer electrolyte type fuel cell
JP2004158387A (en) Electrode structure for solid polymer fuel cell
JP7359077B2 (en) Laminate for fuel cells
JPS59127372A (en) Electrode for fuel cell