JPS61146677A - Steering controller for 4-wheel steering car - Google Patents

Steering controller for 4-wheel steering car

Info

Publication number
JPS61146677A
JPS61146677A JP26746984A JP26746984A JPS61146677A JP S61146677 A JPS61146677 A JP S61146677A JP 26746984 A JP26746984 A JP 26746984A JP 26746984 A JP26746984 A JP 26746984A JP S61146677 A JPS61146677 A JP S61146677A
Authority
JP
Japan
Prior art keywords
steering
steering angle
wheel steering
vehicle
car
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26746984A
Other languages
Japanese (ja)
Inventor
Hiroshi Mori
宏 毛利
Koji Shibahata
康二 芝端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26746984A priority Critical patent/JPS61146677A/en
Publication of JPS61146677A publication Critical patent/JPS61146677A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To permit the steering on a 4-wheel steering car the similar steering feeling to that on an ordinary car by obtaining the always constant stability factor of the car for the variation of car speed by controlling the ratio of the rear-wheel steering angle for the front-wheel steering angle so that a special equation is fulfilled. CONSTITUTION:A 4-wheel steering car in which front and rear wheels 101 and 102 can be steered by each hydraulic actuator is equipped with a car speed detecting means 103 and a steering-angle ratio controller 104. The steering-angle ratio control means 104 controls at least either of the front-wheel steering-angle deltaf or the rear-wheel steering-angle deltar so that the ratio Kb(=deltar/deltaf) of the rear- wheel steering-angle deltar for the front-wheel steering-angle deltaf fulfills the equation Kb=BV<2>/(1+AV<2>) (A, B is constant) by using the car speed V detected by the car speed detecting means 103. Steering control is performed through a steering controller 100 so that the above-described steering angle ratio Kb is fulfilled, and the 4-wheel steering car can be steered with the steering feeling similar to that on an ordinary car.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、前輪と後輪の操舵が可能な4輪操舵、率に
、利用され得るもので、特に、スタビリテイ7アクタが
車速変化によって変動しないように前輪と後輪の舵角比
を適正制御するようにした4輪操舵車の操舵制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention can be used for four-wheel steering, which is capable of steering both front and rear wheels. The present invention relates to a steering control device for a four-wheel steered vehicle, which appropriately controls the steering angle ratio of front wheels and rear wheels to prevent the steering wheel from moving.

(従来の技術) 従来、例えば特開昭57−70774号公報に示される
ように、前輪と後輪を相互に関連させて操舵を行う装置
が提案されている。
(Prior Art) Conventionally, as shown in, for example, Japanese Unexamined Patent Application Publication No. 57-70774, a device has been proposed that steers front wheels and rear wheels in relation to each other.

上記公報に示されている装置は、単純に前輪と後輪を同
角度に操舵するのではなく、車速が8゜I@/h以上で
、前輪に対する後輪の舵角比rが少なくともo<r≦0
.6の範囲内の値となるように制御することによって、
操舵応答性および運転者に対する操舵感覚を向上するこ
とを可能としたものである。
The device disclosed in the above publication does not simply steer the front and rear wheels at the same angle, but when the vehicle speed is 8°I@/h or more, the steering angle ratio r of the rear wheels to the front wheels is at least o< r≦0
.. By controlling the value to be within the range of 6,
This makes it possible to improve steering response and steering feel for the driver.

(発明が解決しようとする問題点) しかしながら、通常の前輪のみをステアリングハンドル
の操舵に連動して操舵する車両(これを「通常車両」と
言う)は、車両の基本的な操舵応答ゲインを左右するス
タビリテイ7アクタが車速変化に対して常に一定である
のに対し、上記従来装置を搭載した車両(これを「従来
車両」とする)は、前輪と後輪の舵角比rが一定である
ように制御するために・車速の変化に伴ってスタビリテ
イ7アクタが変動してしまう。この様子を第6図に特性
Aで示す(但し、舵角比r −o、aのとき)。
(Problem to be solved by the invention) However, in a vehicle that steers only the normal front wheels in conjunction with the steering wheel (this is called a "normal vehicle"), the basic steering response gain of the vehicle is In contrast, the stability 7 actor that provides stability is always constant in response to changes in vehicle speed, whereas in a vehicle equipped with the above-mentioned conventional device (hereinafter referred to as a "conventional vehicle"), the steering angle ratio r between the front wheels and the rear wheels is constant. In order to control this, the stability 7 actor fluctuates as the vehicle speed changes. This situation is shown in FIG. 6 by characteristic A (when the steering angle ratio r - o, a).

このため、操舵時の定常ヨーレートは、従来車両の場合
(第7図中の特性Cで示す)には、通常車両の場合(第
7図中の特性りで示す)とは一致しない(同じく、従来
車両の舵角比r −o、aのとき)。
Therefore, the steady yaw rate during steering does not match in the case of a conventional vehicle (indicated by characteristic C in FIG. 7) and in the case of a conventional vehicle (indicated by characteristic G in FIG. 7) (also, When the steering angle ratio of the conventional vehicle is r - o, a).

すなわち、低速時(1007m/h以下)では、通常車
両に比して、従来車両の定常ヨーレートは小さく、この
ため操舵応答性が低下し、また高速時(100m/h以
上)では、通常車両に比して、従来車両の定常ヨーレー
トは大きくなり、このため操縦安定性が悪くなる。
In other words, at low speeds (1007 m/h or less), the steady yaw rate of conventional vehicles is smaller than that of regular vehicles, which reduces steering response, and at high speeds (100 m/h or more), the steady yaw rate of conventional vehicles is lower than that of regular vehicles. In comparison, the steady yaw rate of conventional vehicles is large, resulting in poor steering stability.

(問題点を解決するための手段) 上記問題点を解決するために、本発明は、第1図に示す
手段を備える。
(Means for Solving the Problems) In order to solve the above problems, the present invention includes means shown in FIG.

本発明の操舵制御装置100は、前輪101と後輪10
2の操舵が可能な4輪操舵車の操舵制御装置であり、車
速検出手段108と舵角比制御手段104を具備してい
る。
A steering control device 100 according to the present invention includes a front wheel 101 and a rear wheel 10.
This is a steering control device for a four-wheel steered vehicle capable of two-way steering, and includes vehicle speed detection means 108 and steering angle ratio control means 104.

舵角比制御手段104は、車速検出手段108で検出さ
れる車速Vを用いて、前輪舵角δfに対する後輪舵角・
δ工の比Kb(−δr/δf)が(但し、ム、Bは定数
)の関係を満たすように、前輪舵角りあるいは後輪舵角
δrの少なくとも一方を制御するものである。
The steering angle ratio control means 104 uses the vehicle speed V detected by the vehicle speed detection means 108 to determine the rear wheel steering angle and the front wheel steering angle δf.
At least one of the front wheel steering angle and the rear wheel steering angle δr is controlled so that the ratio Kb (-δr/δf) of δ-work satisfies the following relationship (where M and B are constants).

(作用) 上記のような舵角比Kbを満足するように舵角制御を行
うことで、車両のスタビリテイ7アクタは、車速変化に
対して常に一定となり、4輪操舵を行う車両でありなが
ら、通常車両(前輪のみをステアリングハンドルによっ
て操舵する車両)と同様の操舵感覚で操舵を行うことが
できる。
(Function) By controlling the steering angle so as to satisfy the steering angle ratio Kb as described above, the stability 7 actor of the vehicle is always constant against changes in vehicle speed, and even though the vehicle performs four-wheel steering, The vehicle can be steered with the same feeling as a normal vehicle (vehicle in which only the front wheels are steered by the steering wheel).

(実施例) 本発明の一実施例の構成を第2rgliに示す。(Example) The configuration of an embodiment of the present invention is shown in the second rgli.

本実施例は、前輪19.!0と後輪21.22を各々油
圧アクチュエータ25と7によって転舵する4輪操舵車
に適用した例を示す。
In this embodiment, the front wheel 19. ! An example is shown in which the present invention is applied to a four-wheel steered vehicle in which the rear wheels 21 and 22 are steered by hydraulic actuators 25 and 7, respectively.

上記油圧アクチュエータ25,7は、左右の油圧室の圧
力差によってピストンが移動し、ピストンロッドの両端
に連結されたナックルアーム28L、28Rまたは24
L、24Rの操作を行う。
The hydraulic actuators 25 and 7 have knuckle arms 28L, 28R, or 24 connected to both ends of a piston rod, whose pistons move due to the pressure difference between left and right hydraulic chambers.
Perform operations L and 24R.

油圧アクチュエータ25,7を駆動させる油圧は、オイ
ルポンプ8から吐出される作動油を、アンローディング
パルプ5、アキュムレー#8、fi路9、および前・後
輪側に各々1つずつ設けられたサーボ弁26,6を介し
て与えられ、ドレン10を通じてオイルタンク4へ戻さ
れる。上記オイルポンプ8は、ベルト2によって与えら
れるエンジン1の回転出力により駆動される。
The hydraulic pressure that drives the hydraulic actuators 25 and 7 is supplied to the unloading pulp 5, accumulator #8, fi path 9, and servos provided one each on the front and rear wheel sides. It is provided through valves 26, 6 and returned to oil tank 4 through drain 10. The oil pump 8 is driven by the rotational output of the engine 1 provided by the belt 2.

コントローラ11は、前輪と後輪の舵角を制御する装置
であり、この舵角の制御は、サーボ弁26.6の制御に
より油圧アクチュエータ25゜7の変位量を制御するこ
とによって行われる。
The controller 11 is a device that controls the steering angles of the front wheels and the rear wheels, and the steering angle is controlled by controlling the displacement amount of the hydraulic actuator 25.7 by controlling the servo valve 26.6.

コントローラ11に−は、トランスミッション12に設
けられた車速センサ18で検出される車速Vに相当する
信号と、ハンドル操舵角センサ16で検出されるステア
リングハンドル14の操舵角θ8に相当する信号とが入
力されている。また、これらの入力に基づいて演算され
た前輪舵角目標値五に相当する信号と、後輪舵角目標値
五に相当する信号とがフントa−ラ11から出力される
A signal corresponding to the vehicle speed V detected by the vehicle speed sensor 18 provided in the transmission 12 and a signal corresponding to the steering angle θ8 of the steering wheel 14 detected by the steering wheel steering angle sensor 16 are input to the controller 11. has been done. Further, a signal corresponding to the front wheel steering angle target value 5 calculated based on these inputs and a signal corresponding to the rear wheel steering angle target value 5 are output from the controller 11.

さらに、前後の油圧アクチュエータ25,7には、ピス
トンロッドの変位量、すなわち、前輪実舵角afと後輪
実舵角δrに相当する量を検出する変位センサ28,1
8が設けられており、これらの変位センサ28,18の
検出信号はサーボアンプ27.17へフィードバックさ
れ、従って、サーボアンプ27.17は、コントローラ
11から送られる前輪舵角目標値δfまたは後輪舵角目
標値δ□に、前輪実舵角atまたは後輪実舵角りが一致
するようにフィードバック制御を行う。
Further, the front and rear hydraulic actuators 25, 7 are provided with displacement sensors 28, 1 that detect the amount of displacement of the piston rod, that is, the amount corresponding to the actual front wheel steering angle af and the actual rear wheel steering angle δr.
8 is provided, and the detection signals of these displacement sensors 28 and 18 are fed back to the servo amplifier 27.17. Therefore, the servo amplifier 27.17 receives the front wheel steering angle target value δf or the rear wheel steering angle target value sent from the controller 11. Feedback control is performed so that the front wheel actual steering angle at or the rear wheel actual steering angle coincides with the steering angle target value δ□.

第8図は、上記コントローラ11によって行われる制御
の内容を示すフローチャートである。ごこて、コントロ
ーラ11は、同図の70−チャートに示す処理を繰返し
実行するマイクロコンビュ−タシステムで構成されてい
るものとする(なお(コントローラ11は、同様の演算
を行うアナログ回路やディジタル回路を用いて構成して
も良い)。
FIG. 8 is a flowchart showing the details of the control performed by the controller 11. It is assumed that the controller 11 is composed of a microcomputer system that repeatedly executes the process shown in chart 70 in the same figure. ).

第8図に示すように、コントローラ11は、ハンドル操
舵角センサ16で検出されるハンドル操舵角θ8と車速
センサ18で検出される車速Vとを読込んで(ステップ
201)、前輪舵角目標値りおよび後輪舵角目標値δr
を求め(ステップ202.208 )、これらをサーボ
アンプ27゜17へ出力する(ステップ204)制御を
行う。
As shown in FIG. 8, the controller 11 reads the steering wheel steering angle θ8 detected by the steering wheel steering angle sensor 16 and the vehicle speed V detected by the vehicle speed sensor 18 (step 201), and determines the front wheel steering angle target value. and rear wheel steering angle target value δr
are determined (steps 202 and 208), and control is performed to output these to the servo amplifier 27.17 (step 204).

上記前輪舵角目標値δfは、上記ハンドル操舵角θ8に
比例して決定される。すなわち、通常車両と同様にステ
アリングハンドル14の操舵量に対応して前輪19,2
0、が操舵されるようになっている。
The front wheel steering angle target value δf is determined in proportion to the steering wheel steering angle θ8. That is, similarly to a normal vehicle, the front wheels 19 and 2 are rotated in response to the amount of steering of the steering wheel 14.
0, is designed to be steered.

そして、前輪実舵角δfに対する後輪実舵角りの比Kb
(−δf/δr)が、 なる関係を満足するように、後輪舵角目標値ηが求めら
れる。すなわち、Kb−ar/δfとして上記((1)
式から求めるのである。ここで、上記(1)式中で、I
8は、本実施例が搭載される車両と同タイプの通常車両
のスタビリテイファクタであり、通常車両では、 (但し、Mは車両質量、Cpよけ前輪コーナリングパワ
ー、Opsは後輪コーナリングパワー、lはホイールベ
ース・aは前軸と車体重心点との距離、bは後軸と車体
重心点との距離である)で表わされる。この通常車両の
スタビリテイ7アクタKsは車速に無関係な一定の値で
ある。
Then, the ratio Kb of the actual steering angle of the rear wheels to the actual steering angle of the front wheels δf
The rear wheel steering angle target value η is determined so that (−δf/δr) satisfies the following relationship. That is, as Kb-ar/δf, the above ((1)
It is obtained from the formula. Here, in the above formula (1), I
8 is the stability factor of a normal vehicle of the same type as the vehicle in which this embodiment is installed; l is the wheelbase, a is the distance between the front axle and the center of gravity of the vehicle, and b is the distance between the rear axle and the center of gravity of the vehicle. The stability 7 actor Ks of this normal vehicle is a constant value that is independent of vehicle speed.

また、上記に、/は、ある車速v0(例えば100hI
A/h )における本実施例装置搭載車両のスタビリテ
イファクタであり、かつ、このKBIは、通常車両の定
常ミーレートゲインに9.と本実施例装置搭載車両のヨ
ーレートゲインKq*とが等しくなるような値に設定さ
れ、これも定数である。
Also, in the above, / means a certain vehicle speed v0 (for example, 100hI
A/h) is the stability factor of the vehicle equipped with the device of this embodiment, and this KBI is 9. and the yaw rate gain Kq* of the vehicle equipped with the device of this embodiment are set to be equal, and this is also a constant.

すなわち、通常車両について、第4図に示す2輪モデル
により運動方程式を立てると、M(Vψ+y)−F、+
F、         ・・・(8)工2φ−aF□−
bF、・・・(4) である。ここで、 エフS:ヨー慣性モーメント 小:ヨーレート φ:ヨー角加速度 Fo:前輪のサイドフォース F2:後輪のサイドフォース δf:前輪の実舵角 t:重心点の横方向速度 であり、第4図において、 βf;前輪の横すべり角 βr:後輪の横すべり角 β:重心点の横すべり角 δf二前輪舵角 δr:後輪舵角 である。また、yは図示の方向を正とし、角度は・全て
図中の反時計回り方向を正とする。
In other words, for a normal vehicle, if the equation of motion is established using the two-wheel model shown in Figure 4, then M(Vψ+y)-F, +
F, ... (8) Engineering 2φ-aF□-
bF,...(4). Here, F: Small yaw moment of inertia: Yaw rate φ: Yaw angular acceleration Fo: Front wheel side force F2: Rear wheel side force δf: Actual steering angle of the front wheels t: Lateral speed of the center of gravity; In the figure, βf: Side slip angle of front wheels βr: Side slip angle of rear wheels β: Side slip angle of center of gravity δf Two front wheel steering angles δr: Rear wheel steering angle. Further, y is positive in the direction shown in the figure, and all angles are positive in the counterclockwise direction in the figure.

ま、た、本実施例装置搭載車両について運動方程式を立
てると、 M(’Vか+す)−F工+F、        ・・・
(1)I29) −aF、 −bF、        
    −(8)である。
Well, if we set up the equation of motion for the vehicle equipped with the device of this embodiment, we get M('V+S)-F+F,...
(1) I29) -aF, -bF,
-(8).

以上の式(8)〜(6)および(7)〜(no)から、
通常車両のヨーレートゲインに、および本実施例装置搭
載車のヨーレートゲインに91*を求めると、以下の如
くになる。
From the above formulas (8) to (6) and (7) to (no),
If 91* is calculated for the yaw rate gain of a normal vehicle and the yaw rate gain of a vehicle equipped with the device of this embodiment, the result is as follows.

ここで、Ks□は、本実施例装置搭載車両のスタビリテ
イ7アクタであり、Nはステアリングギヤ比である。
Here, Ks□ is the stability 7 actor of the vehicle equipped with the device of this embodiment, and N is the steering gear ratio.

そして、前述の如< 、Ks’は、ある車速■□のとき
にに9.−〜 となるものと設定されていることから、
(11)式と(12)式を等しく置いて(従来車両と本
実施例装置搭載車両とは、車体構造が等しいからこの段
階でに91  はに9.であるとみなす)、Ks□を求
めると、 Ksl −(1−Kb)Kq3−合     ・・・(
18)■ となり、ここでVにV□を代入すれば となって、Ks□(V□)は一定になる。すなわち、こ
のときのKs□(V□)をKsIとするのである。
As mentioned above, Ks' becomes 9. at a certain vehicle speed ■□. −~ Since it is set as
Equations (11) and (12) are placed equally (the conventional vehicle and the vehicle equipped with the device of this embodiment have the same vehicle body structure, so it is assumed at this stage that 91 and 9) to find Ks□. and Ksl -(1-Kb)Kq3-combination...(
18) ■ If we substitute V□ for V, then Ks□ (V□) becomes constant. That is, Ks□ (V□) at this time is set as KsI.

従って、このとき、 となる。Therefore, at this time, becomes.

以上から、前記(1)式で求められる本実施例装置搭載
車両における舵角比Kbは、車速Vのみを変数にもつこ
とになる。
From the above, the steering angle ratio Kb in the vehicle equipped with the device of this embodiment, which is determined by the above equation (1), has only the vehicle speed V as a variable.

そして、このように舵角比Kbを制御することで、本実
施例装置搭載車両の定常ヨーレートゲインに?”は車速
Vの変化に拘わらず、常に通常車両の定常ヨーレートゲ
イン〜と等しくなり(すなわち、K9.*−に9.)、
かつ本実施例装置搭載車の見かけ上のスタビリテイファ
クタに♂は、車速Vの変化に拘らず常に一定となる。こ
れは、以下の理由による・ 定常ヨーレートゲインの一般形は・(11)式のように
、  − として表わされるので、本実施例装置搭載車の見かけ上
のスタビリテイファクタに♂を用いて定常ヨーレートゲ
イ7にψ を表わすと、 となる。
By controlling the steering angle ratio Kb in this way, the steady yaw rate gain of the vehicle equipped with the device of this embodiment can be improved. ” is always equal to the steady yaw rate gain ~ of the normal vehicle regardless of changes in vehicle speed V (that is, K9.*-9.),
In addition, the apparent stability factor of the vehicle equipped with the device of this embodiment is always constant regardless of changes in vehicle speed V. This is due to the following reasons: The general form of the steady yaw rate gain is expressed as - as shown in equation (11). When ψ is expressed in gay 7, it becomes .

このに9.*と〜が等しくなるようにするのだから(I
S)式と(11)式を等しくiいて、Kbを求めると、 となり、(1)式が導かれる。
9. Since we want to make * and ~ equal (I
When Kb is obtained by dividing equation (S) and equation (11) equally, the following equation is obtained, and equation (1) is derived.

また、Kq” −Kqより、(16)式と(11)式を
等しく置くと、 であるから、KsI−Ksとなり、本実施例装置搭載車
両の見かけ上のスタビリテイファクタKs  は、通常
車両のスタビリテイ7アクタに8と等しく、かつ一定に
なる。
Also, from Kq'' - Kq, if equations (16) and (11) are placed equally, then KsI - Ks, and the apparent stability factor Ks of the vehicle equipped with the device of this embodiment is the same as that of a normal vehicle. Stability 7 actors equals 8 and remains constant.

このときのKsIを従来車両と比較するために、第6図
に示しである。また、上記式(1)で定まる舵角比Kb
は、第5図に示すような特性になる。
The KsI at this time is shown in FIG. 6 for comparison with that of a conventional vehicle. In addition, the steering angle ratio Kb determined by the above formula (1)
has the characteristics as shown in FIG.

このように、舵角比Kbを(1)式に従って制御するこ
とで、本実施例搭載車両は、本質的なスタビリテイファ
クタは車速Vの変化により変動するのであるが、これを
舵角比Kbの制御により、見かけ上は一定値、しかも通
常車両のスタビリテイ7アクタと等しくなり、定常ヨー
レートゲインも通常車・両のものと等しいため、運転者
は、殆んど通常車両を運転する感覚で操舵ができること
になる。
In this way, by controlling the steering angle ratio Kb according to equation (1), the essential stability factor of the vehicle equipped with this embodiment changes due to changes in the vehicle speed V, but this can be controlled by controlling the steering angle ratio Kb. The control gives an apparently constant value and is equal to the stability 7 actor of a normal vehicle, and the steady yaw rate gain is also equal to that of a normal vehicle, so the driver can steer almost as if he were driving a normal vehicle. will be possible.

なお、上記実施例では、舵角比Kbを(1)式のように
に8とKB/なる定数を用いて定めることで、見かけ上
のスタビリテイ7アクタに♂と定常ヨーレートゲイ7に
9.を通常車両と同一とした例を示したが、これらの定
数は任意の定数でもよく、すなわち、A、Bを定数とす
れば、 B。
In the above embodiment, by determining the steering angle ratio Kb using the constants 8 and KB/ as in equation (1), the apparent stability 7 actor is male and the steady yaw rate gain 7 is 9. Although we have shown an example in which is the same as that of a normal vehicle, these constants may be arbitrary constants. That is, if A and B are constants, then B.

Kb″″1+17” を満足するように舵角比Kbを制御すれば、見かけ上の
スタビリテイファクタに♂は車速Vに拘わらず一定にな
る。従って、ム、Bを適宜選択すれば、定常ヨーレート
ゲインKtp*を最適制御することができる。
If the steering angle ratio Kb is controlled so as to satisfy Kb''1+17'', the apparent stability factor (male) will be constant regardless of the vehicle speed V. Therefore, if M and B are selected appropriately, the steady yaw rate Gain Ktp* can be optimally controlled.

(発明の効果) 以上詳細に説明したように、本発明は、前輪舵角δfに
対する後輪舵角δアの比Kb(−δr/δf)を、Kb
−−−1v2 1 +71V ・なる関係を満たすように制御するようにしたことで、
車両のスタビリテイファクタ(見かけ上のスタビリテイ
7アクタ)は、車速変化に対して常に一定となり、かつ
、定常ヨーレートゲインの車速゛に対する変化も通常車
両のものと同様な変化を示すことになり、これによって
、運転者は通常車両と同じ感覚で操舵を2行うことがで
き、乗員にとっても操舵時の違和感を感じることがない
(Effects of the Invention) As explained in detail above, the present invention provides a ratio Kb (-δr/δf) of the rear wheel steering angle δa to the front wheel steering angle δf.
−−1v2 1 +71V ・By controlling to satisfy the following relationship,
The stability factor of the vehicle (apparent stability factor 7) is always constant with respect to changes in vehicle speed, and the change in steady yaw rate gain with respect to vehicle speed also shows a change similar to that of a normal vehicle. This allows the driver to steer the vehicle with the same feeling as in a normal vehicle, and the occupants do not feel any discomfort when steering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、 第2図は本発明の一実施例の構成図、 第8図は第2図中のコントローラにおいて実行される制
御内容を示すフローチャート、第4図は車両運動方程式
を導くための2輪モデル、 第5図は第2図に示した実施例車両における舵角比Kb
の特性図、 第6図は同実施例車両のスタビリテイファクタと従来車
両のスタビリテイファクタとを示す特性図、 ・ 第7図は通常車両と従来車両の定常ヨーレートゲイ
ンを比較して示す特性図である。 100・・・操舵制御装置  101・・・前輪102
・・・後輪      108・・・車速検出手段10
4・・・舵角比制御手段 δ、・・・前輪舵角     δr・・・後輪舵角7.
25・・・油圧アクチュエータ 11・・・コントローラ   18・・・車速センサ1
4・・・ステアリングハンドル 16・・・ハンドル操舵角センサ 17 、27・・・サーボアンプ 19 、20・・・前輪    21 、22・・・後
輪便イ立センプ 第4図
Fig. 1 is a block diagram of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 8 is a flowchart showing the control contents executed by the controller in Fig. 2, and Fig. 4 is a vehicle movement diagram. A two-wheel model for deriving the equation, Figure 5 shows the steering angle ratio Kb of the example vehicle shown in Figure 2.
・ Figure 6 is a characteristic diagram showing the stability factor of the vehicle according to the embodiment and the stability factor of the conventional vehicle. ・ Figure 7 is a characteristic diagram showing a comparison of the steady yaw rate gain of the conventional vehicle and that of the conventional vehicle. It is. 100... Steering control device 101... Front wheel 102
... Rear wheel 108 ... Vehicle speed detection means 10
4... Steering angle ratio control means δ,... Front wheel steering angle δr... Rear wheel steering angle 7.
25... Hydraulic actuator 11... Controller 18... Vehicle speed sensor 1
4...Steering handle 16...Handle steering angle sensor 17, 27...Servo amplifier 19, 20...Front wheel 21, 22...Rear wheel stand point Figure 4

Claims (1)

【特許請求の範囲】 1、前輪と後輪の操舵が可能な4輪操舵車の操舵制御装
置において、 車速を検出する車速検出手段と、 該検出される車速Vを用いて、前輪舵角δ_fに対する
後輪舵角δ_rの比K_b(−δ_r/δ_f)がK_
b=[B/(1+AV^2)]V^2 (但し、A、Bは定数)の関係を満たすように、前輪舵
角あるいは後輪舵角の少なくとも一方を制御する舵角比
制御手段とを具備することを特徴とする4輪操舵車の操
舵制御装置。
[Claims] 1. A steering control device for a four-wheel steering vehicle capable of steering front wheels and rear wheels, comprising: a vehicle speed detection means for detecting vehicle speed; and a front wheel steering angle δ_f using the detected vehicle speed V. The ratio K_b (-δ_r/δ_f) of the rear wheel steering angle δ_r to the rear wheel steering angle δ_r is K_
a steering angle ratio control means for controlling at least one of the front wheel steering angle or the rear wheel steering angle so as to satisfy the relationship b=[B/(1+AV^2)]V^2 (where A and B are constants); A steering control device for a four-wheel steering vehicle, comprising:
JP26746984A 1984-12-20 1984-12-20 Steering controller for 4-wheel steering car Pending JPS61146677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26746984A JPS61146677A (en) 1984-12-20 1984-12-20 Steering controller for 4-wheel steering car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26746984A JPS61146677A (en) 1984-12-20 1984-12-20 Steering controller for 4-wheel steering car

Publications (1)

Publication Number Publication Date
JPS61146677A true JPS61146677A (en) 1986-07-04

Family

ID=17445273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26746984A Pending JPS61146677A (en) 1984-12-20 1984-12-20 Steering controller for 4-wheel steering car

Country Status (1)

Country Link
JP (1) JPS61146677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196375U (en) * 1987-12-20 1989-06-27
JPH02129515A (en) * 1988-10-07 1990-05-17 Etak Inc Method and apparatus for measuring relative derection change in onboard navigation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196375U (en) * 1987-12-20 1989-06-27
JPH02129515A (en) * 1988-10-07 1990-05-17 Etak Inc Method and apparatus for measuring relative derection change in onboard navigation system

Similar Documents

Publication Publication Date Title
CN108602529B (en) Method for controlling vehicle steering and vehicle behavior
EP0487529B1 (en) A wheeled vehicle steering system
US4441572A (en) Method and a system for steering a wheeled vehicle
JP2762711B2 (en) Vehicle braking behavior compensator
JP2932589B2 (en) Vehicle motion control device
JP2851385B2 (en) Torque distribution control device for four-wheel drive vehicle
JP4032985B2 (en) Vehicle motion control device
US4869335A (en) Four-wheel steering system of a motor vehicle
US5184298A (en) Rear wheel steering system for vehicle
US5208751A (en) Active four-wheel steering system for motor vehicles
JPH01212619A (en) Auxiliary steering for front/rear wheel driving force distribution control type vehicle
JPH0825470B2 (en) Rear wheel rudder angle control method
JPH01309879A (en) Control method for steering rear wheel of automobile
Shim et al. Using µ feedforward for vehicle stability enhancement
KR930005856B1 (en) Vehicle rear wheel steer angle control system
JPH02102874A (en) Rear-wheel steering controller
JPS61146677A (en) Steering controller for 4-wheel steering car
JP2548294B2 (en) Vehicle drive controller
JPH02220973A (en) Method for controlling rear wheel steering angle
JP2851386B2 (en) Torque distribution control device for four-wheel drive vehicle
JP3132695B2 (en) Vehicle yawing momentum control device
JP2746002B2 (en) Driving force distribution device for four-wheel drive vehicle with four-wheel steering device
JPH01311960A (en) Active four-wheel steering gear
JP2947040B2 (en) Auxiliary steering angle control device for vehicles
JP2549709B2 (en) Rear-wheel steering system for 4-wheel steering vehicle