JPS61146503A - Manufacture of high-strength cement product - Google Patents

Manufacture of high-strength cement product

Info

Publication number
JPS61146503A
JPS61146503A JP26752584A JP26752584A JPS61146503A JP S61146503 A JPS61146503 A JP S61146503A JP 26752584 A JP26752584 A JP 26752584A JP 26752584 A JP26752584 A JP 26752584A JP S61146503 A JPS61146503 A JP S61146503A
Authority
JP
Japan
Prior art keywords
cement
water
molding
pressure
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26752584A
Other languages
Japanese (ja)
Inventor
松井 二三雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP26752584A priority Critical patent/JPS61146503A/en
Publication of JPS61146503A publication Critical patent/JPS61146503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水硬性セメントと水とを含む組成物から製造さ
れる高強度セメント製品の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a high-strength cement product produced from a composition containing hydraulic cement and water.

[従来の技術及び本発明が 解決しようとする問題点〕 水硬性セメント組成物から製造されるセメント製品にお
いては、高強度特に高い曲げ強度を有する製品が望まれ
ている。
[Prior Art and Problems to be Solved by the Present Invention] In cement products manufactured from hydraulic cement compositions, products having high strength, particularly high bending strength, are desired.

しかしながら、珪酸カルシウム系セメント、アルミン酸
カルシウム系セメント及びiil!を酸カルシウム系セ
メントなどの水硬性セメントに見られる共通した特徴は
それらが相異なる化学組成、硬化反応機構、及び種々の
水和の程度であるにも拘らず、強度が一様に低く、特に
曲げ強度については、通常30〜100kg/ay2程
度の水準に止まる。
However, calcium silicate cement, calcium aluminate cement and il! A common characteristic of hydraulic cements, such as calcium acid cements, is that despite their different chemical compositions, curing reaction mechanisms, and varying degrees of hydration, their strengths are uniformly low, especially The bending strength usually remains at a level of about 30 to 100 kg/ay2.

このような低い曲げ強度の故に、鉄筋、繊維類らの補強
材が用いられるのが一般的である。
Because of such low bending strength, reinforcing materials such as reinforcing bars and fibers are generally used.

一方、グリフイスの理論によれば、脆性固体の引張り強
度は材料中にある欠陥の大きさで決まるとれさており、
この理論に従い例えば特公昭59−43431に示され
るように気孔の大きざを制限した製品では極めて高い強
度が実現しうる事が確認されている。しかしながら上記
特許出願に例示される製法は極めて煩雑かつ非生産的で
あり、−例を挙げるならロールミル中にシート状混線物
を繰返し通しその後プレスで7日間加圧したまま硬化せ
しめるなどの方法は現実的とはとても云えない。この生
産スピードを上げるために急硬性の水硬性セメントを用
いる事が考えられるがこの種の材料は選択範囲も狭くか
つ高価であり、限定された用途にしか不向きである。
On the other hand, according to Griffith's theory, the tensile strength of a brittle solid is determined by the size of defects in the material.
In accordance with this theory, it has been confirmed that extremely high strength can be achieved in products with limited pore size, as shown in Japanese Patent Publication No. 59-43431, for example. However, the manufacturing method exemplified in the above patent application is extremely complicated and unproductive; for example, methods such as repeatedly passing a sheet-like mixed material through a roll mill and then curing it under pressure in a press for 7 days are not practical. I can't say it's very accurate. In order to increase the production speed, it is possible to use rapidly hardening hydraulic cement, but this type of material has a narrow selection range and is expensive, making it suitable only for limited uses.

このように成形に長時間を要する理由は成形時の加圧操
作を中止すると混線物中に微陽含有されている空気泡が
常圧になり、粗大化するためである。従ってセメント製
品の成形法の一つに押出し成形等がその良好な生産効率
から近年多用されているが、この場合もダイスを出ると
共に成形圧が解除され、残留気泡の粗大化が不可避であ
るため、特公昭59−43431に示されるような製品
の成形方法としては不適当であった。
The reason why molding takes such a long time is that when the pressurizing operation during molding is stopped, the air bubbles contained in the mixed material become normal pressure and become coarse. Therefore, extrusion molding has been widely used in recent years as one of the molding methods for cement products due to its good production efficiency, but in this case as well, the molding pressure is released upon exiting the die, which inevitably causes the remaining air bubbles to become coarse. , Japanese Patent Publication No. 59-43431, it was inappropriate as a method for molding products.

以上の様な状況に鑑み、本発明者は常圧下において粗大
な気泡を含まず、強度特に曲げ強度の著しく改良された
セメント製品を、一般的な主材料の水硬性セメントを用
い、通常実施されている混線方法、成形方法を採用する
ことによりしかも高い生産性で製造する方、法を開発す
べく鋭意研究を行った結果、本発明を完成するに至った
ものである。
In view of the above circumstances, the present inventor has developed a cement product that does not contain large air bubbles under normal pressure and has significantly improved strength, especially bending strength, using a general hydraulic cement as the main material. The present invention was completed as a result of intensive research to develop a method and method for manufacturing with high productivity by employing a cross-wire method and a molding method.

[問題点を解決するための手段] 本発明の要旨は、水硬性セメント及び水に更に必要に応
じて骨材を加えて混合し、これを硬化させるセメント製
品の製造方法において該混合に先立ち、少なくとも水硬
性セメントを脱気し、次に水溶性でありかつ水溶時にア
ルカリまたは酸と反応する気体との置換処理をし、該混
合は前記気体の存在下もしくは減圧下で行いその後、加
圧下にに おいてl形し、水硬性セメントの凝結硬化反応が開始す
るより以前に該成形圧力を解除する高強度セメント製品
の製造方法にある。
[Means for Solving the Problems] The gist of the present invention is to provide a method for manufacturing a cement product in which hydraulic cement and water are further mixed with aggregate, if necessary, and the mixture is hardened, and prior to the mixing, At least the hydraulic cement is degassed and then replaced with a gas that is water-soluble and reacts with an alkali or acid when dissolved in water, and the mixing is performed in the presence of the gas or under reduced pressure, and then under pressure. The present invention provides a method for manufacturing a high-strength cement product, in which the molding pressure is released before the setting and hardening reaction of the hydraulic cement starts.

本発明において使用される水硬性セメントとしては、ポ
ルトランドセメント、スグラ系セメント、シリカセメン
ト、フライアッシュセメント、高硫酸塩セメント、アル
ミナセメント、マグネシアセメント、各種石膏類のよう
なものが例示される。
Examples of the hydraulic cement used in the present invention include Portland cement, sucrose cement, silica cement, fly ash cement, high sulfate cement, alumina cement, magnesia cement, and various types of gypsum.

また、同じく本発明において使用される水溶性でかつ水
溶時にアルカリまたは酸と反応する気体としては二酸化
炭素、二酸化硫黄、亜酸化窒素、塩化水素、アンモニア
のようなものが例示されるが、取扱いの容易さ等からは
二酸化炭素が本発明に最も適している。本発明において
は少なくとも水硬性セメント、好ましくは水、骨材等使
用される材料の減圧処理後、他の特別のガスと置換され
るが、これらの処理の一例を述べると水硬性セメントと
骨材を減圧可能な混合材中に先ず投入し、先ず減易とな
る。混線水の脱気は別に行うのが到達真空度から見ても
好ましい。次いで両者とも例えば二酸化炭素を導入し、
すべての材料の雰囲気を二酸化炭素とする混練は、この
まま行っても良く必要ならば再度減圧してから行っても
よい。
Also, examples of gases that are water-soluble and react with alkali or acid when dissolved in water that can be used in the present invention include carbon dioxide, sulfur dioxide, nitrous oxide, hydrogen chloride, and ammonia; Carbon dioxide is most suitable for the present invention in terms of ease of use. In the present invention, at least hydraulic cement, preferably water, aggregate, and other materials to be used are replaced with other special gas after depressurization treatment. To give an example of these treatments, hydraulic cement and aggregate is first put into a mixed material that can be depressurized, and it becomes easy to depressurize. From the viewpoint of the ultimate vacuum level, it is preferable to deaerate the crosstalk water separately. Both then introduce e.g. carbon dioxide,
The kneading in which all the materials are mixed in a carbon dioxide atmosphere may be carried out as is or, if necessary, may be carried out after reducing the pressure again.

本発明において混線物から所望のセメント製品に賦形す
る方法としてはプレス成形、ロールプレス成形、真空押
出し成形等の通常の加圧成形方法が挙げられる。
In the present invention, methods for shaping the mixed material into a desired cement product include conventional pressure molding methods such as press molding, roll press molding, and vacuum extrusion molding.

本発明ではこれらの成形方法において成形圧力の解除を
、水硬性セメントの硬化まで待つ必要はなくまた成形材
料中に含まれて除去不能な残留気体は水溶性気体と置換
されており、且つ、セメントから遊離されるアルカリま
たは酸の水溶液と溶解反応しているため成形圧力の解除
後も気泡粗大化現象もないため気泡にもとづく強度低下
は見られない。
In the present invention, it is not necessary to release the molding pressure until the hydraulic cement hardens in these molding methods, and the residual gas that is contained in the molding material and cannot be removed is replaced with a water-soluble gas. Because the solution reacts with the aqueous alkali or acid solution liberated from the mold, there is no bubble coarsening phenomenon even after the molding pressure is released, so no decrease in strength due to bubbles is observed.

本発明においては、著しい強度の向上があるが、更に繊
維等の補強材、各種混和剤を併用する事も可能である。
In the present invention, the strength is significantly improved, but it is also possible to use reinforcing materials such as fibers and various admixtures in combination.

本発明は特に空気を連行しがちな、繊維類を併用する場
合に密実な複合体を製造するうえで有効である。
The present invention is particularly effective in producing dense composites when used with fibers that tend to entrain air.

[作 用] 特公昭59−43431に例示されるような方法ではプ
レス圧の解除と共に残留空気泡が粗大化する。また混線
時に真空びきした混線組成物であっても空気泡の除去は
不完全である他、真空びき下での成形等の取扱いは煩雑
でありプレス圧の解除は水硬反応が進み、強度が一定レ
ベルに到達するまではやはり不可能である。
[Function] In the method as exemplified in Japanese Patent Publication No. 59-43431, the residual air bubbles become coarser as the press pressure is released. In addition, even if the cross-wire composition is vacuum-pushed during cross-wiring, the removal of air bubbles is incomplete, and handling such as molding under vacuum is complicated, and when the press pressure is released, the hydraulic reaction progresses and the strength deteriorates. It is still impossible until you reach a certain level.

この状況は真空押出し成形においても同様であり、僅か
な残留空気もダイス先端では粗大泡化し強度を劣悪にす
る。
This situation is the same in vacuum extrusion molding, and even a small amount of residual air turns into coarse bubbles at the tip of the die, deteriorating the strength.

本発明においては水溶性でかつ水溶時に、添加された又
はセメントから遊離されるアルカリ又は酸と反応する気
体で一時置換せしめているために、加圧成形中に組織中
の残留気体は一定時間後はとんど消失し、水硬性セメン
トの凝結硬化以前に成形圧力を解除しても気泡の粗大化
はもたらされず、従って強度の低下の恐れはない。
In the present invention, the residual gas in the structure is removed after a certain period of time during pressure molding because it is temporarily replaced with a gas that is water-soluble and reacts with the alkali or acid added or liberated from the cement when dissolved in water. The bubbles almost disappear, and even if the molding pressure is removed before the hydraulic cement sets and hardens, the bubbles will not become coarser and there is no risk of a decrease in strength.

[効 果] 以上記述した如く、本発明によれば通常の水硬性セメン
トを用い、一般に知られている高い生産性を有する成形
方法で高強度特に曲げ強度の著しく改良されたセメント
製品を得ることができるため、その実用性は極めて高い
[Effects] As described above, according to the present invention, it is possible to obtain cement products with high strength, especially significantly improved bending strength, using ordinary hydraulic cement and a generally known molding method with high productivity. Because it can do this, its practicality is extremely high.

以下、本発明を実施例により更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

[実施例] 実施例 1 ポルトランドセメント100部、珪石粉20部、ヒドロ
キシプロピルメチルセルロース2部、ツクラスアスベス
ト2.5部を真空処理ができるオムニミキサー中に入れ
、ゆるく撹拌しながら真空に約10分間ひき、ついで二
酸化炭素を常圧に戻るまで圧入し、予め加熱、脱気した
混練水20部を入れて、高速で約3分間撹拌した。
[Example] Example 1 100 parts of Portland cement, 20 parts of silica powder, 2 parts of hydroxypropyl methylcellulose, and 2.5 parts of Tsukura asbestos were placed in an omnimixer capable of vacuum treatment, and the mixture was placed in a vacuum for about 10 minutes while stirring gently. Then, carbon dioxide was pressurized until the pressure returned to normal pressure, and 20 parts of kneading water that had been heated and degassed in advance was added, followed by stirring at high speed for about 3 minutes.

この混合物を次いでツインロールミルに装入しシートの
形態にした。次いでシートを取り出し2枚のポリエチレ
ンテレフタレートのシートの間におきプレスで20 k
g / ax 2の加圧下10分間放置し、このシート
を取り出し20℃90%RHの雰囲気下に1週問おいた
のち乾燥せしめた。
This mixture was then charged to a twin roll mill and formed into sheets. Next, the sheet was taken out and placed between two polyethylene terephthalate sheets and pressed for 20 k.
The sheet was left for 10 minutes under a pressure of 2 g/ax, and then taken out and placed in an atmosphere of 20° C. and 90% RH for one week, and then dried.

このセメントシートに切目を入れて寸法50×17X3
11の試験片を多数切り出し、インストロン試験機を用
いて三点屈曲試験を行った。試験片の曲げ強度の平均値
は415 kQ/ax2であった。
Dimensions: 50 x 17 x 3 by making cuts in this cement sheet.
A large number of test pieces of No. 11 were cut out and subjected to a three-point bending test using an Instron testing machine. The average bending strength of the test pieces was 415 kQ/ax2.

試験片の表面を微細研磨材で研磨して平らとし、この表
面を光学顕微鏡で観察したところ、気孔径の最大径が1
00ミクロンを超えるものはなく、極めて微細な気孔を
含むのみであった。
The surface of the test piece was polished with a fine abrasive to make it flat, and when this surface was observed with an optical microscope, the maximum diameter of the pores was 1.
There were no pores larger than 0.00 microns, and only extremely fine pores were included.

実施例 2 実施例1の混線物を真空押出し成形機を用いて板状に成
形し、実施例1と同じ試験片を切り出し曲げ強度を測定
したところ平均365k(+/ay2であった。
Example 2 The mixed wire material of Example 1 was molded into a plate shape using a vacuum extrusion molding machine, and the same test pieces as in Example 1 were cut out and the bending strength was measured, and the average was 365 k (+/ay2).

また光学顕微鏡による観察でも最大径が100ミクロン
を超える粗大泡は見られず緻密な組織であった。
Further, even when observed using an optical microscope, no coarse bubbles with a maximum diameter of more than 100 microns were observed, indicating a dense structure.

比較例 1 実施例1と同じ組成、ミキサーを用い真空処理するだけ
で混練水を加え撹拌し混線物を得た。
Comparative Example 1 A mixture having the same composition as Example 1 was obtained by simply performing vacuum treatment using a mixer, adding kneading water, and stirring.

このものを実施例1と全く同じ操作によりプレスしシー
トを得た。このものの曲げ強度の平均値は185kg/
cII2であった。また実施例2と全く同じ操作により
押出し成形したものの曲げ強度は148 klJ/at
2であった。
This product was pressed in exactly the same manner as in Example 1 to obtain a sheet. The average bending strength of this item is 185 kg/
It was cII2. Furthermore, the bending strength of the product extruded using the same procedure as in Example 2 was 148 klJ/at.
It was 2.

プレスしたもの、押出し成形したもの共に光学顕微鏡で
は100ミクロンを超える粗大な気孔が多数観察された
Many coarse pores exceeding 100 microns were observed under an optical microscope in both the pressed and extruded materials.

Claims (1)

【特許請求の範囲】[Claims] 水硬性セメント及び水に更に必要に応じて骨材を加えて
混合し、これを硬化させるセメント製品の製造方法にお
いて、該混合に先立ち少なくとも水硬性セメントを脱気
し、次に水溶性でありかつ水溶時にアルカリまたは酸と
反応する気体との置換処理をし、該混合は前記気体の存
在下もしくは減圧下で行いその後加圧下において成形し
水硬性セメントの凝結硬化反応が開始する前に該成形圧
力を解除する事を特徴とする高強度セメント製品の製造
方法。
A method for manufacturing a cement product in which hydraulic cement and water are further mixed with aggregate as necessary and then cured, in which at least the hydraulic cement is deaerated prior to said mixing, and then water-soluble and When dissolved in water, a substitution treatment is performed with a gas that reacts with alkali or acid, and the mixing is performed in the presence of the gas or under reduced pressure, and then molded under pressure, and the molding pressure is applied before the setting and hardening reaction of the hydraulic cement starts. A method for manufacturing a high-strength cement product characterized by releasing the
JP26752584A 1984-12-20 1984-12-20 Manufacture of high-strength cement product Pending JPS61146503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26752584A JPS61146503A (en) 1984-12-20 1984-12-20 Manufacture of high-strength cement product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26752584A JPS61146503A (en) 1984-12-20 1984-12-20 Manufacture of high-strength cement product

Publications (1)

Publication Number Publication Date
JPS61146503A true JPS61146503A (en) 1986-07-04

Family

ID=17446037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26752584A Pending JPS61146503A (en) 1984-12-20 1984-12-20 Manufacture of high-strength cement product

Country Status (1)

Country Link
JP (1) JPS61146503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272582A (en) * 2007-02-09 2008-11-13 Tokyo Kogei Univ Detoxification treatment method for asbestos, and method for generating magnesium carbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272582A (en) * 2007-02-09 2008-11-13 Tokyo Kogei Univ Detoxification treatment method for asbestos, and method for generating magnesium carbonate

Similar Documents

Publication Publication Date Title
JPH0137345B2 (en)
JP2003104766A (en) Fiber reinforced hydraulic composition and fiber reinforced hydraulic formed body obtained by using the composition
CN116003088B (en) Method for exciting activity of fluorogypsum
JPS61146503A (en) Manufacture of high-strength cement product
JPH0656496A (en) Production of fiber-reinforced cement plate
KR101025893B1 (en) Hardened material manufacturing method using stone powder sludge
JP3042962B2 (en) Method for producing coal ash solidified material
EP0170495A2 (en) Cementitious compositions
JPS61227959A (en) Manufacture of superhigh strength cement products
JPH0688854B2 (en) Manufacturing method of lightweight cellular concrete
JP2724618B2 (en) High strength composite material and method for producing the same
CN115724612B (en) Calcium silicate board activator and application thereof in preparation of calcium silicate board
KR102607272B1 (en) Curing method of cementitious materials using alkaline activator aqueous solution
US5026428A (en) Manufacturing plaster articles
JP2619945B2 (en) Manufacturing method of inorganic plate material
JPH0421634B2 (en)
JP2001097750A (en) Aggregate utilizing waste gypsum and method for producing the same
JPH02141447A (en) Stretched polyethylene for reinforcement
JPH0335252B2 (en)
FI79090C (en) Hardenable composition and process for making such.
JP2000044320A (en) Inorganic hardened body and its production
JPS6241749A (en) Manufacture of inorganic hardened body
JPH07267713A (en) Production of cement molded body
JP2000159560A (en) Production of inorganic board
JPH0248444A (en) Carbon fiber-reinforced cement-cured form and production thereof