JPS61146422A - Manufacture of electric discharge machining wire - Google Patents

Manufacture of electric discharge machining wire

Info

Publication number
JPS61146422A
JPS61146422A JP26587384A JP26587384A JPS61146422A JP S61146422 A JPS61146422 A JP S61146422A JP 26587384 A JP26587384 A JP 26587384A JP 26587384 A JP26587384 A JP 26587384A JP S61146422 A JPS61146422 A JP S61146422A
Authority
JP
Japan
Prior art keywords
wire
discharge machining
electrical discharge
electrode
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26587384A
Other languages
Japanese (ja)
Inventor
Satoru Takano
悟 高野
Shigeo Ezaki
江崎 繁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26587384A priority Critical patent/JPS61146422A/en
Publication of JPS61146422A publication Critical patent/JPS61146422A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To stabilize the inter-electrode voltage and the machining current while to reduce adhesion of electrode component to the work by heating Cu-Zn alloy wire under such ambient as Cu is scarcely oxidized but Zn is oxidized. CONSTITUTION:Alloy composed of 28-37wt% of Zn, total 0.2-2wt% of more than one or two kind of Si, Ti, Zr, Al and the remainder of Cu is employed as the core material and in order to form desired film onto the surface of Cu-Zn alloy wire, thermal processing is executed under such ambient where Cu is scarcely oxidized but Zn is oxidized. Preferably, said ambient has the temperature higher than 500 deg.C and the oxygen partial pressure of 10<-2>-10<-2> bar. The heating time is about 45min. Thereafter, the outer diameter is adjusted and the softened wire is hardened then stretched to increase the tensile force.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ワイヤー放電加工に使用する電極線の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an electrode wire used in wire electrical discharge machining.

(背景技術) ワイヤー放電加工は、被加工体と線状の加工電極(電極
線と称す)との間に、水等の加工液を介して間欠的な放
電を行なわせながら、該電極線と被加工体とを相対的に
移動させて被加工体を所望の形状に切断する方法であり
、例えば各種金型の製造に利用されている。
(Background Art) Wire electrical discharge machining involves intermittent electrical discharge between a workpiece and a linear machining electrode (referred to as an electrode wire) via a machining liquid such as water. This is a method of cutting a workpiece into a desired shape by moving the workpiece relatively to the workpiece, and is used, for example, in manufacturing various molds.

ワイヤー放電加工用電極線としては、通常直径0.2〜
0.8銀の銅線または黄銅線、0.03〜0.1B の
タングステン線等が使用される。近年、主として優れた
高速大電流用半導体の出現による加工電源の進歩と、電
気条件の制御により、高し1加工速度が得られるように
なり、それに伴い加工特性に及ぼす電極線の影響も大き
く現れるようになった。
The electrode wire for wire electrical discharge machining usually has a diameter of 0.2~
0.8 silver copper wire or brass wire, 0.03 to 0.1 B tungsten wire, etc. are used. In recent years, advances in processing power supplies mainly due to the emergence of superior high-speed, large-current semiconductors and control of electrical conditions have made it possible to obtain processing speeds of 1 height, and the influence of electrode wires on processing characteristics has also increased. It became so.

この観点から、電極線として好適な材料の開発が盛んに
なっている。
From this point of view, materials suitable for electrode wires are being actively developed.

例えば特公昭59−9298号(以下、先例1と称す)
には、高い加工速度が得られる電極線として、5〜40
%Zn、 0.1〜4%AI!、残部Cuからなる電極
線が提案されている。同じ目的で、特公昭57−564
8号(以下、先例2と称す)には、Zn  またはCd
  を少くとも50%含む合金からなる金属層で芯が被
覆された電極線が、特開昭56−62730号(以下、
先例3と称す)には、導電性材料製のコアに低融点金属
層を被覆し、さらにその上に半導体効果を有する非金属
製薄膜を有する電極線が提案されている。
For example, Special Publication No. 59-9298 (hereinafter referred to as precedent 1)
As an electrode wire that can obtain high processing speed,
%Zn, 0.1~4%AI! , an electrode wire with the remainder being Cu has been proposed. For the same purpose, the special public service was established in 1986-564.
No. 8 (hereinafter referred to as precedent 2) states that Zn or Cd
An electrode wire whose core is coated with a metal layer made of an alloy containing at least 50% of
3) proposes an electrode wire in which a core made of a conductive material is coated with a low melting point metal layer, and a nonmetallic thin film having a semiconductor effect is further formed on the core.

ワイヤー放電加工用電極線材料としては、■断線せずに
高い放電加工速度が得られること、■加工精度、特にコ
ーナー加工での高い精度を得るkめに高い張力での放電
加工が可能なこと、■製造コストが安価であることが要
求される。高速のワイヤー放電加工では、加工溝内で電
極成分が被加工体上に転移し、加工溝内面に大量に付着
する現象がしばしば発生する。多くの加工機は、著しい
短絡発生時に加工溝を経由しての線の位置の後退をさせ
る機能を有している。上記の付着現象はこの動作の大き
な障害となる他、一般に付着の大きい電極線はど最高加
工速度が小さくなり、そのためこの付着が少ないことも
重要な要求特性となる。
As an electrode wire material for wire electrical discharge machining, ■ it must be able to achieve high electrical discharge machining speed without wire breakage, and ■ it must be possible to perform electrical discharge machining with high tension to obtain high machining accuracy, especially in corner machining. , ■ Low manufacturing cost is required. In high-speed wire electrical discharge machining, a phenomenon often occurs in which electrode components are transferred onto the workpiece within the machining groove, and a large amount adheres to the inner surface of the machining groove. Many processing machines have a function of retracting the position of the line via the processing groove when a significant short circuit occurs. In addition to the above-mentioned adhesion phenomenon being a major hindrance to this operation, electrode wires with large adhesion generally have a lower maximum processing speed, so that less adhesion is also an important required characteristic.

上述の先例1.2および3はこれらの特性の向上を目的
としているが、次のような欠点を有している。引例1で
提案されているAJ  を含有する黄銅からなる電極線
は、高温での強度が優れているため高い張力での加工が
可能であるが、得られる加工速度は、高々通常の黄銅線
の1.1 倍に過ぎない。先例2および3に提案されて
いる電極線は、Zn  等の軟かい金属または合金層を
有するために、最高加工速度は通常の黄銅線の1.3倍
以上が可能であるけれども、Zn  等の低融点金属層
の存在のために引張強さが低下してしまい、加工時にか
けられる張力も低くなる。
Although the above-mentioned examples 1.2 and 3 are aimed at improving these characteristics, they have the following drawbacks. The electrode wire made of brass containing AJ proposed in Reference 1 has excellent strength at high temperatures and can be processed under high tension, but the processing speed obtained is at most the same as that of ordinary brass wire. It is only 1.1 times as large. The electrode wires proposed in Cases 2 and 3 have a soft metal such as Zn or an alloy layer, so the maximum processing speed is 1.3 times or more than that of ordinary brass wire. Due to the presence of the low melting point metal layer, the tensile strength is reduced and the tension applied during processing is also reduced.

従って全長に亘り均一に前述の放電加工要求特性が優れ
た電極線を容易にかつ安価に製造する方法が要望されて
いた。
Therefore, there has been a need for a method for easily and inexpensively manufacturing an electrode wire that is uniform over its entire length and has excellent characteristics required by electrical discharge machining.

(発明の開示) 本発明は、上述の事情に鑑み成されたもので、放電加工
速度が高く、かつ高い張力での放電加工が可能なワイヤ
ー放電加工用電極線を容易にかつ安価に製造する方法を
提供せんとするものである。
(Disclosure of the Invention) The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to easily and inexpensively manufacture an electrode wire for wire electrical discharge machining that has a high electrical discharge machining speed and is capable of electrical discharge machining with high tension. The purpose is to provide a method.

本発明は、Zn 28〜37とSi、 Ti、 Y、 
Zr、Alのうち1種または2種以上を合計で0.2〜
2%含有するCu−Zn系合金線をCu  をほとんど
酸化せず、かつ亜鉛を酸化する雰囲気中で加熱して、線
表面に酸化亜鉛を主成分とする被膜を形成し、これを伸
線することを特徴とするワイヤー放電加工用電極線の製
造方法である。
The present invention uses Zn 28-37 and Si, Ti, Y,
A total of 0.2 to 0.2 or more of one or more of Zr and Al
A Cu-Zn alloy wire containing 2% is heated in an atmosphere that hardly oxidizes Cu but oxidizes zinc to form a coating mainly composed of zinc oxide on the wire surface, which is then drawn. This is a method for manufacturing an electrode wire for wire electrical discharge machining.

本発明において、芯材としてZn28〜87%、Si。In the present invention, Zn28-87% and Si are used as core materials.

Ti、 Zr、 AJ のうち1種または2種以上を合
計で0.2〜2%、残部Cu からなる合金を利用する
理由は、これらの合金では、後述する条件下で、容易に
密着性が良好でかつ放電加工に対して優れた効果を有す
る皮膜が得られる上に、これらの芯材自体が導電性、強
度等の点でワイヤー放電加工用電極線として優れている
からである。本発明の方法で酸化亜鉛50%以上を含有
する皮膜を形成した場合にも、放電による溶融−飛散等
は芯材に達する。電極線表面での放電は繰返し行われる
ため芯材自体の強度はワイヤー放電加工の加工速度や加
工精度向上にとって重要なのである。従来の黄銅役割は
明確にされていないが、引張強さ時に放電による発熱下
での引張強さを上げると同時に・、放電性、例えば仕事
函数や消イオン効果により、放電頻度の向上や集中放電
の防止効果を有しているものと推定される。同じ理由に
より本発明の製造方法による電極線の芯材も、Zn28
〜37%未満とCu  を主体とする合金が好ましい。
The reason for using an alloy consisting of one or more of Ti, Zr, and AJ in a total of 0.2 to 2%, and the balance being Cu, is that these alloys easily lose adhesion under the conditions described below. This is because not only can a film that is good and has an excellent effect on electric discharge machining be obtained, but also these core materials themselves are excellent as electrode wires for wire electric discharge machining in terms of conductivity, strength, etc. Even when a film containing 50% or more of zinc oxide is formed by the method of the present invention, melting and scattering due to electric discharge reaches the core material. Since electrical discharge occurs repeatedly on the surface of the electrode wire, the strength of the core material itself is important for improving the machining speed and machining accuracy of wire electrical discharge machining. The role of conventional brass is not clear, but at the same time it increases the tensile strength under the heat generated by electric discharge during tensile strength, and at the same time improves the electric discharge property, such as the work function and deionization effect, it can improve the electric discharge frequency and concentrated electric discharge. It is estimated that it has a preventive effect. For the same reason, the core material of the electrode wire produced by the manufacturing method of the present invention is also Zn28.
An alloy mainly composed of Cu and less than ~37% is preferred.

Zn28%未満では放電加工特性が劣り、Zn 濃度が
高い方が好ましい。−J Zn 37%を超えると、伸
線加工が極めて困難となり工業的に実用できない。Si
If the Zn content is less than 28%, the electrical discharge machining properties will be poor, and a higher Zn concentration is preferable. -J If Zn exceeds 37%, wire drawing becomes extremely difficult and cannot be used industrially. Si
.

Ti、 Zr、 AI!  のうち1種または2種を上
記Cu−Zn合金に添加する最大の理由は、これらの合
金で容易に密着性が良好で、かつ放電加工に対して優れ
た効果を有する皮膜が得られるからである。例えば、こ
れらを含まないZn 35%−Cu 6596合金では
、後述する条件で得られる皮膜は薄い上に、伸線加工で
大部分剥落する。これらの添加元素を添加しても、合計
が0.2%未満では、やはり密着性が良好な皮膜は得る
ことができない。これらの添加元素の組み合わせは任意
であるが、いずれも合計が2%を超えると伸線が困難に
なり、工業上実用できない。また、これらの添加元素は
、いずれも高温強度を向上させる効果があり、芯材だけ
でも、通常の黄銅線に比べると高いワイヤ・放電加工速
度と加工精度を与える効果もある。他の添加元素例えば
、Sn、 Pb、 Fe 等では、芯材自体でのワイヤ
ー放電加工速度や精度の向上効果も極めて小さく、また
、密着性の良い皮膜も得られにくい。
Ti, Zr, AI! The main reason for adding one or two of these to the Cu-Zn alloy is that these alloys can easily form a film that has good adhesion and is highly effective against electrical discharge machining. be. For example, in a Zn 35%-Cu 6596 alloy that does not contain these, the film obtained under the conditions described below is thin and most of it peels off during wire drawing. Even if these additive elements are added, if the total amount is less than 0.2%, a film with good adhesion cannot be obtained. Although the combination of these additive elements is arbitrary, if the total exceeds 2%, wire drawing becomes difficult and it is not practical in industry. In addition, all of these additive elements have the effect of improving high-temperature strength, and the core material alone also has the effect of providing higher wire/discharge machining speed and machining accuracy compared to ordinary brass wire. When using other additive elements such as Sn, Pb, Fe, etc., the effect of improving the speed and accuracy of wire electrical discharge machining in the core material itself is extremely small, and it is also difficult to obtain a film with good adhesion.

本発明においては、このようなCu−Zn系合金線の表
面に所望の被膜を形成させるため、Cuをほとんど酸化
せず、かつZn  を酸化する雰囲気中で加熱処理を施
す。その雰囲気はCu−Zn系合金線の種類によって若
干変化するが、一般には400℃以上、より好ましくは
500℃以上で、酸素分圧10−5〜10−1気圧、よ
り好ましくは10−4〜10−2気圧である。
In the present invention, in order to form a desired film on the surface of such a Cu-Zn alloy wire, heat treatment is performed in an atmosphere that hardly oxidizes Cu but oxidizes Zn. The atmosphere varies slightly depending on the type of Cu-Zn alloy wire, but generally the temperature is 400°C or higher, more preferably 500°C or higher, and the oxygen partial pressure is 10-5 to 10-1 atm, more preferably 10-4 to The pressure is 10-2 atmospheres.

加熱時間は、上述のより好ましい温度範囲、酸素分圧範
囲である500℃以上、10−4〜1O−2気圧で、一
般には45分以上が必要である。温度、酸素分圧、時間
がCu−Zn系合金の酸化に及ぼす影響は複雑であり、
例えば65%Cu−35%Zn 合金を大気中500℃
で加熱処理した場合、30分では被膜が薄い上に被膜中
のCu  の酸化物の比率が高く、24時間ではZn 
 の酸化物の比率が増加するが、被膜が剥離し易くなる
。一般的に400℃未満または酸素分圧10−5  未
満では、被膜の形成速度が著しく低いために、所望の被
膜厚を得るためには極めて長時間を要し、実用上高い放
電加工速度を有する電極線は得られない。この観点から
は温度は高い方が好ましいが、高過ぎると被膜が剥離し
易くなる場合があり、400〜700℃が適当である。
The heating time is generally 45 minutes or more within the above-mentioned more preferable temperature range and oxygen partial pressure range of 500° C. or higher and 10 −4 to 1 O −2 atm. The effects of temperature, oxygen partial pressure, and time on the oxidation of Cu-Zn alloys are complex;
For example, a 65% Cu-35% Zn alloy is heated at 500°C in the atmosphere.
When heat-treated for 30 minutes, the film was thin and the proportion of Cu oxide in the film was high, and after 24 hours, the Zn
The ratio of oxide increases, but the coating becomes easier to peel off. Generally, at temperatures below 400°C or an oxygen partial pressure below 10-5, the film formation rate is extremely slow, and it takes an extremely long time to obtain the desired film thickness, making electrical discharge machining at a high speed in practice. No electrode wire is available. From this point of view, a higher temperature is preferable, but if the temperature is too high, the coating may easily peel off, so a temperature of 400 to 700°C is appropriate.

酸素分圧が10−1  気圧を越えると、前述したよう
に、かえって被膜の形成速度が低下したり、被膜中のC
u  の酸化物の比率が増加し、高い放電加工速度を有
する電極線が得られなくなる。また加熱時間45分未満
では、一般には所望の厚さの被膜は形成され難い。
If the oxygen partial pressure exceeds 10-1 atmospheres, as mentioned above, the film formation rate may decrease or the C in the film may decrease.
The proportion of oxide in u increases, making it impossible to obtain an electrode wire with a high electrical discharge machining speed. Furthermore, if the heating time is less than 45 minutes, it is generally difficult to form a film of the desired thickness.

電極線としての皮膜厚は0.1μ 未満では放電加工速
度が被膜のない場合の1.1倍を越えることがなく、2
μ以上ではワイヤーへの給電や、被加工物との位置を検
出するための接触検知が困難になる。より好ましくは0
.3〜0.8μであり、この範囲のZn  の酸化物を
主成分とする被膜では、一般に放電加工速度で被膜のな
い場合の1.2倍を越え、しかも給電、接触検知に影響
を与えない。
If the coating thickness of the electrode wire is less than 0.1μ, the electrical discharge machining speed will not exceed 1.1 times that of the case without coating, and 2
If it exceeds μ, it becomes difficult to supply power to the wire and to detect contact to detect the position with the workpiece. More preferably 0
.. 3 to 0.8μ, and with a coating mainly composed of Zn oxide in this range, the electrical discharge machining speed is generally more than 1.2 times that of the case without a coating, and it does not affect power supply or contact detection. .

しかしながら、皮膜厚の測定にはスパッタエツチングを
行ないながらオージェ電子分光分析を行う等特殊な分析
機器を要する。通常の管理では、皮膜を酸に溶解して、
溶解前後の重量差から付着量として算出する方法を使用
できる。付着量としては、0.6〜12P/mJより好
ましく ハ1.8〜48 J’/ Fn 2が、ワイヤ
ー放電加工用電極線として好ましい上記効果を与える。
However, measuring the film thickness requires special analytical equipment such as performing Auger electron spectroscopy while performing sputter etching. In normal management, the film is dissolved in acid,
A method of calculating the adhesion amount from the difference in weight before and after dissolution can be used. The amount of adhesion is preferably 0.6 to 12 P/mJ, and 1.8 to 48 J'/Fn 2 provides the above-mentioned effects preferable as an electrode wire for wire electric discharge machining.

雰囲気中の酸素以外のガスはN2、ケロシン、真空等、
非酸化性あるいは還元性ガスでも影響はない。Zn は
水素等の還元性ガス中でも酸素があれば酸化が進行する
Gases other than oxygen in the atmosphere include N2, kerosene, vacuum, etc.
Non-oxidizing or reducing gases have no effect. Oxidation of Zn progresses in the presence of oxygen even in a reducing gas such as hydrogen.

このような雰囲気下で形成された被膜の組成は複雑であ
り、特に本発明のより好ましい実施法である酸化処理後
伸線を行う方法では、被膜中への伸線潤滑剤の含浸で多
量のCを含むようになる。
The composition of the film formed in such an atmosphere is complex, and in particular, in the more preferred method of the present invention, which involves wire drawing after oxidation treatment, a large amount of wire drawing lubricant is impregnated into the film. It comes to include C.

全被膜中の酸化亜鉛と、Cu、 ZnおよびCuの酸化
物の和の比(ZnO/Cu+Zn+CuO+Cu 20
 )  が50%以上であれば、高い放電加工速度が得
られる。
The ratio of zinc oxide in the entire coating to the sum of oxides of Cu, Zn and Cu (ZnO/Cu+Zn+CuO+Cu 20
) is 50% or more, a high electrical discharge machining speed can be obtained.

本発明で述べる酸化亜鉛を主成分とする被膜とは、この
ような被膜を意味するものである。
The coating mainly composed of zinc oxide mentioned in the present invention means such a coating.

次に、放電加工は数μm−10数μm のギャップでの
微小な過渡的な放電の繰返しによる加工であり、詳細な
機構の解明は困難であるが、本発明により形成される酸
化亜鉛を主成分とする被膜の存在により、表面の仕事函
数が低下して、比較的低い温度で高い電流密度の放電を
可能にすること、亜鉛の消イオン効果により持続的な放
電の発生を防止すること、接触抵抗の増加による被加工
物との軽い短絡時の過大な電流発生の防止等により、放
電加工時の極間電圧および加工電流が著しく安定する効
果を生じさせると推定される。又被加工物への電極成分
の付着は、上記先例1による電極線を使用して加工溝が
付着物でほとんど埋まるような条件でも、非常にわずか
である。最高放電加工速度は、通常の黄銅線に比し、2
0〜50%向上させることができる。
Next, electric discharge machining is a machining process that involves repeated small transient electric discharges in gaps of several μm to several tens of μm, and although it is difficult to elucidate the detailed mechanism, zinc oxide formed by the present invention is mainly used. The presence of the film as a component lowers the work function of the surface, making it possible to discharge at a high current density at a relatively low temperature, and preventing the occurrence of sustained discharge due to the deionization effect of zinc. It is estimated that by preventing excessive current generation during a slight short circuit with the workpiece due to an increase in contact resistance, the machining voltage and machining current during electrical discharge machining are significantly stabilized. Further, the adhesion of the electrode components to the workpiece is very slight even under conditions where the electrode wire according to the above-mentioned Example 1 is used and the machining groove is almost completely filled with the adhering material. The maximum electrical discharge machining speed is 2 times faster than that of ordinary brass wire.
It can be improved by 0 to 50%.

この酸化処理後電極線として十分な引張強さを保有する
場合は、そのまま放電加工用電極線として使用される。
If the electrode wire has sufficient tensile strength after this oxidation treatment, it can be used as it is as an electrode wire for electrical discharge machining.

本発明において行な°われる被膜形成後の伸線・は、外
径を調整するとともに、上述の酸化処理時に軟化した線
を加工硬化し、ワイヤー放電加工時の張力を高くとれる
ようにするためである。又伸線は被膜の表面に存在する
酸化被膜の粉末(カス)を除去するか、又は固着させ、
る働きをする。
The wire drawing performed in the present invention after film formation is performed in order to adjust the outer diameter and work harden the wire that has been softened during the oxidation treatment described above, so that a high tension can be obtained during wire electrical discharge machining. be. In addition, wire drawing removes or fixes the powder (scum) of the oxide film that exists on the surface of the film.
It works to

上述の酸化処理で得た被膜は伸線後薄く伸ばされ、相当
度保持される。ただし、伸線の総断面減少率は60〜9
9.5%が好ましく、60%未満では高い引張強さが得
られない上に表面が粗(,99,5%以上では、被膜が
ほとんど消失し、いずれも高速、高精度のワイヤー放電
加工が行えない。
The coating obtained by the above-mentioned oxidation treatment is thinly stretched after wire drawing and is retained to a considerable extent. However, the total cross-sectional reduction rate of wire drawing is 60 to 9
9.5% is preferable; if it is less than 60%, high tensile strength cannot be obtained and the surface will be rough; if it is more than 99.5%, the coating will almost disappear, and high-speed, high-precision wire electric discharge machining will not be possible. I can't do it.

なお、本発明は上述の酸化処理と伸線を複数回繰返して
も良い。
Note that in the present invention, the above-described oxidation treatment and wire drawing may be repeated multiple times.

(実施例) Zn 35%と各種添加元素を含有する各種サイズの黄
銅線を、表1に示す各種雰囲気および処理条件で酸化処
理して変色した被膜を形成させた。
(Example) Brass wires of various sizes containing 35% Zn and various additive elements were oxidized in various atmospheres and treatment conditions shown in Table 1 to form discolored coatings.

最終サイズ(0,2U& )で処理したもの以外の線は
、処理後伸線して0.200±0.001 tnxwの
線とした。
The wires other than those processed at the final size (0,2U&) were drawn after processing to obtain wires of 0.200±0.001 tnxw.

表1に示す比較例のx9〜i12は通常の黄銅線を各種
雰囲気および処理条件で処理したものである。
Comparative examples x9 to i12 shown in Table 1 are ordinary brass wires treated under various atmospheres and treatment conditions.

得られた0、2tnxiの線を電極線として下記条件で
ワイヤー放電加工を行なった。
Wire electrical discharge machining was performed using the obtained 0.2 tnxi wire as an electrode wire under the following conditions.

放電加工条件 加工液比抵抗    10X104Ω、αパルス幅  
    3μsec。
Electric discharge machining conditions Machining fluid specific resistance 10X104Ω, α pulse width
3 μsec.

休止時間      3μsec・ 電源電圧      120v コンデンサ容量  2.11tF 加工電圧      40〜45V 加工液圧力    上ノズル 15 Kf / cat
”下ノズル 1、、.5・Kf / an2ワイヤー送
り速度  25鎮/sec 加工送り速度   断線しない最大値に設定被加工物 
    厚さ301jlLの5KD−10材放電加工時
の最高放電加工速度は表1に示す通りである。
Pause time 3μsec・Power supply voltage 120V Capacitor capacity 2.11tF Processing voltage 40~45V Processing fluid pressure Upper nozzle 15 Kf/cat
”Lower nozzle 1,,.5・Kf/an2 Wire feed rate 25 kph/sec Machining feed rate Set to the maximum value without breaking the workpiece
Table 1 shows the maximum electrical discharge machining speed during electrical discharge machining of a 5KD-10 material having a thickness of 301 JL.

表1より本発明によるム1〜i8は、比較例のi9〜i
12に比べ、放電加工速度が10〜30%大きいことが
分る。
From Table 1, Mu1 to i8 according to the present invention are i9 to i of the comparative example.
It can be seen that the electric discharge machining speed is 10 to 30% higher than that of No. 12.

(発明の効果) 上述のように構成された本発明のワイヤー放電加工用電
極線の製造方法は次のような効果がある。
(Effects of the Invention) The method for manufacturing an electrode wire for wire electrical discharge machining of the present invention configured as described above has the following effects.

(イ)Zn 28〜37とSi、 Ti、 Y、 Zr
、 Al のうち1種または2種以上を合計で0.2〜
2%を含有するCu−Zn系合金線をCu  をほとん
ど酸化せず、かつZnを酸化する雰囲気中で加熱するた
め、線表面のCuの酸化物の形成が極めてわずかで、被
膜は酸化亜鉛が主成分となり、全長に亘り均一で適切な
厚さく例、0.01〜2μm)の被膜が得られるので、
ワイヤー放電加工時、詳細な機構は明らかでないが、極
間電圧および加工電流が著しく安定し、又被加工物への
電極成分の付着が少ないため、放電加工速度が大で、全
長に亘り放電加工特性の優れた電極線を製造し得る。
(a) Zn 28-37 and Si, Ti, Y, Zr
, one or more of Al in a total amount of 0.2~
Since the Cu-Zn alloy wire containing 2% Cu is heated in an atmosphere that hardly oxidizes Cu and oxidizes Zn, the formation of Cu oxide on the wire surface is extremely small, and the coating is made of zinc oxide. It becomes the main component, and a coating with a uniform and appropriate thickness (for example, 0.01 to 2 μm) can be obtained over the entire length.
During wire electrical discharge machining, although the detailed mechanism is not clear, the voltage between the machining electrodes and the machining current are extremely stable, and there is less adhesion of electrode components to the workpiece, so the electrical discharge machining speed is high and electrical discharge machining can be performed over the entire length. Electrode wires with excellent characteristics can be manufactured.

(ロ)上述の酸化処理は酸素分圧を調節するのみで熱処
理と同様に行ない得るため、製造が容易で、かつ製造コ
ストが安い。
(b) Since the above-mentioned oxidation treatment can be performed in the same manner as heat treatment by simply adjusting the oxygen partial pressure, manufacturing is easy and manufacturing cost is low.

(ハ)上述の被膜形成後、伸線するため、酸化処理時に
軟化した線を加工硬化し、引張強さを向上するので、高
い張力での放電加工が可能な電極線を製造し得る。
(c) In order to draw the wire after forming the above-mentioned coating, the wire softened during the oxidation treatment is work-hardened and the tensile strength is improved, so an electrode wire that can be subjected to electrical discharge machining at high tension can be manufactured.

又この場合、(ロ)項と同じ理由により、酸化処理と伸
線性向上のための熱処理の兼用も可能であるなめ、安価
に製造し得る。
Further, in this case, for the same reason as in item (b), it is possible to perform both the oxidation treatment and the heat treatment for improving wire drawability, so that the wire can be manufactured at a low cost.

又上述の伸線により、線表面の被膜の粉末(カス)を除
去するか又は固着し、表面を平滑化するため、放電を安
定化し、放電加工速度を一層向上する。
In addition, the above-mentioned wire drawing removes or fixes the coating powder (dregs) on the surface of the wire and smoothes the surface, thereby stabilizing the electrical discharge and further improving the electrical discharge machining speed.

Claims (2)

【特許請求の範囲】[Claims] (1)Zn28〜37%、Si、Ti、Y、Zr、Al
のうち1種または2種以上を合計で0.2〜2%、残部
Cuからなる合金線を、Cuをほとんど酸化せず、かつ
Znを酸化する雰囲気中で加熱して、線表面に酸化亜鉛
を主成分とする被膜を形成し、しかる後伸線することを
特徴とするワイヤー放電加工用電極線の製造方法。
(1) Zn28-37%, Si, Ti, Y, Zr, Al
An alloy wire consisting of a total of 0.2 to 2% of one or more of these and the balance Cu is heated in an atmosphere that hardly oxidizes Cu but oxidizes Zn, so that zinc oxide is formed on the wire surface. A method for producing an electrode wire for wire electrical discharge machining, the method comprising forming a film containing as a main component and then drawing the wire.
(2)被膜形成後の伸線の総断面減少率が60〜99.
5%である特許請求の範囲第1項記載のワイヤー放電加
工用電極線の製造方法。
(2) The total cross-sectional reduction rate of wire drawing after film formation is 60 to 99.
5%. The method for manufacturing an electrode wire for wire electrical discharge machining according to claim 1.
JP26587384A 1984-12-17 1984-12-17 Manufacture of electric discharge machining wire Pending JPS61146422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26587384A JPS61146422A (en) 1984-12-17 1984-12-17 Manufacture of electric discharge machining wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26587384A JPS61146422A (en) 1984-12-17 1984-12-17 Manufacture of electric discharge machining wire

Publications (1)

Publication Number Publication Date
JPS61146422A true JPS61146422A (en) 1986-07-04

Family

ID=17423277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26587384A Pending JPS61146422A (en) 1984-12-17 1984-12-17 Manufacture of electric discharge machining wire

Country Status (1)

Country Link
JP (1) JPS61146422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075951A (en) * 2005-09-14 2007-03-29 Nippon Steel Corp Outer shape machining method of single-crystal ingot
JP2007283411A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Outline machining method for conductive ingot
WO2018142487A1 (en) * 2017-01-31 2018-08-09 Ykk株式会社 Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075951A (en) * 2005-09-14 2007-03-29 Nippon Steel Corp Outer shape machining method of single-crystal ingot
JP2007283411A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Outline machining method for conductive ingot
WO2018142487A1 (en) * 2017-01-31 2018-08-09 Ykk株式会社 Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device
CN110234782A (en) * 2017-01-31 2019-09-13 Ykk株式会社 Object, its shading approach and gaseous oxidation device with metal surface
EP3578681A4 (en) * 2017-01-31 2020-08-26 YKK Corporation Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device
CN110234782B (en) * 2017-01-31 2021-12-17 Ykk株式会社 Object having metal surface, color tone processing method thereof, and gas phase oxidation apparatus

Similar Documents

Publication Publication Date Title
US4935594A (en) Eroding electrode, in particular a wire electrode for the sparkerosive working
US4341939A (en) Wire electrode for cutting an electrode workpiece by electrical discharges
US4977303A (en) Zinc or cadmium coated, surface oxidized electrode wire for EDM cutting of a workpiece; and method for forming such a wire
WO1999021675A1 (en) Electrode wire for use in electric discharge machining and process for preparing same
CA2951642A1 (en) Piezoelectric wire edm
JPH03170230A (en) Wire electrode for discharge cutting and its manufacture
JP2915623B2 (en) Electrical contact material and its manufacturing method
JPS61146422A (en) Manufacture of electric discharge machining wire
JP2015005576A (en) Cross-section structure of pure-copper alloy wire for ultrasonic bonding
JPS61103731A (en) Manufacture of electrode wire for wire electric discharge machining
EP0850716B1 (en) Manufacturing method of a wire electrode for electro-discharge machining
KR100767718B1 (en) Electrode wire for high speed working and fabrication method of the same
JP2766605B2 (en) Copper alloy lead frame for bare bonding
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
KR101253227B1 (en) Method for forming oxidation prevention layer on surface of copper bonding wire via sputtering method and oxidized copper bonding wire manufactured using the method
JP2713350B2 (en) Electrode wire for wire electric discharge machining
JPS61293725A (en) Manufacture of brass electrode wire for wire electric discharge machining
JPS62130128A (en) Electrode wire for wire cut electric discharge machining
JPS60104616A (en) Producing method of electrode wire for electrospark machining
KR100481950B1 (en) An electrode wire production method for a graphite coating discharge processing
JPH0261076A (en) Production of electrode wire for electric discharge machining
JPS6171925A (en) Method of producing composite electrode wire for electrospark machining
JPH0639647A (en) Electrode wire for electric discharge machining
JPS5950140A (en) Electrode wire for electric discharge machining
JP3673831B2 (en) Manufacturing method of Nb3Sn wire