JPS61146366A - Heating furnace in continuous powder electrostatic coating line - Google Patents

Heating furnace in continuous powder electrostatic coating line

Info

Publication number
JPS61146366A
JPS61146366A JP26609584A JP26609584A JPS61146366A JP S61146366 A JPS61146366 A JP S61146366A JP 26609584 A JP26609584 A JP 26609584A JP 26609584 A JP26609584 A JP 26609584A JP S61146366 A JPS61146366 A JP S61146366A
Authority
JP
Japan
Prior art keywords
furnace
heating
hot air
film
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26609584A
Other languages
Japanese (ja)
Inventor
Norihiko Usui
薄井 徳彦
Yuichi Takahashi
高橋 佑一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawatetsu Galvanizing Co Ltd
Original Assignee
Kawatetsu Galvanizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Galvanizing Co Ltd filed Critical Kawatetsu Galvanizing Co Ltd
Priority to JP26609584A priority Critical patent/JPS61146366A/en
Publication of JPS61146366A publication Critical patent/JPS61146366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Coating Apparatus (AREA)

Abstract

PURPOSE:To obtain easily a coated film having uniform film thickness and a beautiful appearance by separating the titled heating furnace into the front and the rear part, providing an infrared or an induction heater in the first furnace as a heating means, and furnishing a hot air heater in the second furnace. CONSTITUTION:A heating furnace wherein a powder paint coated on the surface of a steel sheet is formed into a film is separated into the front first furnace 1 and the rear second furnace 4 in a continuous powder electrostatic coating line. An infrared heater 2 or an induction heater is provided as a heating means in the first furnace 1, and a hot air heater having a hot air duct 5 and a nozzle 6 is furnished as a heating means in the second furnace 4. A steel sheet 7 is heated in the infrared heating zone 2 of the first furnace 1 to melt, fluidize, and smooth a paint, and then sent into the second furnace 4 wherein the coated film is rapidly heated with hot air and cured. Consequently, a uniform and beautiful coated film can be obtained without changing the speed of the line.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、連続粉体静電塗装ラインにおける加熱炉に
関し、とくに塗膜厚が均一でかつ表面外観も美麗な静電
塗装を、生産性の低下や設備費の増大などを招く不利な
しに有利に実現しようとするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a heating furnace in a continuous powder electrostatic coating line, and in particular, the present invention relates to a heating furnace for a continuous powder electrostatic coating line. The aim is to realize this advantageously without the disadvantages of lowering the performance and increasing equipment costs.

(従来の技術) 従来、鋼板に連続して塗装を施す方法としては、有機溶
剤入りの塗料を鋼板表面に塗布するか、または有機溶剤
を用いずに粉体塗料をそのまま静電塗装によって鋼板表
面上に電着させたのち、連続塗装ラインの加熱炉に導入
し、ここで焼付け、乾燥を施して成膜化させる方法が一
般的であり、いずれの場合においても加熱手段としては
、塗料に対してノズルから熱風を吹出して加熱するいわ
ゆる熱風加熱方式が採用されていた。
(Prior art) Conventional methods for continuously applying coating to steel plates include applying a paint containing an organic solvent to the steel plate surface, or electrostatically applying a powder coating without using an organic solvent to the steel plate surface. The common method is to electrodeposit it on the paint, then introduce it into a heating furnace of a continuous coating line, where it is baked and dried to form a film. In either case, the heating means is The so-called hot-air heating method was used, in which hot air is blown out of a nozzle to heat the device.

ところで上記した静電塗装においては、静電荷電した粉
体塗料は、電界強度の力によって鋼板上に均一に付着し
ていて、加熱により溶融、流動。
By the way, in the above-mentioned electrostatic coating, the electrostatically charged powder paint adheres uniformly to the steel plate due to the strength of the electric field, and melts and flows when heated.

平滑化および硬化を経て成膜化されるわけであるが、鋼
板と粉体塗料の境界面での電界強度は強いものの、粉体
塗料の外表面では電界強度が弱いために、加熱手段とし
て熱風加熱を用いた場合には、ノズルから吹出された熱
風によって、粉体塗料が溶融する以前にその表層が飛散
し、均一な電着層がくずれながら溶融、焼付けられるた
め、製品の膜厚が不均一となり、また外観も損われるな
ど著しい品質の劣化を招く。
A film is formed after smoothing and curing. Although the electric field strength at the interface between the steel plate and the powder coating is strong, the electric field strength is weak at the outer surface of the powder coating, so hot air is used as a heating method. When heating is used, the surface layer of the powder coating is scattered by the hot air blown from the nozzle before it melts, and the uniform electrodeposition layer is melted and baked while crumbling, resulting in the product having an uneven film thickness. This results in significant quality deterioration, such as uniformity and loss of appearance.

このため従来の熱風方式加熱炉を用いて静電塗装を行な
う場合には、粉体塗料の溶融流動の過程までは粉体塗料
が飛散しない程度にノズルからの熱風の吹出し速度(以
下単にノズル風速という)を低下させることが余儀なく
されライン速度に制約が生じていたのである。
For this reason, when performing electrostatic coating using a conventional hot air heating furnace, the hot air blowing speed from the nozzle (hereinafter simply referred to as nozzle wind speed This resulted in restrictions on line speed.

(発明が解決しようとする問題点) しかしながら連続塗装ラインにおいて、上記したように
ノズル風速を低減させることは、i〉既設の加熱炉を利
用する場合、ノズル風速に比例してライン速度を低下さ
せる必要が生じることから生産性が低下する、 1i)一方、生産性すなわちライン速度を維持しようと
すると、ノズル風速に反比例して炉長を長くする必要が
生じる、 などいずれにしても解決すべき問題点を残していた。
(Problems to be Solved by the Invention) However, in a continuous coating line, reducing the nozzle wind speed as described above will reduce the line speed in proportion to the nozzle wind speed when using an existing heating furnace. 1i) On the other hand, in order to maintain productivity, that is, line speed, it becomes necessary to lengthen the furnace length in inverse proportion to the nozzle wind speed, etc. Problems that must be solved in any case I left a mark.

この発明は、上記の問題を有利に解決するもので、ライ
ン速度を下げることなく、しかも炉長を延長する必要な
しに、均質で表面外観も良好な塗膜の成膜化を可能なら
しめる加熱炉を提案することを目的とする。
This invention advantageously solves the above problems, and enables the formation of a uniform coating film with a good surface appearance without reducing the line speed or extending the furnace length. The purpose is to propose a furnace.

(問題点を解決するための手段) すなわちこの発明は、連続粉体静電塗装ラインにおいて
、鋼板表面に塗布した粉体塗料の成膜化を図る加熱炉で
あって、前後に二分割した第1炉と第2炉とからなり、
第1炉は加熱手段として赤外線加熱装置または誘導加熱
装置を、一方第2炉は加熱手段として熱風加熱装置をそ
れぞれ備えてなる連続粉体静電塗装ラインにおける加熱
炉である。
(Means for Solving the Problems) That is, the present invention is a heating furnace for forming a film of powder coating applied to the surface of a steel plate in a continuous powder electrostatic coating line, and the heating furnace is divided into two parts, front and rear. Consisting of a first furnace and a second furnace,
The first furnace is a heating furnace in a continuous powder electrostatic coating line, which is equipped with an infrared heating device or an induction heating device as a heating means, and the second furnace is equipped with a hot air heating device as a heating means.

(作  用) この発明において第1炉は、鋼板表面に電着した粉体塗
料の溶融、流動、平滑化までを担うもので、電気加熱応
用の赤外線加熱または誘導加熱によって鋼板温度を60
〜150℃程度まで加熱さけることにより、粉体塗料の
溶融、流動による鋼板への密着度を高め、かつ塗膜の状
態を均一に保持し、一方第2炉では、昇温速度が大きな
熱風加熱によって鋼板温度を220〜260℃程度まで
加熱して焼付けし、塗膜の硬化を図るのである。このよ
うに鋼板が第2炉に導入されてきたときには、鋼板上の
塗料は流動平滑化ののち半硬化状態になっているので、
ノズル風速による粉体塗料の飛散という現象が生じるこ
とはなく、従って第2炉においてノズル風速を上昇させ
たとしても塗膜の表面が阻害されることはない。
(Function) In this invention, the first furnace is responsible for melting, fluidizing, and smoothing the powder coating electrodeposited on the surface of the steel plate, and uses infrared heating or induction heating applied to electric heating to raise the temperature of the steel plate to 60°C.
By avoiding heating to around 150℃, the adhesion of the powder coating to the steel plate is increased by melting and flowing, and the condition of the coating film is maintained uniformly.On the other hand, in the second furnace, hot air heating with a high temperature rise rate is used. The steel plate is heated to a temperature of about 220 to 260°C and baked to harden the coating film. When the steel plate is introduced into the second furnace in this way, the paint on the steel plate is in a semi-hardened state after being fluidized and smoothed.
The phenomenon of scattering of the powder paint due to the nozzle wind speed does not occur, and therefore, even if the nozzle wind speed is increased in the second furnace, the surface of the coating film is not disturbed.

またこの発明においては、第1炉と第2炉との間に非接
触式の膜厚計を配置することにより、塗膜厚の連続的で
しかも正確な測定が実現でき、さらにはかくして得られ
たデータをフィードバックすることによって膜厚制御に
利用することもできる。
In addition, in this invention, by disposing a non-contact type film thickness meter between the first furnace and the second furnace, continuous and accurate measurement of the coating film thickness can be realized. The data can also be used for film thickness control by feeding back the data.

(実施例) 以下この発明の好適実施例を従来例と比較しつつ具体的
に説明する。
(Example) Preferred embodiments of the present invention will be specifically described below while comparing them with conventional examples.

第1図に、この発明に従う加熱炉を、また第2図には従
来炉をそれぞれ模式で示す。ここに従来炉は、この発明
に係る第2炉と構成の骨子が共通するので同一の番号を
符して示す。
FIG. 1 schematically shows a heating furnace according to the present invention, and FIG. 2 schematically shows a conventional furnace. Since the conventional furnace has the same gist of the structure as the second furnace according to the present invention, it is indicated by the same number.

さて第1図において番号1は第1炉、2は加熱帯であり
、この例では赤外線加熱方式を採用している。この第1
炉1においては、熱効率を高くするため赤外線加熱帯2
を保温材で囲っているが、赤外線発生部の効率を損うこ
となく、しかも該発生部自体の許容温度(最大500℃
)を超えないレベルに保持するため、その上部に空間3
を設けて比較的高温の雰囲気を開口部より外部に放出で
きるしくみになっている。
Now, in FIG. 1, the number 1 is the first furnace, and the number 2 is the heating zone, and in this example, an infrared heating method is adopted. This first
In the furnace 1, an infrared heating zone 2 is installed to increase thermal efficiency.
The infrared rays are surrounded by heat insulating material, but without impairing the efficiency of the infrared rays generating section, it is possible to maintain the permissible temperature of the infrared rays generating section itself (maximum 500℃).
), there is a space 3 above it to maintain it at a level that does not exceed
The structure is such that a relatively high temperature atmosphere can be released to the outside through the opening.

また4は第2炉であって、この第2炉4は熱風加熱方式
になり、熱風ダクト5とノズル6をそなえている。
Further, 4 is a second furnace, and this second furnace 4 is of a hot air heating type and is equipped with a hot air duct 5 and a nozzle 6.

なお7は鋼板、8はその上に塗布した粉体塗料、9は溶
融・平滑化状態の塗膜、10は鋼板搬送装置、11は排
ガスダクト、そして12は膜厚計である。
Note that 7 is a steel plate, 8 is a powder coating applied thereon, 9 is a coating film in a melted and smoothed state, 10 is a steel plate conveying device, 11 is an exhaust gas duct, and 12 is a film thickness gauge.

さて第2図に示した従来炉においては、粉体塗料を静電
塗装によって均一に塗布した鋼板を連続して挿入した場
合、ノズル6から鋼板面に向っ【吹出される熱風によっ
て粉体塗料の外表層が飛散しながら溶融、流動、硬化す
るため、塗膜面があばた状を呈し、品質が著しく阻害さ
れていたのは前述したとおりである。
Now, in the conventional furnace shown in Fig. 2, when steel plates uniformly coated with powder coating by electrostatic coating are continuously inserted, hot air blown from the nozzle 6 toward the steel plate surface coats the powder coating. As mentioned above, the outer surface layer melts, flows, and hardens while scattering, resulting in a pock-like appearance on the coating surface, which significantly impairs the quality.

この点この発明では、粉体塗料の溶融、流動。In this respect, this invention involves the melting and flowing of powder coatings.

平滑化までを、非吹付は方式の赤外線加熱か誘導加熱に
よって行ない、平滑化後に熱風加熱を施すので塗膜表面
が損われることはない。
Smoothing is done by infrared heating or induction heating without spraying, and hot air heating is applied after smoothing, so the coating surface is not damaged.

すなわちこの発明では、第1図に示したように第1炉1
の赤外線加熱帯2において鋼板7の温度を60〜150
℃程度に昇温することによって粉体塗料8を溶融、流動
、平滑化させたのちに、第2炉4へ送り、この第2炉4
において熱風加熱により鋼板7の温度が220〜260
℃になるまで急速加熱して塗膜9を硬化さゼるわけであ
るが、塗膜9は第1炉1の出側においては、半硬化の状
態で鋼板面に強固に密着しているので、その後第2炉に
おいて熱風の吹付は加熱を行っても塗膜の表面性状が損
われることはなく、均一な塗膜プロフィールが維持され
るのである。
That is, in this invention, as shown in FIG.
The temperature of the steel plate 7 in the infrared heating zone 2 of 60 to 150
After the powder coating 8 is melted, fluidized, and smoothed by raising the temperature to about ℃, it is sent to the second furnace 4.
The temperature of the steel plate 7 is 220 to 260 by heating with hot air.
The coating film 9 is hardened by rapid heating to a temperature of Then, even if heating is performed by blowing hot air in the second furnace, the surface properties of the coating film are not impaired, and a uniform coating film profile is maintained.

ここに赤外線による粉体塗料の加熱は、熱化学反応であ
り、赤外線を塗膜に照射すると、各塗膜に固有の振動数
の赤外線(4〜50μm)を吸収し、分子振動が活発に
なって塗膜が直接発熱する。かかる加熱は、塗膜自身の
発熱と鋼板よりの伝熱の両者によって塗膜内部まで速や
かに熱が浸透するので、塗膜が溶融し平滑となる60〜
150℃程度の温度までなら、高速での熱風加熱と同じ
程度の短時間で済む。
Heating powder coatings with infrared rays is a thermochemical reaction, and when a paint film is irradiated with infrared rays, each paint film absorbs the infrared rays at a unique frequency (4 to 50 μm), which activates molecular vibrations. The paint film directly generates heat. Such heating allows heat to quickly penetrate into the interior of the coating film due to both the heat generation of the coating film itself and the heat transfer from the steel plate, so that the coating film melts and becomes smooth.
Up to a temperature of about 150°C, it takes about the same amount of time as high-speed hot air heating.

従って実操業に際し、ラインスピードを低下させること
も、また炉長を長くする必要もないわけである。
Therefore, during actual operation, there is no need to reduce the line speed or increase the furnace length.

なお第1図には、第1炉1と第2炉4との間に赤外線膜
厚計や螢光X線膜厚計などからなるを可とする非接触式
の膜厚計12を配置した場合を示したが、このように粉
体塗料が半硬化状態にある第1炉1の出側において膜厚
測定を行うことにより、より正確な塗膜厚の測定が実現
でき、ざらには得られた測定値を膜厚制御システムにフ
ィードバックすることによって膜厚精度の向上を図るこ
とちできる。
In addition, in FIG. 1, a non-contact film thickness gauge 12, which can be an infrared film thickness gauge, a fluorescent X-ray film thickness gauge, etc., is placed between the first furnace 1 and the second furnace 4. As shown in the example above, by measuring the film thickness at the exit side of the first furnace 1 where the powder coating is in a semi-cured state, more accurate coating film thickness measurement can be achieved, and it is generally possible to obtain a better result. The film thickness accuracy can be improved by feeding back the measured values to the film thickness control system.

この点従来は、塗膜が完全に硬化したのちに膜厚の測定
を行っていたわけであるが、硬化した塗膜表面は微細な
凹凸が生じているため測定精度はさほど良好ではなく、
またフィードバックυImにしてもタイムラグが大きい
不利があった。
In this regard, conventionally, the film thickness was measured after the paint film was completely cured, but since the surface of the cured paint film has minute irregularities, the measurement accuracy was not very good.
Also, even with feedback υIm, there was a disadvantage of a large time lag.

なお参考のため、第3図に、連続粉体静電塗装ラインの
全体を模式で示す。
For reference, FIG. 3 schematically shows the entire continuous powder electrostatic coating line.

(発明の効果) かくしてこの発明によれば、連続粉体静電塗装ラインに
おいて、ラインスピードを下げたり、炉長を長くするな
どの不利なしに、膜厚が均一でしかも外観が美麗な塗膜
を容易に得ることができる。
(Effects of the Invention) Thus, according to the present invention, a coating film with a uniform thickness and beautiful appearance can be produced in a continuous powder electrostatic coating line without the disadvantages of lowering the line speed or increasing the furnace length. can be easily obtained.

【図面の簡単な説明】 第1図は、この発明の好適実施例の模式図、第2図は、
従来の加熱炉の模式図、 第3図は、この発明に従う加熱炉を組み込んだ連続粉体
静電塗料ラインの模式図である。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic diagram of a preferred embodiment of the present invention, and FIG.
Schematic diagram of a conventional heating furnace. FIG. 3 is a schematic diagram of a continuous powder electrostatic coating line incorporating a heating furnace according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、連続粉体静電塗装ラインにおいて、鋼板表面に塗布
した粉体塗料の成膜化を図る加熱炉であって、前後に二
分割した第1炉と第2炉とからなり、第1炉は加熱手段
として赤外線加熱装置または誘導加熱装置を、一方第2
炉は加熱手段として熱風加熱装置をそれぞれ備えること
を特徴とする連続粉体静電塗装ラインにおける加熱炉。
1. In a continuous powder electrostatic coating line, it is a heating furnace that aims to form a film of powder coating applied to the surface of a steel plate, and consists of a first furnace and a second furnace that are divided into two parts, the first furnace uses an infrared heating device or an induction heating device as the heating means, while the second
A heating furnace in a continuous powder electrostatic coating line, characterized in that each furnace is equipped with a hot air heating device as a heating means.
JP26609584A 1984-12-19 1984-12-19 Heating furnace in continuous powder electrostatic coating line Pending JPS61146366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26609584A JPS61146366A (en) 1984-12-19 1984-12-19 Heating furnace in continuous powder electrostatic coating line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26609584A JPS61146366A (en) 1984-12-19 1984-12-19 Heating furnace in continuous powder electrostatic coating line

Publications (1)

Publication Number Publication Date
JPS61146366A true JPS61146366A (en) 1986-07-04

Family

ID=17426250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26609584A Pending JPS61146366A (en) 1984-12-19 1984-12-19 Heating furnace in continuous powder electrostatic coating line

Country Status (1)

Country Link
JP (1) JPS61146366A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059446A (en) * 1990-02-14 1991-10-22 Armco Inc. Method of producing plastic coated metal strip
JPH03284375A (en) * 1990-03-30 1991-12-16 Nippon Steel Corp Method and furnace for baking coated metallic plate
US5176755A (en) * 1990-02-14 1993-01-05 Armco Inc. Plastic powder coated metal strip
JPH0890055A (en) * 1994-09-22 1996-04-09 Soufuku Koki Kk Continuous production equipment of steel shape having coating film
WO2006131315A1 (en) * 2005-06-06 2006-12-14 Advanced Photonics Technologies Ag Apparatus and method for paint coating or varnish coating a coilable metal sheet
CN103334247A (en) * 2013-06-13 2013-10-02 苏州市丹纺纺织研发有限公司 Electrostatic coating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167766A (en) * 1981-04-09 1982-10-15 Nissan Motor Co Ltd Gas releasing method of paint drying line
JPS59189956A (en) * 1983-04-13 1984-10-27 Toyo Seikan Kaisha Ltd Method and apparatus for coating inner surface of three- piece can

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167766A (en) * 1981-04-09 1982-10-15 Nissan Motor Co Ltd Gas releasing method of paint drying line
JPS59189956A (en) * 1983-04-13 1984-10-27 Toyo Seikan Kaisha Ltd Method and apparatus for coating inner surface of three- piece can

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059446A (en) * 1990-02-14 1991-10-22 Armco Inc. Method of producing plastic coated metal strip
US5176755A (en) * 1990-02-14 1993-01-05 Armco Inc. Plastic powder coated metal strip
JPH03284375A (en) * 1990-03-30 1991-12-16 Nippon Steel Corp Method and furnace for baking coated metallic plate
JPH0890055A (en) * 1994-09-22 1996-04-09 Soufuku Koki Kk Continuous production equipment of steel shape having coating film
WO2006131315A1 (en) * 2005-06-06 2006-12-14 Advanced Photonics Technologies Ag Apparatus and method for paint coating or varnish coating a coilable metal sheet
US7811639B2 (en) 2005-06-06 2010-10-12 Advanced Photonics Technologies Ag Apparatus and process for paint or lacquer coating of a metal sheet capable of coiling
CN103334247A (en) * 2013-06-13 2013-10-02 苏州市丹纺纺织研发有限公司 Electrostatic coating device

Similar Documents

Publication Publication Date Title
GB2025267A (en) Process and apparatus for coating metal tubes with plastics materials
EP1330393A2 (en) Process for the application of powder coatings to non-metallic substrates
EP0830396A1 (en) Application of a polymer backing onto a glass substrate
EP0933140A1 (en) Power coating of wood-based products
JPS61146366A (en) Heating furnace in continuous powder electrostatic coating line
EP0539410A1 (en) Method of coating heat sensitive materials with powder paint.
US3744951A (en) Sinter molding apparatus
JP2006500547A (en) Heat treatment method and apparatus for processed products
US3149945A (en) Differential thermal treatment of glass objects
JP3282240B2 (en) Continuous coating method for strip material
JP3200174B2 (en) Heating equipment
WO1989000890A1 (en) Method and apparatus for coating elongated steel objects, particularly concrete reinforcement steels and formed steels
US3029778A (en) Coater
JP2710438B2 (en) Baking method of powder coated metal plate
JPS63238259A (en) Coloring treatment of stainless steel pipe
JP3193232B2 (en) Baking method and baking furnace for surface coated metal sheet
JPH084147Y2 (en) Baking oven for painting
JPS63264167A (en) Method and apparatus for coating resin particle
JP3219927B2 (en) Heating control method for baking painted metal sheet
JPS62149379A (en) Method for uniformly curing coated film on painted steel sheet of cut sheet by induction heating
JP2022189795A (en) Powder coating method for cement molded product
KR960010162B1 (en) Apparatus for coating continuous automatic rollers of fluoro carbon resins to make black sheets for aluminium kitchen-ware
JPH0694017B2 (en) Baking method and baking furnace for powder coated metal sheet
SU1597251A1 (en) Method of applying coatings from metallic powders on internal surfaces of articles
JPH05266A (en) Apparatus for coating and/or baking printed coil metal plate and baking method with the same